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Figure 1: Overview of our automatic content-aware video resizing framework. We align the original frames of a video clip to a common
coordinate system by estimating interframe camera motion, so that corresponding components have roughly the same spatial coordinates.
We achieve spatially and temporally coherent resizing of the aligned frames by preserving the relative positions of corresponding components
within a grid-based optimization framework. The final resized video is reconstructed by transforming every video frame back to the original
coordinate system.

Abstract

Temporal coherence is crucial in content-aware video retargeting.
To date, this problem has been addressed by constraining tempo-
rally adjacent pixels to be transformed coherently. However, due to
the motion-oblivious nature of this simple constraint, the retargeted
videos often exhibit flickering or waving artifacts, especially when
significant camera or object motions are involved. Since the feature
correspondence across frames varies spatially with both camera and
object motion, motion-aware treatment of features is required for
video resizing. This motivated us to align consecutive frames by
estimating interframe camera motion and to constrain relative po-
sitions in the aligned frames. To preserve object motion, we detect
distinct moving areas of objects across multiple frames and con-
strain each of them to be resized consistently. We build a com-
plete video resizing framework by incorporating our motion-aware
constraints with an adaptation of the scale-and-stretch optimization
recently proposed by Wang and colleagues. Our streaming imple-
mentation of the framework allows efficient resizing of long video
sequences with low memory cost. Experiments demonstrate that
our method produces spatiotemporally coherent retargeting results
even for challenging examples with complex camera and object mo-
tion, which are difficult to handle with previous techniques.

Keywords: video retargeting, spatial and temporal coherence, op-
timization

1 Introduction
In recent years, content-aware video resizing has been an active
research topic. The goal is to change the aspect ratio and the reso-
lution of video data to fit target display devices, while retaining as
much important content as possible and avoiding visible artifacts.
To achieve this, the recent techniques largely operate at the pixel
level, e.g., by removing the least important rows/columns of pix-
els iteratively through seam carving [Rubinstein et al. 2008] or by
distributing the errors from important pixels to less important ones
through non-uniform warping [Wolf et al. 2007; Zhang et al. 2008].

Naı̈vely resizing individual frames in a content-aware manner eas-
ily leads to temporal incoherence, causing flickering or waving arti-
facts. To address the problem, most previous work considers videos
as spatiotemporal cubes and constrains temporally adjacent pixels
to transform coherently (by “temporally adjacent pixels”, we mean
pixels in consecutive frames that have the same spatial location, up
to 1-ring neighborhood). However, this approach often fails to guar-
antee temporal coherence, since it is motion-oblivious: it assumes
that features remain in the same spatial location or 1-ring neigh-
borhood between consecutive frames, and this assumption breaks
down when large camera or object motion is present. For example,
camera zooming makes object features occupy regions of differ-
ent sizes even between consecutive frames, possibly causing seam
carving to remove features inconsistently across frames due to its
strategy of one seam removal per frame. Camera or object sliding
also easily leads to deviation from correspondence between tem-
porally adjacent pixels (Figure 2). Similar temporal incoherence
problems happen with the methods based on non-uniform warp-
ing [Wolf et al. 2007; Zhang et al. 2008] (see examples in the ac-
companying videos).

We introduce motion-aware constraints for temporally coherent re-
sizing of videos, which, to the best of our knowledge, have not
been studied before. We observe that temporal coherence can be
achieved by preserving the motion information of the input video,
usually consisting of camera and object motion, and we thus design
separate constraints to preserve camera motion and object motion.



Specifically, we align every pair of consecutive frames using their
interframe camera motion and constrain their relative positions to
retain camera motion. We preserve object motion by detecting dis-
tinct moving areas of objects across multiple aligned frames and
constraining each of them to be resized consistently.

The concept of motion-aware temporal coherence constraints is
largely orthogonal to the building blocks of the existing video re-
targeting methods and thus can be used to improve the existing
methods. However, in this work we chose to build a new video
resizing framework which relies on the scale-and-stretch optimiza-
tion proposed by Wang et al. [2008b], originally designed for im-
age retargeting. Unlike other recent image resizing methods [Avi-
dan and Shamir 2007; Wolf et al. 2007; Zhang et al. 2008], where
the optimization is restricted to one spatial direction (horizontal or
vertical), the method of Wang et al. distributes the distortion due
to aspect ratio change in all spatial directions, and thus generally
achieves better results in many resizing scenarios. The nature of this
omnidirectional warping poses a more interesting and challenging
problem for achieving temporal coherence. We show how to strike
a balance between spatial content preservation and temporal co-
herence using a bounded number of aligned neighboring frames to
define a blended importance map for each frame. Since our method
is heavily based on frame alignment, our final resizing optimization
is naturally formulated over all video frames aligned in a common
camera coordinate system, where the resizing effect of individual
frames is driven by content-aware deformation of per-frame uni-
form grids (Figure 1). To improve performance and scalability, we
break long video sequences into short overlapping clips and resize
the individual clips in a streaming manner while constraining their
in-between temporal coherence over the overlapping frames.

We apply our method to a variety of videos that contain large object
motion and/or camera motion. Experiments show that our method
produces consistent, visually pleasing results and tends to preserve
salient content and temporal coherence better than the previous
techniques.

2 Related Work
Image Retargeting. Many content-aware image retargeting tech-
niques have been proposed to adapt images to target displays with
different resolutions and aspect ratios. They often share the same
common structure: first, define an importance map of the image,
followed by content-aware operations which try to retain impor-
tant visual information as much as possible. Those methods mainly
vary by the specific content-aware operations. For example, crop-
ping methods [Chen et al. 2003; Liu et al. 2003; Suh et al. 2003;
Santella et al. 2006] search for a single window covering important
content and retain it while completely discarding the rest. Unlike
a homogeneous resizing, which is simply a linear mapping, recent
works, such as non-photorealistic retargeting [Setlur et al. 2005],
seam carving [Avidan and Shamir 2007; Rubinstein et al. 2008],
one-directional image warping [Gal et al. 2006; Wolf et al. 2007;
Zhang et al. 2008] and omnidirectional image warping [Wang et al.
2008b] allow nonlinear retargeting of images. They strive to re-
distribute the pixels of the entire image according to their impor-
tance values. The method of [Wang et al. 2008b] allows local con-
tent drifting/rescaling in both the horizontal and vertical dimensions
even if the user changes only the width or height of the image.

Redistribution of pixels under patch-based coherence and com-
pleteness constraints is studied in [Cho et al. 2008; Simakov et al.
2008]. These methods afford more flexibility for image editing op-
erations, including image resizing, though at much higher compu-
tational cost. The concepts from image retargeting have also been
transferred to content-aware shape resizing [Kraevoy et al. 2008]
and focus+context visualization of 3D models [Wang et al. 2008a].
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Figure 2: Object or camera motion diverts feature correspondence
from temporally adjacent pixels. In this example, due to camera
movement, features within the quad in red should be constrained
to those within the yellow quad instead of the temporally adjacent
quad in blue.

Video Retargeting. Almost all the image retargeting methods can
be adapted to resize videos by addressing two problems: augment-
ing image importance models with motion information and resizing
individual frames in a temporally coherent manner. We show that
the influence of camera and object motion should be considered in
both problems. However, to the best of our knowledge, none of
the existing importance models except those used in the cropping-
based retargeting methods [Liu and Gleicher 2006; Tao et al. 2007]
take camera motion into account. Liu and Gleicher [2006] com-
pute motion contrast, i.e., the motion at each pixel subtracted from
the background motion, to define motion saliency, which is then in-
corporated into the importance model together with image saliency
and object saliency. Tao et al. [2007] explicitly extract moving fore-
ground objects to solely define important parts.

The cropping-based retargeting methods achieve temporally coher-
ent results by searching for a smooth cropping sequence. The re-
targeting methods involving local redistribution of pixels demand
pixel-level temporal coherence, which is apparently more difficult.
The existing methods enforce coherence between temporally ad-
jacent pixels in a spatiotemporal video cube. For example, Wolf
et al. [2007] propose to penalize position changes of temporally
adjacent pixels in a linear least-squares optimization formulation.
Similar temporal coherence is achieved using a 3D random walk
model in [Zhang et al. 2008], which instead focuses on improv-
ing the efficiency of [Wolf et al. 2007]. Rubinstein et al. [2008]
obtain time-smoothing seams by solving for monotonic 2D con-
nected manifold seams using graph cuts. However, we observed
that simply enforcing constraints between temporally adjacent pix-
els is often insufficient or even invalid, especially when large object
movement or large camera motion is involved, causing flickering or
waving artifacts.

Note that the above retargeting methods have their own advantages
and disadvantages [Rubinstein et al. 2008]. For example, compared
to cropping-based methods, which completely discard less impor-
tant regions, nonlinear retargeting, such as seam carving and non-
uniform warping, has better ability to preserve scene context at the
cost of allowing some degree of distortion, especially to less im-
portant regions. Our resizing framework, as another nonlinear re-
targeting method, is proposed not to replace any existing resizing
tool, but to provide users more options for their specific needs. As
recently shown, several types of retargeting methods may need to
be used together to produce visually pleasing resizing of a general
image or video [Rubinstein et al. 2009].

3 Overview
An ideal solution to temporally coherent video resizing is to first
recognize compatible objects across different video frames and then
resize them within individual frames in a consistent manner. How-
ever, this involves object recognition and tracking, which are chal-
lenging tasks on their own. Observing that achieving temporal co-



herence largely means avoiding motion artifacts, such as flickering
and waving, we aim to preserve the motion information in an input
video, usually consisting of camera motion and object motion.

Camera motion and object motion have very different nature, de-
manding separate strategies to preserve them. Camera motion is of
low degree of freedom and brings a global visual effect to whole
scene, usually containing both static and dynamic objects. Assum-
ing that input videos always contain static objects (e.g., static back-
ground) whose visual movement is completely due to camera move-
ment, we use a feature-based method to estimate the camera motion
between every pair of consecutive frames (Section 4.1). By “object
motion”, we refer to the intrinsic motion of dynamic objects, inde-
pendent of camera movement. Object motion can often be of high
degree of freedom and simultaneously caused by multiple objects
at different locations. Precise estimation of object motion is a chal-
lenging task. Fortunately, by the smooth warping nature of the core
technique, it is sufficient to use the remaining motion subtracted
from the camera motion to roughly estimate object motion, avoid-
ing the necessity for precise alpha-masks of the dynamic objects.

Since the importance map of each frame largely determines how
each image is non-uniformly deformed during resizing, we require
importance maps that change smoothly across adjacent frames. To
achieve this, we compute the importance map of each frame by
considering a bounded number of neighboring frames aligned in a
common camera coordinate system of the current frame, instead of
only the frame itself (Section 4.2). Each importance map takes into
account salient information in both spatial and temporal context,
but excludes motion purely caused by camera movement, since it
is almost homogeneous within individual frames and thus of little
importance.

We build a new video resizing framework by designing motion-
aware temporal coherence constraints (Section 5.2) and applying
the importance maps to guide content-aware resizing of individual
frames (Section 5.1), for which we adopt the image resizing method
proposed by Wang et al. [2008b]. We embed each frame into a uni-
form grid mesh. Our system simultaneously deforms all the meshes
with spatial and temporal constraints. We preserve camera motion
by constraining relative positions of every two consecutive meshes,
aligned using the estimated interframe camera motion. We achieve
temporally coherent resizing of dynamic objects by detecting their
moving areas and deforming each distinct moving area in a consis-
tent manner. As our temporal constraints and importance maps are
all dependent on the frame alignment, we found it more intuitive to
formulate the optimization in a common camera coordinate system.
Once we obtain the deformed meshes, we transform them back to
the original coordinate system of each frame and warp the corre-
sponding images to produce the final resized video. Figure 1 gives
an overview of our resizing framework. Note that we show every
twentieth frame for better visualization.

It is unnecessary to retain temporal coherence at scene/shot bound-
aries of videos. Therefore we manually segment input videos
into individual scenes and leave the implementation of an auto-
matic scene boundary detection algorithm (e.g., [Rasheed and Shah
2003]) for future work. The performance of our optimization de-
pends on both the resolution of the video and the number of frames
involved. To make our method scalable to long video sequences of
single scenes, we break the input into short clips with a small set of
overlapping frames and resize the individual clips sequentially. We
constrain the temporal coherence in the overlapping areas in order
to achieve coherent resizing of the entire sequence. Since we trade
speed for coherence quality, our current implementation is interac-
tive (around 5 fps) but not realtime. In the following sections, we
first present our algorithm for resizing a single video clip and then
discuss our solution to the scalability problem in Section 5.4.
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Figure 3: We blend the information of a bounded number of aligned
neighboring frames to define an importance map at each frame.
Pixels with high and low importance are visualized in green and
blue, respectively. Our model produces time-smoothing maps that
capture salient information in both spatial and temporal context.

4 Video Importance Map
In this section we first introduce our adopted method for frame
alignment and then present a method to compute an importance
map for each video frame, such that the consecutive maps change
smoothly. Instead of defining the importance map of each frame
individually, we measure the importance of a region by considering
the contents of neighboring frames that are aligned at that region.

4.1 Frame Alignment

We align video frames by estimating camera motion between ev-
ery two consecutive frames. Camera motion estimation has been
studied extensively (see [Szeliski 2006] for an insightful survey).
Our preliminary experimentation with a 2D affine transformation
as the camera model easily gave unreliable results when the area
occupied by dynamic objects was significantly increasing. To trade
precision for robustness, we express interframe motion using a re-
stricted model which consists of scaling and translation. While los-
ing the ability of modeling camera roll operations, which are sel-
dom used in video production, our model is able to robustly esti-
mate the other camera motion effects, such as sliding, zoom, yaw,
and pitch. Although we are aware that a 2D projective transforma-
tion might be a more precise camera model for this task, we found
that this restricted model is more robust and works well for most
regular videos. More importantly, it allows us to solve for the x
and y components in the optimization separately, thus significantly
reducing computational cost and memory requirements (Section 5).

We employ a feature-based method to estimate our camera model,
similar to those used in the literature of video stabilization [Chen
et al. 2008; Gleicher and Liu 2008]. We first detect the feature
points of each frame by SIFT [Lowe 2004], which is reported to
perform best among many local feature descriptors. We then use
RANSAC [Fischler and Bolles 1981] to robustly extract the fea-
ture correspondence between the frames and estimate the restricted
model (i.e., solving for the scaling and translation parameters). We
need to handle a degenerate problem when there are too few pairs of
feature correspondence found and will discuss its solution in Sec-
tion 6.

Once we obtain the transformations between every pair of consec-
utive frames, we are able to accumulate them to align the video
frames to a common camera coordinate system. Figures 1 and 8
show some examples of frame alignment with respect to a camera
coordinate system defined at the first frame of a video clip. Note
that we do not compute alignment between every frame back to a
fixed reference frame, since temporal incoherence is often notice-
able only for neighboring frames. Even more importantly, there



generally exists no single reference frame that shares sufficient
backgrounds with every other frame to allow for robust alignment.
We denote by Tt 7→` the accumulated transformation from frame t
to frame `, which transforms pixels at time t to the coordinate sys-
tem defined at time `. We use homogeneous coordinates to repre-
sent positions and vectors and thus express Tt7→` as 3× 3 matrices.
Note that we have T` 7→t = (Tt7→`)−1. The accumulated transfor-
mations will be used for both our importance map computation and
the motion-aware temporal coherence formulation. We discuss the
quality of the accumulated transformations further in Section 6.

4.2 Aligned Importance Map Blending

As the importance map of each image largely determines the defor-
mation and movement of each pixel, temporally coherent resizing
requires every two consecutive frames to have similar importance
maps. This motivated us to define the importance map of each
frame by blending the importance maps of neighboring frames at
aligned positions. Specifically, we define the blended importance
value at pixel p of frame t as

Īt(p) =
t+k
max
`=t
{It(p), δ It(p) + (1− δ) I`(Tt7→` p)}, (1)

where It denotes a traditional (single-image) importance map at
frame t and k denotes the bounded number of neighboring frames.
We mitigate the contribution of neighboring frames away from
frame t by setting blending factor as δ = (` − t)/k. Defining
the importance map of an image, It, is challenging on its own, re-
quiring scene understanding. We adopted the method of Wang et
al. [2008b] to compute It as the multiplication of gradient magni-
tude and image saliency [Itti et al. 1998], though other information
(e.g., from face detection) can be easily incorporated as well.

In Equation 1, we chose to take the (weighted) maximum impor-
tance among the aligned frames at a given pixel, which guarantees
that object motion, usually reflected as moving object boundaries,
can be implicitly captured by our importance model. We do not in-
corporate an explicitly defined motion saliency map here to avoid
the problem of weighing and fusing irrelevant saliency cues [De-
selaers et al. 2008]. Unlike the previous importance models [Liu
and Gleicher 2006; Wolf et al. 2007], which consider motion only
between two consecutive frames, our model also captures motion
information only observable over a longer time period. For exam-
ple, our importance maps record objects’ motion paths by observ-
ing their movement within multiple frames. Figure 3 shows two
blended importance maps of a video containing simultaneous cam-
era and object motion. Note that the blending process marks some
background pixels as important, since their corresponding pixels in
the neighboring aligned frames are important due to the motion of
the moving boat. This is a desirable effect, as the blended maps give
higher importance values to moving objects and capture salient in-
formation in both spatial and temporal context, thus better preserv-
ing the aspect ratio of foreground objects.

By increasing the value of k, we obtain more time-smoothing im-
portance maps and also capture the motion context better. On the
other hand, larger k means that a larger amount of important re-
gions from different frames are combined into a single map, which
may lead to a more homogenous map in some scenarios. An ex-
treme example is when each pixel is marked as equally important
when multiple objects move around the entire scene within the in-
volved frames, reducing the scheme to homogenous resizing. We
have experimented with different values for the blending parame-
ter k. Please see the supplemental video Kcomparison.mp4 1 for
comparisons. Although an adaptive time window that considers

1We refer to a set of supplemental results on the project web site at
http://graphics.csie.ncku.edu.tw/VideoResizing/
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Figure 4: We preserve camera motion by retaining relative po-
sitions of consecutive uniform grids associated with video frames
aligned at a common camera coordinate system.

video contents might be more appreciated from a theoretical point
of view, we found that setting k = 60 works well for all of our
experimental examples.

Rubinstein et al. [2008] discussed the possibility of using all video
frames to compute a single importance map for carving the video
with static seams. However, their model works only for videos pro-
duced by stationary cameras, since their formulation does not ex-
clude camera motion. As our model processes frames aligned by
interframe camera motion, it can successfully handle videos cre-
ated by dynamic cameras.

5 Grid-based Resizing Optimization
We now describe our video resizing framework, which uses the
blended importance maps to guide the spatial content preservation
of individual frames and motion-aware temporal coherence con-
straints to preserve both camera and object motion. Since we are
always operating on aligned frames, it is more intuitive to formu-
late the optimization over all frames of a video clip aligned in a
common camera coordinate system2, determined by the first frame
of the video clip in our case (Figure 1). We drive the deformation
of each aligned frame at time t using an associated uniform grid
mesh M t = {Vt,Et,Qt} with vertex positions Vt, edges Et and
quads Qt. All grid meshes are independent of video content and
have the same connectivity but they are usually of different sizes
and locations due to frame alignment, leading to a non-cubic shape
in the spatiotemporal space (Figure 4).

5.1 Spatial Content Preservation Energies

We adopt the method of [Wang et al. 2008b] to resize individual
frames by redistributing the vertices of the associated grid meshes.
To deform the grid meshes while respecting the video content, we
need to compute an importance value for each quad qt ∈ Qt of M t

based on Īt(p). We define it as the average importance over the
pixels in qt; the importance values are normalized into the range
[0, 1].

The energy for preserving the quad aspect ratios according to the
normalized quad importance ωtq is formulated as

Du =
∑
t

∑
qt∈Qt

ωtq
∑

{i,j}∈E(qt)

∥∥(ṽti − ṽtj)− stq(vti − vtj)
∥∥2
, (2)

where ṽt∗ is the (unknown) deformed vertex position of vt∗ ∈ Vt

2 Note that we can equivalently formulate the optimization in the origi-
nal spatiotemporal coordinate system (i.e., before frame alignment) through
coordinate transformation.
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Figure 5: We use the motion information in a bounded number
of aligned neighboring frames to define a motion saliency map at
each frame. We preserve object motion by detecting distinct moving
volumes of foreground objects, covered by quads in different colors,
and resizing each of them consistently.

after resizing, E(qt) denotes the edge set of qt, and stq is the un-
known uniform scaling factor of quad qt, depending on both ṽt∗
and vt∗. We also adopt the energy of Wang et al. which penalizes
bending of grid lines and thus alleviates the edge flipping problem:

De =
∑
t

∑
{i,j}∈Et

∥∥(ṽti − ṽtj)− ltij(vti − vtj)
∥∥2

(3)

with ltij = ‖ṽti − ṽtj‖/‖vti − vtj‖. Please refer to [Wang et al.
2008b] for more details about these two energies.

5.2 Temporal Coherence Energies

Due to the different natures of camera motion and object motion,
we design separate constraints (or more precisely, energy terms)
to minimize temporally inconsistent distortion. Both types of con-
straints are equally important to achieve temporally coherent resiz-
ing and they are not interchangeable.

Camera Motion Preservation. Interframe transformations natu-
rally reflect camera motion and should be preserved in order to re-
tain it. This can be achieved by preserving the relative positions of
consecutive aligned frames, i.e., by asking the positions of corre-
sponding pixels in adjacent frames (aligned in a common camera
coordinate system) to be the same after resizing. Since interframe
transformations are of low degree of freedom, this can be equiva-
lently achieved by preserving the relative positions of consecutive
grid meshes. The above discussion leads us to preserving the rela-
tive coordinate of grid vertex vti (in red) with respect to the corre-
sponding quad qt−1 (in yellow) of M t−1 that contains the spatial
location of vti (Figure 4). Specifically, we use the following energy
term:

Dα(vti) =
∥∥ṽti −∑ṽt−1

j
∈qt−1 at−1

j ṽt−1
j

∥∥2
, (4)

where at−1
j denotes the relative coordinate of vti with respect to

qt−1 before resizing (we use barycentric coordinates).

Equation 4 works only for grid vertices that have correspondence
in the previous frame. However, due to frame alignment, there
are usually some vertices (near to the grid mesh borders) that fail
to find the corresponding positions in the previous frame, denoted
as Vtβ . Since temporal coherence is required on every local re-
gion of the video frames, we need special treatment for the ver-
tices without correspondence. For every such vertex vti ∈ Vtβ , a
naı̈ve solution might be to simply constrain the positions of the
pixels that are temporally adjacent before alignment to be same
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Figure 6: Top: Camera motion constraints alone cannot guarantee
consistent resizing of foreground objects. Bottom: Adding object
motion constraints leads to temporally more coherent results.

after resizing, i.e., by minimizing ‖ṽti − Tt7→t−1 ṽt−1
i ‖2, where

Tt7→t−1 = (Tt−17→t)
−1 is needed to offset the influence of frame

alignment already encoded in the coordinates of vt−1
i and vti . How-

ever, this naı̈ve solution is undesirable: although the sets of ver-
tices with and without aligned features in the previous frame (i.e.,
Vt \ Vtβ and Vtβ) are disjoint, they are governed by the same set of
interframe camera motions. As discussed before, constraining tem-
porally adjacent pixels before alignment always attempts to retain a
motion-oblivious interframe transformation (i.e., an identity trans-
formation), which conflicts with the preservation of motion-aware
interframe transformations in Equation 4.

Instead, we enforce the deformations around the vertices that are
temporally adjacent before alignment to be as similar as possible.
To achieve this, we use the Laplacian coordinates [Sorkine et al.
2004], denoted as L(vti) =

∑
{i,j}∈Et(v

t
i − vtj), to represent

local features, and use δ(ṽti) = L(ṽti) − L(vti) to measure the
deformation caused by resizing. Note that the original Laplacian
coordinates are always the same at corresponding vertices up to in-
terframe transformations, that is, L(vti) ≡ Tt7→t−1 L(vt−1

i ). Thus
we measure the deformation difference at corresponding positions
by comparing the corresponding new Laplacian coordinates

Dβ(vti) =
∥∥δ(ṽti)− Tt7→t−1 δ(ṽ

t−1
i )

∥∥2

=
∥∥L(ṽti)− Tt7→t−1 L(ṽt−1

i )
∥∥2
. (5)

By combining the above criteria, our final energy for preserving
camera motion can be formulated as

Dc =
∑
t

∑
vt
i
∈Vt\Vt

β

Dα(vti) +
∑
t

∑
vt
i
∈Vt

β

Dβ(vti). (6)

Object Motion Preservation. The camera motion constraints
above are essentially based on the assumption that the correspond-
ing features across frames are already aligned at the same position,
which works well for (static) backgrounds. However, the corre-
sponding features from (dynamic) foreground objects usually have
different locations even in the aligned frames (e.g., the moving lady
in Figure 6), as foreground objects have their own motion which
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Figure 7: An example of video expansion achieved with our
method. Left: the original frame. Right: the expanded frame.

is independent of camera motion. Therefore we need additional
constraints to preserve the motion of foreground objects. We ob-
served that relative sizes of dynamic objects are roughly retained
during resizing thanks to the smooth warping nature of the regular
grid meshes. Thus we only need to consider how to preserve the
dynamic motion of an individual object. As dynamic objects usu-
ally attract most attention, they should be preserved entirely during
resizing. These observations motivated us to detect moving areas
of a dynamic object in individual frames and resize all the moving
areas associated to the same object in a consistent manner. In other
words, our aim is to consistently resize the object’s entire moving
volume in the spatiotemporal space.

Since the basis of our resizing method is a smooth mesh warp, we
do not require a precise segmentation of the object’s moving areas.
We use a simple technique to estimate the moving volume, though
we can always resort to more robust but complex methods such as
the one proposed by Kang et al. [2006] for video montage. To be-
gin with, we first build an image mosaic [Szeliski 2006] as the back-
ground scene image of frame t by averaging the aligned pixel colors
from frame t to t+k (k = 60 in all of our experimental results). We
then define a motion saliency map Ot as the L2-norm of the RGB
color difference between the aligned frame t and the background
image. Note that we exclude the influence of camera motion from
Ot. Since we rely on color variations to detect object motion, our
method can handle all kinds of foreground objects as long as they
exhibit detectable color variations. To avoid possible interference
by pixels with small motions, which might be due to frame mis-
alignment, we only keep pixels {p|Ot(p) ≥ γmax(Ot)}, where
γ = 0.5, and detect spatiotemporally connected components of
these pixels as the distinct moving volumes (Figure 5).

To preserve the consistency of each moving volume, we require all
its covering quads to be resized consistently. Let Bu be the set of
quads covering a moving volume u. See an example of Bu in Fig-
ure 5 where for instance all the quads covering the moving volume
associated with the mouse are shown in green across frames. Since
our sole concern is the final resizing effect (i.e., frames transformed
back to the original coordinate system), similar to the design of
Equation 5, we need to offset the influence of interframe transfor-
mations when constraining quads from different frames. Let qu,h
be a quad with index h in Bu and tu,h the time coordinate of qu,h.
Rather than constraining all the quad pairs, which would lead to a
much denser system matrix, we found it sufficient to resize all the
quads equally to some randomly chosen quad qu,h0 ∈ Bu up to
interframe transformations, where h0 is a random number. To al-
low possibly large distortion for moving volumes detected as less
important, we constrain the vertical and horizontal edges of quads
separately. Specifically, we formulate the energy term for object

motion as

Do=
∑
u

∑
h 6=h0

Do,x(qu,h) +Do,y(qu,h), with

Do,d(qu,h)=
∑

{i,j}∈Ed(qu,h)

∥∥ẽtu,h0
i,j − Ttu,h0 7→tu,h ẽ

tu,h
i,j

∥∥2
, (7)

where ẽti,j = ṽti − ṽtj , d ∈ {x, y} and Ex(qu,h) and Ey(qu,h)
denote the horizontal and vertical edges of qu,h, respectively. In-
tuitively, minimizing the above energy means resizing the corre-
sponding edges of qu,h and qu,h0 in the same manner (up to their
interframe transformation). We are allowed to simply compare
the edge vectors because the corresponding edge vectors of all the
quads before resizing are the same up to interframe transformations.
Figure 6 compares the resizing results with and without the object
motion energies.

5.3 Minimization of Energy Functions
By combing spatial and temporal energies, our final optimization is
formulated as

argmin
ṽt
i

(
Du +De + λ (Dc +Do)

)
, (8)

subject to positional, boundary and size constraints. We use the
weighting factor λ to balance the spatial and temporal contribution.
Since motion artifacts are more noticeable, we use a large value of
λ (λ = 10 in all our experiments). Each energy term is dependent
on the sizes of individual frames/meshes, which are often different
due to frame alignment. To remove this dependence and revert to
the same importance of individual frames before alignment, we di-
vide per-frame formulation in each energy term by the correspond-
ing scaling factor (i.e., the scaling component of Tt 7→0). Similar
to [Wang et al. 2008b], we fix the position of the top-left vertex of
the first frame and constrain all the boundary vertices of each frame
to slide along their respective boundary lines. We incorporate the
user-specified resizing factor (Sx, Sy) into the size constraints

ṽtn,d − ṽt0,d = Sd(v
t
n,d − vt0,d), ∀t, d ∈ {x, y}, (9)

where vt0 and vtn are the top left and the bottom right vertices of
frame t, respectively.

Our optimization is essentially a nonlinear least-squares problem,
with the nonlinearity stemming from De. We consider the uniform
scaling factor stq and length factors lti,j as additional unknowns,
and solve for {ṽti} and {stq , lti,j} iteratively using an alternating
method similar to [Wang et al. 2008b]. Please refer to [Wang et al.
2008b] for more technical details. Each alternating iteration in-
volves solving a large sparse linear system, whose system matrix
can be pre-factorized. Therefore we only need to perform fast back
substitutions for each iteration. Note that the x and y coordinates
of the vertices are independent in the objective function, allowing
us to solve for them separately.

5.4 Scalability

Solving the nonlinear optimization in Equation 8 for long videos
with high quality would demand huge memory consumption
and computation time. Adopting multigrid algorithms, as done
in [Zhang et al. 2008], would alleviate the performance problem
to some extent. To further improve the performance and make our
resizing framework more practical for long videos, we introduce a
streaming algorithm. Since human beings are often not sensitive to
small changes between temporally distinct frames, it is unnecessary
to optimize the temporal coherence over the entire sequence of an
input video simultaneously. This motivated us to break a long video
(of a single scene) into shorter clips and solve the resizing problem
on individual clips sequentially.



Figure 8: Left: frame alignment examples under different types of camera motions, consisting of sliding, yaw, pitch, and zoom motions.
Right: the resized key frames. Note that the visually prominent features (e.g., human shapes and window shapes) are well preserved both
spatially and temporally.

… Clip p-1

Clip p

pn pn + q (p+1)n + q

… To achieve a smooth re-
sizing effect between con-
secutive clips, we slightly
overlap consecutive clips
and apply additional tem-
poral coherence constraints to the overlapping frames. Specifically,
we divide an input video into multiple clips, with each clip contain-
ing n+q frames, where q is the number of overlapping frames. For
example, the p-th clip contains frames from pn to (p + 1)n + q.
We set n = 100 and q = 30 in our experiments. We resize the first
clip (p = 0) using the optimization in Equation 8. For each resized
clip p− 1 (p ≥ 1), we directly output its first n frames as the final
resized frames and leave its last q frames as constraints to achieve
smooth resizing transition to its next clip p.

We achieve temporal coherence between clips p− 1 and p by min-
imizing the differences of the corresponding vertex positions be-
tween the last q frames of clip p − 1 and the first q frames of clip
p:

Ds = ϕt

pn+q∑
t=pn

∑
ṽt
i
∈Ṽt

∥∥ṽt,pi − ṽt,p−1
i

∥∥2
, (10)

where ṽt,pi denotes the unknown position of ṽti in clip p and ṽt,p−1
i

the already-solved position of ṽti in clip p−1. We use ϕt to control
the transition speed. We found that a simple linear function ϕt =
(pn + q − t)/q already works well in our experiments. To resize
the whole clip p, we add λDs as an extra temporal energy term
into the objective function in Equation 8 and solve the resulting
optimization for all the frames of clip p aligned at its first frame
t = pn. Note that the positional constraint is unnecessary in this
scenario since Ds provides an alternative positional specification.

6 Results and Discussion

We tested our method on aspect ratio changes of a variety of videos.
The chosen videos range from indoor scenes to outdoor scenes,
from scenes containing one object movement to those involving
multiple moving objects, and from intentional camera motion to
unconscious camera shaking. Many of them involve simultaneous
camera and object motion, making the task of content-aware resiz-
ing rather challenging. Figures 1, 7 and 8 show some of the tested
examples under different types of camera and object motions. Al-
though our camera model for frame alignment only contains the
translation and scaling parameters, it can handle almost all types
of camera motions except camera roll, which seldom happens in
video production. As demonstrated in the accompanying videos,
our method successfully produces spatiotemporally coherent resiz-
ing results and faithfully preserves visually prominent regions and
motions of objects and cameras in most cases.

It is well known that interframe motion estimation incurs some ap-
proximation errors, even if 2D projective transformations are used
as a more precise camera model [Szeliski 2006]. To avoid the in-
creasing accumulation error in long videos, we use only a bounded
number of frames to define the importance maps, two consecutive
frames to define camera motion constraints, and only the frames in-
volved in individual moving volumes to define object motion con-
straints. More importantly, we break a long video into short clips,
for which the accumulation errors are generally small. As demon-
strated in our supplemental video, this strategy preserves the ob-
jects’ aspect ratios better since the side effect of the alignment error
is reduced. Note that our streaming implementation usually does
not introduce any noticeable resizing artifacts between consecutive
clips, thanks to the blending strategy of importance maps and the
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Figure 9: From left to right columns: the original frame images, resizing results with homogeneous resizing, [Rubinstein et al. 2008], [Wolf
et al. 2007], the naı̈ve extension of [Wang et al. 2008b], and our method. Clearly, only our method can well preserve the visually prominent
features while successfully retaining temporal coherence. Due to the motion-oblivious temporal coherence constraints, the previous content-
aware resizing methods often cause inconsistent alteration of corresponding features across frames, e.g., the white bunny in the first example,
the arch in the second example and the woman’s body in the third example.

smooth transition constraints applied at the clip overlapping areas.
We use our streaming method to generate all the resizing examples
except those used for comparisons with and without the streaming
implementation.

Comparisons. We have compared our resizing results with those
produced by homogeneous resizing, one-directional warping (ODW
for short) [Wolf et al. 2007] and seam carving (SC) [Rubinstein
et al. 2008]. We have also compared to a naı̈ve extension of Wang
et al.’s [2008b] omnidirectional warping method for video resizing
(NDW), in which temporal coherence is enforced by simply con-

straining temporally adjacent vertices between consecutive frames,
similar to Wolf et al.’s constraints. We use our blended importance
model for both ODW and NDW and keep the original forward energy
of SC, since the forward energy considers energy changes caused by
seam removal and thus preserves structures better than a backward
energy [Wang et al. 2008b]. We have also experimented with an im-
portance model determined from individual frames without blend-
ing when comparing to ODW and NDW, but found that it usually
produced similar or even worse results (see a comparison example
in the supplemental videos). Since we want to compare the effec-
tiveness of these resizing methods for general types of videos, we



do not use saliency measures designed for certain special types of
objects, e.g., faces.

In Figure 9 we chose to show three representative comparison sce-
narios involving (multiple) object motion only, camera (zoom) mo-
tion only, and simultaneous object and camera motion, respectively.
Please refer to the accompanying videos for more comparison ex-
amples. Obviously, homogeneous resizing always achieves the
best temporal coherence but at the cost of introducing the most
serious distortion into important content. The previous content-
aware methods preserve important content better but exhibit dif-
ferent kinds of artifacts due to their motion-oblivious nature. By
the discrete nature of SC, it causes high-frequency artifacts in both
the spatial and temporal domains, exhibiting “jaggies” and flicker-
ing. ODW and NDW lead to smooth waving artifacts spatially and
temporally, since they distribute resizing distortion across the whole
image of each frame in a least-squares manner. We observed that
low-frequency artifacts caused by ODW or NDW are generally less
noticeable than high-frequency artifacts by SC. We also found that
due to its edge flipping constraints, NDW often produces less fold-
over artifacts than ODW, noticeable in the areas of human body of
the sixth row. However, the waving artifacts by NDW occurring
in structural or high-contrast regions are still visually noticeable.
Although the previous methods do not exhibit very serious spatial
artifacts in the above examples, they cause a much more serious
problem of temporal incoherence, as shown in the accompanying
videos. On the other hand, our method consistently achieves spa-
tiotemporally coherent resizing of these videos. For some complex
examples such as the third one, achieving both perfect spatial con-
tent preservation and perfect temporal coherence is extremely hard.
For those scenarios, our method still achieves better spatial content
preservation than homogeneous resizing and better temporal coher-
ence than the previous content-aware methods. Thus we believe
that our method strikes a good balance even in complex situations.
In short, compared to previous work, our method achieves compara-
ble results for trivial cases and visually better results for challenging
examples that involve large camera and/or object movements.

We show the effects of individual components of our algorithm
by comparing the resizing results with and without certain compo-
nents. For example, we demonstrate the pure impact of blending the
aligned importance maps by comparing the results with and without
using our importance model for ODW (see the accompanying video
MapComparison.mp4). The comparisons in Figure 6 show the sig-
nificance of object motion constraints. We demonstrate the pure
effect of the criteria for preserving both camera and object motions
by comparing our method with NDW, since the same importance
maps are used.

Performance. We use uniform grid meshes to drive the deforma-
tion of individual frames. Clearly, denser meshes allow more ef-
fective distribution of resizing distortion and thus produce better
results, at the cost of longer computation and larger memory con-
sumption. Fortunately, we found that rather coarse meshes are of-
ten sufficient to achieve satisfactory results. In our experiments,
we always use similar mesh resolutions (each quad roughly covers
20× 20 pixels), though we could use even coarser meshes without
sacrificing resizing quality for some of the tested videos. We asso-
ciate a grid mesh with each frame rather than introducing a mesh
for several frames, since otherwise motion artifacts are more no-
ticeable.

Our resizing method solves the nonlinear optimization problem ef-
ficiently by pre-factorizing the system matrices and performing fast
back substitution at each iteration. The streaming implementation
makes our method scalable to long video sequences. Please refer to
the accompanying video for some resizing results of long videos. In
our experiments, it usually takes less than 200 iterations for conver-

gence in the first clip and less than 100 iterations for the remaining
clips, since the resized overlapping frames from a previous clip al-
ready provide a good initial guess for resizing the following clip.
For the first example in Figure 8, whose resolution is 480 × 240,
our unoptimized implementation takes 20 seconds to resize the first
100 frames (around 5 fps on average), with the memory usage of
180Mb, measured on a PC with Duo CPU 2.33GHz. Of that time,
5 seconds are spent on the factorization of the system matrices of
both x and y coordinates and 15 seconds on the 105 alternating iter-
ations. We believe that introducing a GPU based multi-grid solver
would further improve the performance of our system, possibly al-
lowing real-time resizing.

Limitations. We model camera motion using a 2D camera model,
which assumes that the world is a single plane, or the camera rotates
around its optical center [Szeliski 2006]. Since our model ignores
the parallax effect, where the image displacements of scene points
should be dependent on their distances from the camera, it might
cause misalignment for scene points of varying-depth backgrounds
(see an example in the supplemental video SIFTFeatures.mp4).
Fortunately, the smooth warping nature of our system tolerates
some degrees of error from misalignment. We observed that the
alignment deviation usually causes only local waving artifacts, i.e.,
makes some static scene points move locally. Compared to global
waving artifacts by ODW and NDW or flickering artifacts by SC,
local waving artifacts are much less noticeable, as demonstrated in
the supplemental comparison video LocalMisalignment.mp4. In the
future it would be interesting to see if a more sophisticated camera
or object motion detection technique could improve the resizing re-
sults further. Resizing of videos containing depth information, pos-
sibly from stereo cameras, is another interesting topic to explore.

Our feature-based frame alignment method may become unreli-
able when either too few features are detected (e.g., due to ho-
mogeneous backgrounds) or the detected feature correspondences
disagree on the implied camera transformation (e.g., due to dy-
namic backgrounds or large foregrounds occupying the scene). In
these scenarios, we replace the unreliable interframe transformation
with a linear blending of neighboring reliable transformations (see
the supplemental video AlignmentError.mp4). In the extreme case
where there are too many unreliable interframe transformations, we
apply an identity transformation to every frame of the video and
lose the temporal preservation of background contents.

Like the other video resizing methods [Zhang et al. 2008; Rubin-
stein et al. 2008; Wolf et al. 2007], our method would degenerate
to homogeneous resizing if the importance map is nearly homoge-
neous. This may be due to failure of the saliency measure, too large
areas of static objects detected as important, or too many moving
parts spreading over the scene (see the supplemental video: Lin-
earScaling.mp4). In addition, our blended importance map further
relies on the precision of frame alignment since the homogeneous
pixels might be erroneously marked as important from neighboring
frames due to frame misalignment. This problem usually occurs
at scenes with highly varying depths or very long videos. In this
case, an intuitive user interface would be useful for users to guide
the object correspondence and saliency measure, achieving better
resizing results [Krähenbühl et al. 2009].

7 Conclusion and Future Work

We have presented a practical video resizing framework which can
handle videos of complex dynamic scenes. We observed that cam-
era and object motion cause feature correspondences to deviate
from temporally adjacent pixels, easily causing flickering or wav-
ing artifacts. We found that minimizing motion artifacts during re-
sizing can be achieved by preserving both camera and object mo-



tion and introduced motion-aware temporal coherence constraints
to preserve them. Our streaming implementation leads to a scalable
video resizing system that consistently produces spatiotemporally
coherent resizing results. We believe that by introducing the con-
cept of motion-aware constraints, we have taken a significant step
towards a more practical video resizing system.

Different content-aware image/video resizing methods each have
their own strengths. It would be interesting to combine our ideas of
motion-aware constraints with the other image resizing methods or
with the existing video retargeting methods to achieve better tem-
poral coherence. In addition, the preservation of global structures,
such as straight lines and different types of symmetries, is as well
important, requiring explicit structure detection and extra structural
constraints.
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