
Global Beautification of Layouts
with Interactive Ambiguity Resolution

Pengfei Xu1 Hongbo Fu2 Takeo Igarashi3 Chiew-Lan Tai1
1HKUST 2City University of Hong Kong 3The University of Tokyo

ABSTRACT
Automatic global beautification methods have been proposed
for sketch-based interfaces, but they can lead to undesired re-
sults due to ambiguity in the user’s input. To facilitate ambi-
guity resolution in layout beautification, we present a novel
user interface for visualizing and editing inferred relation-
ships. First, our interface provides a preview of the beautified
layout with inferred constraints, without directly modifying
the input layout. In this way, the user can easily keep refining
beautification results by interactively repositioning and/or re-
sizing elements in the input layout. Second, we present a ges-
tural interface for editing automatically inferred constraints
by directly interacting with the visualized constraints via sim-
ple gestures. Our efficient implementation of the beautifi-
cation system provides the user instant feedback. Our user
studies validate that our tool is capable of creating, editing
and refining layouts of graphic elements and is significantly
faster than the standard snap-dragging and command-based
alignment tools.

Author Keywords
Global beautification; layout editing; snapping; alignment;
ambiguity resolution; gestural interface

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces – Graphical user interfaces (GUI)

INTRODUCTION
Specifying precise relationships, such as alignment and
equal-spacing between graphic elements, might be one of the
most fundamental operations when creating or editing dia-
grams and other graphical documents. This is commonly
achieved in commercial software packages, like Adobe Illus-
trator and Microsoft PowerPoint, by using command-based
arrangement tools (e.g., issuing a command to equally space
the selected elements horizontally) and/or direct positioning
aided by snapping.

Snapping might be the simplest beautification technique. It
first infers spatial relationships between an element being ma-
nipulated and each of the existing elements, and then pro-
vides snapping suggestions to interactively achieve desired

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST 2014, October 5–8, 2014, Honolulu, HI, USA.
Copyright c© 2014 ACM 978-1-4503-3069-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2642918.2647398

Input window Preview window

Figure 1. Our novel interface for global beautification of layouts of
graphic elements with the power of interactive ambiguity resolution.
Grids are visualized for reference purpose only but not for editing.

relationships [5]. We classify snapping as a local beautifica-
tion technique, since each time only a current element is being
beautified while all existing elements are kept fixed, leading
to an element-by-element beautification process. Due to its lo-
cal nature, snapping itself is not very effective for designing
constrained global patterns (e.g., equal-spacing patterns with
the ending elements aligned, as shown in Figure 1). There-
fore, snapping-based alignment tools are often used together
with command-based tools. As we will discuss shortly, such
traditional tools are rather tedious and require a carefully or-
dered set of manual operations to achieve a desired layout.

On the other hand, humans are able to unambiguously tell
the desired layouts of graphic elements by viewing all ele-
ments as a whole. This motivates us to design a tool for
global beautification of layouts of graphic elements, i.e., to
first infer perceptually meaningful relationships among a set
of roughly placed graphic elements and then refine their posi-
tions and sizes to get a well-aligned layout that involves only
small changes to the input layout. While similar concepts
of global beautification have been proposed for sketch-based
user interfaces, the existing methods (e.g., [12, 22]) simply
apply global beautification results directly to elements being
edited, as often done for local beautification interfaces. Early
beautification of elements being edited would prevent the user
from placing them freely to form a global pattern, thus dis-
turbing the process of layout design.

We present a novel user interface for addressing a commonly
known ambiguity problem in global layout beautification. As
shown in Figure 1, our interface shows a preview of the beau-
tification, without immediately modifying any input element.
In our prototype, this preview is displayed in a separated win-
dow. While this interface is simple, it has the following ben-
efits. First, the user can focus on the layout design by manip-
ulating individual elements in the input window. Second, the
user might refine the beautification results by slightly mod-
ifying the input elements. To facilitate a more direct con-

(d)

(b)

(a)

(c)

Input Preview

Figure 2. To refine a beautified layout, as previewed in the right column,
the user may directly reposition (a-1) or resize (a-2) individual elements,
or remove inferred (b-1) or add new (b-2) edge-alignment relationships,
or remove inferred (c-1) or add new (c-2 and c-3) equal-spacing relation-
ships.

trol of the beautification results, we also present a gestural
interface, which allows easy editing of automatically inferred
constraints, i.e., desired relationships between elements in the
input window. See Figure 2 and the accompanying video for
live demos.

We present an efficient and effective implementation of the
proposed global layout beautification interface. Our tool al-
lows interactive refinement of graphic elements and/or con-
straints, with instant beautification feedback. We conduct
two studies to verify the effectiveness of our interface. First
we run a study to evaluate the effectiveness of beautifica-
tion preview. Second, we run a study to evaluate whether
our tool could replace the standard snapping and alignment
commands, omitting other layout helper features (e.g., equal-
sizing, auto-align) which can peacefully coexist with our tool.
Our results are promising and show that our tool provides
a faster way for creating, editing, and refining the test lay-
outs. The intuitiveness and ease-of-use of our interface are
also confirmed by the user study participants.

RELATED WORK
It is hard to track down the history of shape alignment tools.
Command-based alignment tools might be one of the most
common ways to align objects [24]. They adopt a two-step

procedure: first select a group of objects to be aligned and
then issue a certain arrangement command (e.g., left-align
or equally space the selected objects). Snapping is another
widely used technique [4, 5]. It provides aligned positions
by snapping an object to either the background grids, manu-
ally created guides, or other objects [11]. Snapping supports
direct manipulation and is thus more intuitive to use, while
command-based tools are more effective in aligning multi-
ple objects simultaneously and have a better control of global
alignment. Given their unique advantages, these traditional
tools collectively are capable of creating very complex well-
aligned layouts of graphic elements. However, even a simple
arrangement task as shown in Figure 1 already demands a se-
ries of operations with the traditional alignment tools. The
repeated use of operations like snapping, element selection,
and command selection, is tedious and error-prone, especially
for complex layouts. In addition, since different ordering of
such operations might lead to different results, a user has to
plan a series of operations beforehand and pay special atten-
tion to their order during editing. This somewhat diverts the
user from the tasks of layout design and creation.

Beyond the basic snapping and alignment commands, there
exist many layout helper features, some of which have al-
ready been integrated into commercial editors. For exam-
ple, many algorithms have been proposed for automatic or
semi-automatic graph layout generation [25, 26, 29], e.g., the
auto-align and auto-space tools in Microsoft Visio. How-
ever, they often significantly change the layout of the input
elements, without attempting to infer and maintain the under-
lying patterns in the input layout. The equal-sizing feature in
Microsoft Visio allows easy size-adjustment of selected ele-
ments. Several editors such as OmniGraffle and PowerPoint
support easy creation of equally spaced elements when dupli-
cating an element multiple times. These helper features are
very efficient for only specific tasks and are orthogonal to our
tool.

Our work is inspired by the previous efforts on beautifica-
tion, which also aims to bring as little change as possible
when improving content aesthetics. There are plenty of beau-
tification techniques mainly developed for sketch-based user
interfaces to tolerate errors from freehand input sketches.
These existing techniques can be largely categorized into two
groups [23]: local beautification and global beautification.
Similar to snap-dragging [5], local beautification of freehand
sketches beautifies a current input stroke based on either itself
(often through sketch recognition [1, 2, 14, 21]) or its geo-
metric relationship(s) to the existing elements (e.g., [18, 33,
34]). A typical user interface for local beautification achieves
beautification progressively, stroke by stroke. Each stroke is
replaced with its beautified version and kept fixed during the
beautification of subsequent strokes. Due to the local nature,
such interfaces are often easy to control. However, unfortu-
nately, local beautification is not suitable for the beautifica-
tion of layouts, which should be treated globally.

Compared to local beautification, global beautification has
been insufficiently explored. Pavlidis and Van Wyk [22]
present the first automatic beautifier for drawings and illus-

trations. Their algorithm focuses on inferring and enforcing
relations among points and lines, and thus can be extended
for our layout beautification problem by considering special
requirements like how to preserve aspect ratios of elements.
However, they do not give details about the user interface of
their system. Bolz [6] presents for the first time a user in-
terface for global beautification of drawings. It concentrates
on how to deal with parameter settings (e.g., via a parame-
ter menu). Due to possibly frequent parameter changes, the
beautifier by default is manually activated each time, though
it is discussed that automatic activation of the beautifier (like
ours) is a desired feature. Bolz’s system overlays the beauti-
fied drawing with an outline of the unmodified version for
some seconds. A similar visualization of the original and
beautified versions is adopted in [12], which however delib-
erately defers the beautifier’s feedback. Otherwise, the user
may easily get disturbed by beautification results. In contrast,
our user interface allows instant feedback with minimal dis-
turbance. Cheema et al. [7] present a novel sketch beautifica-
tion algorithm but adopt a simple interface similar to Bolz’s.
None of the above methods has explored an interface for edit-
ing constraints.

Our optimization strategy for determining valid constraints
bears some resemblance to the previous solutions for identi-
fying geometric features towards sketch recognition. For ex-
ample, Veselova and Davis [30] employ studies of human per-
ception to determine which geometric features are the most
important for symbol recognition. Hammond and Davis [15]
present a graphical debugging tool for learning structural de-
scriptions from automatically generated near-miss examples.
Similar to earlier work [18, 22], we adopt an automatic, iter-
ative approach to avoid dramatic changes to the input layout.

It is not always possible to infer desired relationships among
roughly placed elements, especially when there are ambi-
guities. A possible solution for ambiguity resolution is to
provide multiple alternatives as suggestions from which the
user can then choose [17, 18, 20]. The effectiveness of such
suggestion-based interfaces has been demonstrated for pro-
gressive beautification [18, 20]. It is unclear whether sugges-
tions can be used to effectively resolve the ambiguity from
global beautification, since a handful of ambiguous relation-
ships may easily lead to a large set of suggestions. Instead
of attempting to select the best suggestions from a big pool,
we design a gestural interface for directly editing a limited
number of constraints.

Constraint-based systems have been extensively studied and
a detailed review is beyond the scope of this paper. Most
constraint-based systems require the user to specify con-
straints explicitly (e.g., [9, 13, 28]). Instead, our beautifi-
cation interface focuses on automatic inference of geomet-
ric constraints, and thus only very few edits on constraints
(after roughly placing elements) are needed to achieve a de-
sired layout. Note that our current system performs once-
off alignment only and does not maintain inferred constraints
during subsequent editing [31]. Recently Zeidler et al. [32]
introduce a novel layout preview but focus on the resizing be-
havior of a constraint-based layout during the design phase.

Since constraint-based systems often need to deal with vari-
ous linear and nonlinear constraints, possibly with complex
interactions among them, significant effort has been devoted
to the topic of constraint solving (e.g., [3, 16, 19, 27]). Such
solvers can be potentially used for our beautification opti-
mization problem.

USER INTERFACE
In this section we first describe our main interface for global
beautification and then present our gestural interface for edit-
ing constraints. To make it simple, we first assume that the
beautifier is already activated and applied to all input ele-
ments, and will discuss how our beautifier can coexist with
other tools at the end of this section.

Global Beautifier Interface
Our global beautifier takes a set of roughly placed elements as
input and returns a well-aligned layout as output. Since the
desired relationships might not be immediately clear during
editing, even to a human viewer, we design a user interface
that does not directly change the location and size of elements
in the input layout, but rather gives a preview of the refined
layout in another window (Figure 1). In this way the user
can focus on layout design itself by placing elements roughly,
without being disturbed by the beautifier’s feedback.

Since the input layout is not immediately replaced with the
beautified version, the user may keep editing the current lay-
out by translating or resizing individual elements, and our
beautifier gives instant feedback in the preview window. This
simple interface is suitable for creating, editing or refining
layouts. At any point the user may confirm to apply the beau-
tified layout to the input one.

Gestural Interface for Editing Constraints
Automatically inferring underlying relationships among ele-
ments plays a vital role in layout beautification. Since rela-
tionships are formulated as constraints in the beautification
optimization, we will use the terms relationships and con-
straints interchangeably in the following discussion.

Automatically inferred relationships might not always be
wholly desirable. This problem might be indirectly solved
by interactive refinement of certain elements’ position and/or
size. Alternatively the user may directly add or remove rela-
tionships using a gestural interface as shown in Figure 2 (b)
and (c). Our implemented beautifier currently supports two
types of geometric relationships: edge alignment and equal-
spacing.

At any time the user may edit constraints in the input window,
where he or she may edit elements for interactive refinement.
To facilitate the editing of constraints, we display all automat-
ically inferred relationships using dashed lines and arrows in
both the input and preview windows (Figure 1). The visual-
ized constraints in the input window are editable via the ges-
tural interface while those in the preview window are read-
only for examining the currently achieved relationships. In
real-world applications, constraints may be displayed on de-
mand to avoid visual clutter, since in many cases only very
few constraint edits often suffice.

(a) (b) (c)
Figure 3. Two examples of our gestural interface for adding alignment
constraints. An appropriate constraint is automatically determined by
examining the relative location of two involved elements and the position
of the stroke’s ending points relative to the elements.

The user enters the mode for editing edge alignment con-
straints by clicking an “alignment constraint editing” button,
which might be replaced with a gesture in the future imple-
mentation. In this mode, repositioning and resizing of indi-
vidual elements are disabled. To remove an existing align-
ment constraint, the user performs a cutting gesture on a
constraint of interest (Figure 2 (b-1)), i.e., drawing a stroke
roughly perpendicular to the dashed line corresponding to the
constraint. To add a new alignment constraint, the user simply
draws a stroke connecting a pair of elements of interest (Fig-
ure 2 (b-2)). Our interface automatically determines whether
a horizontal or vertical alignment constraint is needed by ex-
amining the relative location of the two elements. For ex-
ample, the stroke in Figure 3 (a) is interpreted as an inten-
tion for vertical alignment while the stroke in Figure 3 (b) is
for horizontal alignment. For horizontal alignment, the user
may indicate the preference for top-, middle- or bottom-align
by placing the ending points of the stroke into the respective
parts of the elements. For this reason, the stroke in Figure 3
(b) is recognized for achieving middle alignment. A similar
control exists for vertical alignment (see an example in Fig-
ure 3 (a)). To make the interface more user-friendly, we may
put three control handles (e.g., small translucent circles) on
each side of an element, indicating that the user can drag from
one handle to another in order to set alignments. The mode
for editing alignment constraints is deactivated when the user
switches to other editing modes.

For simplicity, the activation and deactivation of our gestu-
ral tool for editing equal-spacing constraints are achieved via
mode-switching buttons. To remove an equal-spacing con-
straint the user performs a cutting gesture (Figure 2 (c-1)). To
add a new equal-spacing constraint, the user invokes multi-
ple (at least two) strokes, with each of them connecting a pair
of elements (Figure 2 (c-2 and c-3)). Constraints for equal-
spacing between the specified pairs of elements will then be
added. Horizontal or vertical equal-spacing is automatically
determined by looking into the relative position of pairs of
elements.

Not all automatically inferred constraints can be enforced at
the same time. Our interface only visualizes the constraints
that can coexist. However, the user may introduce constraints
that conflict with the existing ones. To capture the user’s lat-
est intention, any constraint that is in conflict with the newly
added constraint will be removed. Thus in some cases the
user may see one or more existing constraints removed due to
the new constraints.

IMPLEMENTATION
Now we describe how we implement the proposed beautifier
interface. Our implementation essentially follows the gen-
eral beautification framework proposed by Pavlidis and Van
Wyk [22]. We describe our implementation details for com-
pleteness.

Pattern Detection
We focus only on axis-aligned edge alignment and equal-
spacing relationships, since they already enable all the func-
tions of snapping and alignment commands. For illustra-
tion, we always use rectangles to represent graphic elements,
since element alignment is often achieved at the bounding box
level.

Inferring edge-alignment relationships. We will explain
only the implementation for horizontal alignment. Detecting
relationships for vertical alignment is done similarly. Fol-
lowing the snapping tools in existing editors like Microsoft
Visio, we allow horizontal edge-alignment to happen only at
the top edge denoted as st, bottom edge sb and middle edge
sm (i.e., a horizontal segment passing through the center) of
the bounding box of an element. Given a group of n graphic
elements (Figure 4 (a)), we thus have 3n edges (Figure 4 (b)),
from which our beautifier will infer desired alignment rela-
tionships (Figure 4 (d)), i.e., detect a set of horizontal lines
along which the relevant elements get aligned (Figure 4 (c)).
This is essentially a 1D clustering problem. Although there
exist many general techniques for such clustering problems,
most of them require indicating the scale of the cluster by pa-
rameters, which in most techniques are global. However, the
alignment lines in a given layout may have different qualities.
Some of them would be invalid if all alignment lines are de-
tected under the same configuration. Therefore, the clustering
algorithm should be adaptive to each alignment line.

Our solution is a variant of the classic RANSAC algo-
rithm [10]. Since the number of edges is usually not big
(from dozens to hundreds), it is possible to find globally op-
timal lines without randomness. Specifically, for every edge,
we use the following iterative procedure to find a candidate
alignment line: 1) the current edge as an initial inlier gives
an initial fitted line. 2) All other edges are tested against the
fitted line to find an updated set of inliers. 3) Refit the line
to the updated set of inliers. Steps 2 and 3 are repeated till
convergence. Each edge as the initial inlier gives a candidate
alignment line, and we pick the best line as the determinate
alignment line. The inliers (edges) of the picked line are then
removed from the current set of edges (initially, 3n edges)
and we repeat the above iterative procedure to find the next
alignment line till no more lines can be found. See the ap-
pendix for more details of Steps 2 and 3.

Once we find a candidate alignment line for each edge, we
select the best alignment line Pa. Generally we prefer an
alignment line with a larger group of inliers and a lower vari-
ance of the vertical coordinate among the inliers. All the inlier
edges corresponding to the selected alignment line have edge-
alignment relationships between each other (Figure 4 (d)).

(a) (b)

(d)(c)

Figure 4. Illustration for inferring relationships (dashed lines) for hori-
zontal alignment.

Inferring equal-spacing relationships. In our implemen-
tation we allow the existence of equal-spacing relationships
only in a group of graphic elements that have edge-alignment
relationships. We use an iterative bottom-up clustering ap-
proach to detect equal-spacing relationships. The spacing is
defined as the distance between every pair of adjacent ele-
ments. Initially, each spacing cluster consists of only one
spacing. Each iteration groups two clusters with the small-
est distance. The distance between two spacings d1 and d2 is
defined as |d1− d2|/(d1 + d2). For two spacing clusters, it is
defined as the difference of the average spacing between two
clusters. The clustering process continues until the distance
of the best pair of spacing groups is larger than a predefined
threshold (we set as 0.15). Note that our gestural interface
allows interactively adding equal-spacing constraints to non-
adjacent pairs of elements (see an example in Figure 2 (c)).

Layout Refinement by Optimization
Following the previous beautification works [22], we use an
optimization-based approach to refine the layout to satisfy the
inferred relationships while retaining as much as possible the
original layout, in terms of both the position and size of each
graphic element.

Objective. Let st, sb, sm, sl, sr, sc denote the top, bottom,
(horizontal) middle, left, right, (vertical) center edges of a
graphic element. The objective of bringing the least change
to the original layout can be achieved by preserving the coor-
dinates p(·) of the edges s∗ of each graphic element g ∈ G,
where G is the set of input graphic elements. Specifically, for
vertical edges, sl, sc and sr, p(·) are their horizontal coordi-
nates, and for horizontal edges, st, sm and sb, p(·) are their
vertical coordinates. To retain the original layout we mini-
mize the following objective function:

E =
∑
g∈G

∑
∗
(p′(sg∗)− p(sg∗))2, (1)

where p′(·) denotes the changed coordinates of the edges after
refinement.

Constraints. The above minimization is subject to a set of
constraints. We first identify the intrinsic constraints of each
graphic element g, which are p′(sgl) + p′(sgr) = 2p′(sgc) and
p′(sgt) + p′(sgb) = 2p′(sgm). If the aspect ratio ag needs to
be retained during the refinement (e.g., for images), an extra
constraint is added: p′(sgr) − p′(s

g
l) = ag(p′(sgt) − p′(s

g
b)).

(a) (b) (c)

Figure 5. Top: input layouts. Middle: results by simultaneously en-
forcing all detected constraints, leading to degenerating cases in (b) and
(c). Bottom: our results, by automatically rejecting the highlighted con-
straints. Note that the constraint of keeping the aspect ratios of elements
is enforced in (b) and (c) but not (a).

These three constraints hold for every graphic element and
must be satisfied by the optimal solution.

The rest of the constraints are derived from the detected rela-
tionships. Let Sa denote a set of inliers that will be aligned to
the same line Pa. If the edges si and sj have edge-alignment
relationships between them, we have p′(si) = p′(sj). Each
pair of neighboring graphic elements in Pa gives rise to one
such equality constraint, resulting in a total of |Sa| − 1 con-
straints, where |Sa| is the cardinality of Sa. Let Ss be a set of
element pairs with the equal-spacing relationship detected for
every element pair. Similarly, this introduces another |Ss|−1
equality constraints.

Optimization. In general, only a subset of the constraints can
be enforced during the optimization. This is because simul-
taneously enforcing some constraints may cause the refined
layout to deviate too much from the original layout (Figure 5
(a)). Worse, the layout may become degenerate in that the
sizes of some graphic elements may become zero or negative
(Figure 5 (b) and (c)).

Similar to [18, 22], we use an iterative approach to determine
valid constraints. Specifically, we iteratively check the valid-
ity of each of our alignment and spacing equality constraints
by examining the optimized layout. After adding each con-
straint to the system, we check the current optimal solution
and drop the constraint if the layout becomes degenerate or
changes too much. Since all the constraints are in the linear
equality form, and the constraints are added incrementally,
this strategy works efficiently. The alignment constraints are
added in the order in which the corresponding alignment lines
are detected, i.e., the constraints are preserved in a higher pri-
ority if the corresponding alignment line is detected earlier.
Within the |Pa| − 1 edge-alignment constraints correspond-
ing to a specific alignment line, we rank them by their align-
ment error. This means that a constraint p′(si) = p′(sj) has
a higher priority if ||p(si) − p(sj)|| is smaller. After consid-
ering all the constraints of an edge-alignment pattern, we add
the detected equal-spacing relationships from this alignment
pattern. All constraints of an equal-spacing pattern are simul-
taneously added, and they are all rejected if the new layout
becomes degenerate or deviates too much from the original
layout, since equal-spacing often exists as a global pattern.
We use the CHOLMOD sparse linear system solver [8] to in-

Task 1

Task 2
0

2

4

6

8

10

12

14

AVG 1 2

Number of constraint edits

0

10

20

30

40

50

60

70

80

AVG 1 2

Number of general
operations

0

50

100

150

200

250

AVG 1 2

Completion time

With preview

Without preview

Figure 6. Two layout refinement tasks used in study 1 and the resulting statistics. Error bars represent standard error of the mean.

crementally solve the resulting constraint optimization prob-
lem after each constraint is added. It provides fast update for
the linear system, without repeatedly solving it from scratch,
and thus is able to solve the incremental constraint optimiza-
tion problem efficiently.

While our simple strategy generally works well and effi-
ciently, we are aware of another possible solution which de-
termines constraints by adding linear inequality constraints to
restrict the solution domain. For example, the refined size of
a graphic element should be within a certain range. We can
then incrementally add a constraint and retain it only if the
feasible region of this constraint problem is not empty. For
this solution, we may resort to existing constraint solvers like
QOCA [19] and Gecode [27].

USER STUDIES
We have extensively tested our technique on layouts of var-
ious patterns, most of which are time consuming to produce
when snapping and alignment commands are used. See some
of the tested layouts in Figures 5–8. Our tool is also applica-
ble to layouts with nested elements (See Figure 7). Note that
a fixed set of parameter values were always used through-
out our experimentation. Two user studies were conducted to
evaluate the effectiveness of our our technique.

Study 1: Evaluation of Beautification Preview
We first evaluated the performance of the beautifier with and
without a preview window. Eight university students helped
with the evaluation. All of them had extensive experience in
using the traditional alignment tools, e.g., in Microsoft Pow-
erPoint.

Apparatus. The study was conducted on an ordinary PC
(DELL Optiplex 960), with 3.00 GHz Intel Core 2 Duo CPU
and 4.00 GB RAM. Two LCD display monitors (20-inch and
17-inch) were connected, one for the beautifier interface (with

Input Preview

Figure 7. The application of our tool to layouts with nested elements.

the preview window if used), and the other only for display-
ing a static target layout. Our beautifier achieved real-time
performance for moderately complex layouts. For example,
for a typical layout containing a dozen of elements like those
shown in Figure 8, it took our technique less than 0.01 sec-
onds for alignment relationships inference and less than 0.02
seconds for layout refinement.

Tasks. We asked participants to perform layout refinement.
For each task, each participant was asked to refine a source
layout, which already resembled a target layout with visu-
alized alignment and equal-spacing relationships (Figure 6),
displayed on a separate monitor. The source and target lay-
outs were consistently numbered so that the participants knew
the correspondence between the elements. Common opera-
tions, such as element translation, resizing and selection (by
single click or rectangle selection tool), were allowed. But
we disabled element creation and removal.

Two tasks (Figure 6) were tested and had different layout
complexity. Task 1 was more challenging, since it involved
more potential ambiguities during refinement. Each partici-
pant was required to complete each of the two tasks, with two
tools: our beautifier with and without a preview window. For
the latter, the beautified result was instantly applied to the in-
put layout, as similarly done in the previous works [6, 12].
See the accompanying video for such an interface in action.
In total we had 8 (participants) × 2 (tools) × 2 (tasks) = 32
trials.

With each of the two tools (i.e., the beautifier with and with-
out a preview), the participants were asked to quickly repro-
duce each of the two target layouts by achieving as many vi-
sualized target relationships as possible. However, they were
allowed to proceed to the next task without fully reproducing
the target layout of the current task. To help the participants
better track their progress, the alignment and equal-spacing
relationships of the layout were visualized and shown in the
preview window or the input window in the case of no pre-
view window. The order of the tasks and the tools in each task
were counter-balanced across participants. Before the study,
the participants were introduced to these two tools, and they
practiced in a short warm-up session until they felt comfort-
able. The whole study lasted less than 20 minutes on average
for each participant.

1(a)

1(b)

1(c)

2(a)

2(b)

3(a)

3(b)
0

50

100

150

200

250

300

350

400

450

500

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Our tool
Snapping and alignment commands

Figure 8. From left to right: 1(a)-(c): target layouts used in the layout creation scenario; 2(a)&(b): source layouts (left) and target layouts (right) in the
layout editing scenario; 3(a)&(b): source (left) and target layouts (right) in the layout refinement scenario; average completion time (in seconds) of each
task. Error bars represent standard error of the mean.

Performance measures. During the study, the following in-
formation was recorded for quantitative analysis: the com-
pletion time of individual trials, the time spent on element
editing (selection, moving, resizing), the number of general
operations (moving, resizing, duplicate, removal, undo), and
the number of edits for edge-alignment constraints and equal-
spacing constraints.

Results. Figure 6 plots the statistics of the core information
captured in Study 1. The preview window significantly short-
ened the average completion time per task among the par-
ticipants, from 151.7 seconds to 103.2 seconds. A signifi-
cant difference was confirmed by repeated measures analysis
of variance (repeated measures ANOVA): F = 57.77 and
p = 0.000126. The benefit of our interface with the preview
window was even clearer for Task 1, a more challenging task.
The average completion time of Task 1 was 110.5 seconds
with our interface, compared to 180.6 seconds without the
preview window (F = 41.59, p = 0.000351).

Figure 6 also shows the average number of operations for
editing constraints and the average number of general opera-
tions (moving, resizing, etc). While on average the number of
general operations was less with our interface, the difference
was not statistically significant. Repeated measures ANOVA
confirmed a significant difference in the average of constraint
edits for Task 1 (F = 17.78, p = 0.003954) but not for Task
2 (F = 2.951, p = 0.12951) between the beautifier with and
without the preview window. For the more challenging Task
1, without the preview window, the users easily got distracted
by intermediate beautification results, making them difficult
to achieve desired layouts simply by direct repositioning and
resizing of elements. Thus they had to resort to the tools for
editing constraints more often. It is interesting to note that the
standard errors here were relatively large, indicating that dif-
ferent participants might have difference preferences for the
interface for editing constraints.

Study 2: Comparing to Snapping & Alignment Commands
We conducted a user study to evaluate the effectiveness of
our technique, compared to snapping and alignment com-
mands, which are arguably the most popular tools available
in almost all commercial graphic editors like OmniGraffle,
Visio, and InDesign. We implemented these standard tools in

a way like in PowerPoint 2013. Specifically, snapping was
activated only for the element being dragged. This element
could be snapped to achieve edge/center alignment or equal
spacing with other elements. The compared system supported
8 commands: align top/middle/bottom/left/center/right, and
distribute horizontally/vertically. We chose the lead object for
alignment similar to PowerPoint, e.g., the topmost element
for top-align, and the outermost elements for even distribu-
tion. We deliberately excluded layout helper features beyond
the standard snapping and alignment commands, since it is
expected that such extra functions would similarly benefit our
tool and the compared system.

Apparatus and participants. We used the same set of in-
struments as those in Study 1. Another 11 university students
were recruited for the user study. Again all of them had used
traditional alignment tools extensively. A handful of them
were even good at vector graphics editing and were familiar
with professional software like Adobe Illustrator.

Tasks. Besides layout refinement, we evaluated the perfor-
mance of the traditional tools and ours in another two scenar-
ios, i.e., creating and editing layouts. In the creation scenario,
three tasks were tested. For each task, each participant was
asked to create a layout from scratch towards a reference tar-
get layout (Figure 8 1(a)-(c)). The participants were allowed
to draw, duplicate, or remove elements. The layout editing
scenario comprises two tasks, each of which required the par-
ticipants to significantly change an input layout towards a tar-
get layout (Figure 8 2(a)-(b)). Element creation and removal
were disabled. Like Study 1, the participants were asked to
complete two layout refinement tasks (Figure 8 3(a)-(b)). But
this time we locked the aspect ratios of the elements, con-
trolled by a toggle button. For the editing and refining sce-
narios, consistent correspondence numbers were provided.

In total there were seven tasks under the three scenarios. Each
participant was asked to complete each of them twice, one
with our tool and the other with the set of traditional align-
ment tools. That is, our experiment involved 11 (participants)
× 2 (tools) × 7 (tasks) = 154 trials. The tools in each task
were (almost) counter-balanced and the order of the tasks in
each scenario was random. The participants took breaks be-
tween different scenarios so that they were briefed on the

newly enabled or disabled operations before each scenario.
For simplicity no break was allowed between tasks in each
scenario.

Performance measures. Besides the measures used in Study
1, the following information was also recorded: the time
spent on drawing the elements (for the creation scenario
only), and the number of specific operations with the tradi-
tional tools (commands like edge alignment and equal spac-
ing).

Results. Figure 8 shows the target layouts in each task, and
the corresponding average completion times. Repeated mea-
sures ANOVA found a significant difference in the average
completion time per task among the participants between our
tool and the traditional tools (F = 78.8, p < 4 × 10−6).
On average, significantly less time was needed to accomplish
each task using our tool (110.7 seconds) compared to the tra-
ditional tools (260.7 seconds).

Our tool performed much better than the traditional tools for
target layouts involving complex relationships such as Tasks
1(b) and 2(a). For easier tasks, such as Tasks 1(a) and 1(c),
our tool was still faster. For the tasks in the refinement sce-
nario, due to the locked aspect ratios of the elements, the edit-
ing freedom was seriously restricted, making such tasks more
challenging to complete for the traditional tools. The perfor-
mance of the traditional tools was severely affected by this
restriction on editing freedom. More than half of the partici-
pants failed to reproduce the target layouts with the traditional
tools, while all of them had no difficulty with our tool.

In Figure 9 we show more statistics from the user study.
There was no statistically significant difference in the draw-
ing time between the two tools (p = 0.465), though we ob-
served that our tool was still slightly faster. Our tool required
significantly fewer general operations (p < 5 × 10−5). The
task success rates also reflects the effectiveness of our tool.
For almost all the tasks, each participant could successfully
reproduce the target layouts with our tool. In contrast, the
completion rates for the traditional tools were much lower,
despite they had been used by all the participants on a regular
basis. This confirms the ease of use of our tool, even for the
first-time users.

Figure 9 also shows the average number of edits on edge
alignment and equal-spacing constraints for individual tasks.
While the number of edits was small, constraint editing was
performed for 5 out of 7 tasks. We speculate that the number
of constraint edits needed is correlated with layout complex-
ity, which is somewhat reflected by the (average) completion
time. For example, the number of constraint edits used for
Task 1(b) was much bigger than that for Task 1(a) and Task
1(c). A similar conclusion on the average completion time of
these tasks could be reached.

It can be seen that the standard error of the mean (shown as
error bars in Figures 8 and 9) of the completion time, edit-
ing time, and editing number is much larger with the tradi-
tional tools. This means that the performance of our tool was
more consistent across all participants. In other words our

0

20

40

60

80

100

120

140

160

180

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Number of general operations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Success rates

0

1

2

3

4

5

6

1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Number of constraint edits

Edge alignment

Equal-spacing

0

20

40

60

80

100

120

140

160

180

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Number of general operations
Our tool

Snapping and alignment commands

Figure 9. More statistics. The timings are in seconds. Error bars repre-
sent standard error of the mean.

tool was less dependent on the experience of the individual
participants.

Our statistics show that on average each participant per-
formed 0.97 edge-alignment commands and 1.90 equal-
spacing commands per task. This is mainly because equal-
spacing commands were more indispensable, while edge-
alignment commands could be replaced with more intuitive
snapping operations. This reiterates the fact that snapping
has to be used together with command-based alignment tools
in many cases.

We also got some interesting observations from the user
study. With our tool, some participants tended to draw or edit
elements carefully at the beginning despite being told that our
tool can tolerate rough inputs. However, they quickly get used
to our tool and performed the creation and editing operations
more casually. Another observation was that, in the refining
scenario, when using the traditional tools, some participants
moved all the elements away before editing, though most of
the input elements were already located very close to the tar-
get positions. Such behavior was never observed with our
tool. This behavior was largely due to the not-aligned ele-
ments triggering often excessive and distracting suggestions
from snap-dragging.

After completing the tasks, we asked each participant to pro-
vide feedback on the two tools in terms of their ease of use.
All participants except one preferred our tool. They expressed
that our tool enables them to disregard the order of specific
operations and focus on the layout design. One participant
who preferred the traditional tools liked the full user control
and disliked rough inputs. This concern could be addressed
by integrating snap-dragging into our framework.

DISCUSSIONS
To use our tool in existing graphic editors like PowerPoint,
the user may first select a set of target elements and then enter
a “layout beautification mode”, for example, via an activation
button, menu or gesture. Similar to the interface described

in our prototype, we may pop up a dialog to edit elements
and/or constraints while previewing the beautified layout in
the input panel. In the mode of element editing, our interface
is completely compatible with existing layout helper features.
All edits are confirmed after the user hits the “apply” button;
otherwise they are canceled.

While the results of Study 1 imply the usefulness of having a
preview of the refined layout in the experimental condition,
rendering the original and refined layouts in separate win-
dows might cause the problem of divided attention. To al-
leviate this problem we might use a smaller preview window
instead of a full-scale copy of the design. We believe that it
is not necessary to always activate the preview window espe-
cially when the input layout is undergoing dramatic changes,
e.g., at the beginning of layout editing and creation tasks in
Study 2.

To further solve the problem of divided attention and to save
space required by an extra preview window, we could show
the preview in place. For example we might overlay the beau-
tified layout as a translucent layer on top of the original lay-
out. Since this solution easily results in visual clutter, it might
work well for only relatively simple layouts with fewer ele-
ments, but would likely not be able to scale to very complex
diagrams. In the future it is worth evaluating whether such
alternative solutions would be more effective than a simple
preview window in our current prototype.

Since our main goal in this work is to find a better alternative
to snapping and alignment commands, we focused only on
a limited set of simple constraints, i.e., alignment and equal
spacing. However, it is easy to incorporate new constraints,
such as symmetry and length equality into our framework, as
already suggested by Pavlidis and Van Wyk [22]. Similarly,
although our current prototype concentrated on grid-like lay-
outs, it is possible to handle more general layouts by intro-
ducing advanced pattern detectors, e.g., to detect elements
distributed roughly along an arbitrary line, circle etc.

CONCLUSION AND FUTURE WORK
We presented a novel user interface for layout beautification.
Our user studies confirmed that our technique is very effec-
tive and can even be used as a better replacement of the stan-
dard snapping and command-based alignment tools, given its
faster performance and better ease of use. We speculate that
the advantages of our tool would be even clearer to novice
users who have little or no experience in creating precise lay-
outs. It would be interesting to apply our tool to real-world
examples like posters and to really integrate it with existing
graphic editors to examine the interplay between our tool and
other layout helper features. Our current implementation re-
quires explicit mode switching to activate or deactivate the
gesture interface for editing geometric constraints. In the
future we will explore a modeless interface where the user
could use the editing operations of both element and con-
straint without explicit mode switching. We are also inter-
ested in extending the proposed interface to 3D layout design,
where the traditional tools are even more cumbersome.

Acknowledgements
We thank the reviewers for their constructive comments and
the user study participants for their time. This work was par-
tially supported by grants from the Research Grants Coun-
cil of HKSAR, China (Project No. 113513, 619611, and
11204014) and the City University of Hong Kong (Project
No. 7003058).

REFERENCES
1. Alvarado, C. Sketch recognition user interfaces:

Guidelines for design and development. In Proceedings
of AAAI Fall Symposium on Intelligent Pen-based
Interfaces, vol. 1 (2004).

2. Arvo, J., and Novins, K. Fluid sketches: continuous
recognition and morphing of simple hand-drawn shapes.
In UIST ’00 (2000), 73–80.

3. Badros, G. J., Borning, A., and Stuckey, P. J. The
cassowary linear arithmetic constraint solving algorithm.
ACM Transactions on Computer-Human Interaction
(TOCHI) 8, 4 (2001), 267–306.

4. Baudisch, P., Cutrell, E., Hinckley, K., and Eversole, A.
Snap-and-go: helping users align objects without the
modality of traditional snapping. In CHI (2005),
301–310.

5. Bier, E. A., and Stone, M. C. Snap-dragging. In ACM
SIGGRAPH Computer Graphics, vol. 20 (1986),
233–240.

6. Bolz, D. Some aspects of the user interface of a
knowledge based beautifier for drawings. In IUI ’93
(1993), 45–52.

7. Cheema, S., Gulwani, S., and LaViola, J. Quickdraw:
Improving drawing experience for geometric diagrams.
In CHI ’12 (2012), 1037–1064.

8. Davis, T. Cholmod: a sparse supernodal cholesky
factorization package., version 2.1.2, 2013. University
of Florida, Available online at
http://www.cise.ufl.edu/research/sparse/cholmod/.

9. Dwyer, T., Marriott, K., and Wybrow, M. Dunnart: A
constraint-based network diagram authoring tool. In
Graph Drawing (2009), 420–431.

10. Fischler, M. A., and Bolles, R. C. Random sample
consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

11. Frisch, M., Kleinau, S., Langner, R., and Dachselt, R.
Grids & guides: multi-touch layout and alignment tools.
In CHI ’11 (2011), 1615–1618.

12. Galindo, D., and Faure, C. Perceptually-based
representation of network diagrams. In International
Conference on Document Analysis and Recognition,
vol. 1 (1997), 352–356.

13. Gleicher, M., and Witkin, A. Drawing with constraints.
The Visual Computer 11, 1 (1994), 39–51.

14. Hammond, T., and Davis, R. Automatically
transforming symbolic shape descriptions for use in
sketch recognition. In AAAI ’04, AAAI’04, AAAI Press
(2004), 450–456.

15. Hammond, T., and Davis, R. Interactive learning of
structural shape descriptions from automatically
generated near-miss examples. In IUI ’06 (2006),
210–217.

16. Hosobe, H. A modular geometric constraint solver for
user interface applications. In UIST ’01 (2001), 91–100.

17. Igarashi, T., and Hughes, J. F. A suggestive interface for
3D drawing. In UIST ’01 (2001), 173–181.

18. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka,
H. Interactive beautification: a technique for rapid
geometric design. In UIST ’97 (1997), 105–114.

19. Marriott, K., and Chok, S. S. Qoca: A constraint solving
toolkit for interactive graphical applications. Constraints
7, 3-4 (2002), 229–254.

20. Murugappan, S., Sellamani, S., and Ramani, K. Towards
beautification of freehand sketches using suggestions. In
6th Eurographics Symposium on Sketch-Based
Interfaces and Modeling (2009), 69–76.

21. Paulson, B., and Hammond, T. PaleoSketch: accurate
primitive sketch recognition and beautification. In IUI
’08 (2008), 1–10.

22. Pavlidis, T., and Van Wyk, C. J. An automatic beautifier
for drawings and illustrations. In ACM SIGGRAPH
Computer Graphics, vol. 19 (1985), 225–234.

23. Plimmer, B., and Grundy, J. Beautifying
sketching-based design tool content: issues and
experiences. In Proceedings of the Sixth Australasian
conference on User interface-Volume 40 (2005), 31–38.

24. Raisamo, R., and Räihä, K.-J. A new direct
manipulation technique for aligning objects in drawing
programs. In UIST (1996), 157–164.

25. Reinert, B., Ritschel, T., and Seidel, H.-P. Interactive
by-example design of artistic packing layouts. ACM
Trans. Graph. 31, 6 (2013).

26. Ryall, K., Marks, J., and Shieber, S. An interactive
constraint-based system for drawing graphs. In UIST ’97
(1997), 97–104.

27. Schulte, C., Lagerkvist, M., and Tack, G. Gecode.
Software download and online material at the website:
http://www. gecode. org (2006).

28. Sutherland, I. E. Sketch pad a man-machine graphical
communication system. In Proceedings of the SHARE
design automation workshop (1964), 6–329.

29. Tollis, I., Eades, P., Di Battista, G., and Tollis, L. Graph
drawing: algorithms for the visualization of graphs,
vol. 1. Prentice Hall New York, 1998.

30. Veselova, O., and Davis, R. Perceptually based learning
of shape descriptions for sketch recognition. In AAAI
’04 (2004).

31. Wybrow, M., Marriott, K., Mciver, L., and Stuckey, P. J.
Comparing usability of one-way and multi-way
constraints for diagram editing. ACM Transactions on
Computer-Human Interaction (TOCHI) 14, 4 (2008), 19.

32. Zeidler, C., Lutteroth, C., Sturzlinger, W., and Weber, G.
The auckland layout editor: an improved gui layout
specification process. In UIST ’13 (2013), 343–352.

33. Zeleznik, R. C., Bragdon, A., Liu, C.-C., and Forsberg,
A. Lineogrammer: creating diagrams by drawing. In
UIST ’08 (2008), 161–170.

34. Zitnick, C. L. Handwriting beautification using token
means. ACM Trans. Graph. 32, 4 (2013), 53:1–53:8.

APPENDIX
We first describe how we estimate a (horizontal) line Pi from
a set of inliers Si at iteration i (Step 3). We estimate the verti-
cal coordinate of Pi as the weighted mean of the vertical co-
ordinates of all inliers in Si. Specifically, the weight of each
inlier s ∈ Si is defined as w(s) = e−(y(Pi−1)−y(s))2/l(s)2 ,
where l(s) is the length of the inlier edge s, y(s) and y(Pi−1)
are the vertical coordinates of s and the line estimated in the
previous iteration Pi−1, respectively. This Gaussian weight-
ing scheme indicates that the contribution of an inlier to the
new line is higher if the inlier is longer or closer to the pre-
vious line. The vertical coordinate of the new estimated line
Pi is then computed as

∑
s∈Si ŵ(s)y(s), where ŵ(s) is the

normalized weight.

Now we give the details of Step 2: how to get an updated set
of inliers Si+1 given the line Pi. We introduce an adaptive in-
lier range for robust inliers detection. Specifically, an edge t
is added into Si+1 if and only if y(t) ∈ [y(Pi)−r, y(Pi)+r],
where r = min(r(1 + σ)h(t), 2r) is adaptively determined.
r is fixed as the average size of the input elements, multi-
plied by a fixed factor (0.125 in our implementation). σ =√∑

s∈Si ŵ(s)(y(Pi)− y(s))2 measures the variance of the
vertical coordinate among the inliers in Si. This changes the
range adaptively with respect to the degree of alignment of
the previous set of inliers. The term h(t) is motivated by the
Gestalt law of proximity: objects that are near to one another
are perceived as belonging together as a unit. We thus define
h(t) = e−d̂

2
t , where d̂t measures the horizontal distance be-

tween t and the inliers in Si, normalized by the average hori-
zontal and vertical distance between neighboring elements in
the input layout. When t is away from the previous set of
inliers, it is less likely to be detected as an inlier.

	Introduction
	Related Work
	User Interface
	Global Beautifier Interface
	Gestural Interface for Editing Constraints

	Implementation
	Pattern Detection
	Layout Refinement by Optimization

	User Studies
	Study 1: Evaluation of Beautification Preview
	Study 2: Comparing to Snapping & Alignment Commands

	Discussions
	Conclusion and Future Work
	REFERENCES
	Appendix

