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Temporal Upsampling of Depth Maps
Using a Hybrid Camera

Ming-Ze Yuan, Lin Gao∗, Hongbo Fu, and Shihong Xia∗

Abstract—In recent years, consumer-level depth cameras have been adopted for various applications. However, they often produce
depth maps at only a moderately high frame rate (approximately 30 frames per second), preventing them from being used for
applications such as digitizing human performance involving fast motion. On the other hand, low-cost, high-frame-rate video cameras
are available. This motivates us to develop a hybrid camera that consists of a high-frame-rate video camera and a low-frame-rate depth
camera and to allow temporal interpolation of depth maps with the help of auxiliary color images. To achieve this, we develop a novel
algorithm that reconstructs intermediate depth maps and estimates scene flow simultaneously. We test our algorithm on various
examples involving fast, non-rigid motions of single or multiple objects. Our experiments show that our scene flow estimation method is
more precise than a tracking-based method and the state-of-the-art techniques.

Index Terms—Hybrid Camera, Scene Flow Estimation, Depth Upsampling
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1 INTRODUCTION

In recent years, low-cost depth cameras such as Microsoft
Kinect and Intel RealSense have been popular and em-

ployed for various computer graphics applications, includ-
ing motion capture [1], scene reconstruction [2], and image-
based rendering [3]. For such cameras, the resolution and
speed of depth acquisition are sacrificed to achieve a low
cost. For example, the latest Microsoft Kinect depth camera
for Xbox One (Kinect V2) is able to capture depth frames
with only 512 × 424 resolution at 30 frames per second
(FPS). While such specifications might be sufficient for
certain applications, they are not sufficient for applications
involving fast motions and higher frame-rate video. On the
other hand, with recent advancements in imaging sensors,
high-resolution, high-frame-rate and low-cost video cam-
eras such as GoPro have also opened up many possibilities
in computer graphics, such as outdoor motion capture [4],
structure from motion (SfM) and dynamic hair capture [5].

Video cameras have their advantages over depth cam-
eras in terms of frame rate and resolution. Observing that
high-resolution video cameras are cheap and available any-
where, several techniques (e.g., [6], [7]) have been proposed
to use a hybrid camera, i.e., a high-resolution video cam-
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era and a low-resolution depth camera, to perform spatial
upsampling of depth maps. Many applications, such as
image-based rendering [8], [9] and image processing [10],
can benefit from additional depth information. The Kinect
V2 itself is already such a hybrid camera. However, the
low-frame-rate capture problem of existing depth cameras
is largely unexplored and thus is the focus of our work.

Motivated by the existing hybrid cameras for obtaining
the spatial super-resolution of depth maps and the available
high-frame-rate, low-cost video cameras, such as GoPro
(with 240 FPS), we propose a hybrid camera to achieve
temporal upsampling of depth maps (Fig. 1). Our hybrid
camera consists of a low-frame-rate depth camera and a
synchronized high-frame-rate video camera. The key chal-
lenge is to effectively extract fast motion information from
color images using a high-frame-rate video camera and
then use it to guide the interpolation of depth maps. A
straightforward solution is to first compute the 2D optical
flow [11] between consecutive images using the high-frame-
rate camera and then employ the resulting motion flow to
estimate intermediate depth maps between a pair of original
depth maps. However, this simple solution works well only
for translational motions.

Another possible solution is based on scene flow [12].
However, the traditional methods for scene flow estimation
require both color images and depth maps acquired at
roughly the same frame rate and thus cannot be directly
used for temporal upsampling. To address this problem, we
formulate an optimization to estimate the scene flow and
intermediate depth maps jointly; the estimated scene flow
is used to guide the interpolation of intermediate depth
maps, which in turn help refine the scene flow estimation.
We derive data constraints from the high-frame-rate color
images and enforce spatiotemporal regularization based on
the shortest motion path and the locally rigid deformation
assumption.

We test our hybrid camera on various examples with
quickly moving single or multiple objects and humans.
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Fig. 1. Our technique obtains the input via a hybrid camera and is able to temporally upsample the depth maps using a low-frame-rate depth camera
with the help of the color images taken by a high-frame-rate video camera. Images surrounded by a cyan line and green dotted line represent the
input and output of our method, respectively.

In these challenging examples, which possess non-rigid
motions and topology changes, our method has clear ad-
vantages over a tracking-based method and the state of the
art [13]. We show that our joint optimization framework can
be reduced for scene flow estimation. Compared to the state-
of-the-art scene flow methods [11], [14], [15], our method
achieves comparable or even better performance on the MPI
Sintel dataset [16] and Middlebury stereo dataset [17].

2 RELATED WORK

Depth cameras are often used together with video cameras
to capture RGB-D images. Therefore, the idea of a hybrid
camera is not new for 3D imaging. In fact, consumer-level
depth cameras such as Kinect V2 are essentially hybrid
cameras. It is well known that the depth maps produced
by low-cost depth cameras are often noisy and of low
resolution. A common approach to enhancing depth maps
in the spatial domain is to couple a low-resolution depth
map with a high-resolution color image. Various solutions
based on optimization (e.g., [6], [18]), joint edge-preserving
upsampling filters (e.g., [19], [20], [21]), spatiotemporal fil-
tering (e.g., [7], [13]), or shading cues (e.g., [22], [23]) have
been explored to increase the spatial resolution of depth
maps. All the above methods assume color images and
depth maps with the same frame rates. The exceptional
case is the work by Dolson et al. [13]. Our experimental
results show that our method is more accurate than [13]
in reconstructing intermediate depth frames. Their method
estimates the depth of each pixel by using the time, space,
and color information but ignores the depth relationship
between adjacent pixels. In contrast, our method not only
considers the time, space, and color information but also
regularizes the relationship between the depth values of
adjacent pixels via the locally rigid priori to approximate
the relationship of input depth maps as closely as possible.
Further discussions are given in Sec. 5.1 and 5.2.

Hybrid cameras have also been used for motion de-
blurring [24], [25], [26]. For this application, at least one
high-speed but often low-resolution video camera is needed
to remove motion blur in color images taken by a low-
speed, high-resolution camera. Li et al. [25] used two low-
resolution, high-speed cameras as a stereo pair to recon-
struct a low-resolution depth map, the spatial resolution
of which was then enhanced by using joint bilateral filters.

In addition to reducing motion blur, the approach of Tai
et al. [26] is also used to estimate new high-resolution
color images at a higher frame rate. This task of temporal
upsampling is similar to ours, but temporal upsampling
of depth maps is generally more difficult. Furthermore, the
concurrent work of Wang et al. [27] used a hybrid camera
system consisting of a 3 FPS light field camera and a 30 FPS
video camera to reconstruct 30 FPS light field images. The
difference between the work of Wang et al. and our method
is that they used a learning-based method and upsampled
light field images.

While consumer-level depth cameras are able to cap-
ture depth maps at only a limited frame rate, high-speed
depth cameras, which already reach hundreds or even
thousands of frames per second, have been explored in
the fields of computer vision and optical engineering in
recent years. Among various solutions, structured light il-
lumination (e.g., [28], [29], [30], [31], [32], [33]) is the most
popular technique, which requires a DLP video projector
and a synchronized video camera to acquire structured pat-
terns (e.g., fringe images) projected by a special illuminator.
Compared with these approaches, our solution can be re-
garded as a post-processing technique and is thus applicable
to different types of depth cameras. Stühmer et al. [34]
proposed modifying a typical Time-of-Flight (ToF) camera
(e.g., Kinect v2) for model-based tracking at a high frame
rate (300 Hz). However, their solution is limited to tracking
objects with rigid motion. Our work closely resembles that
of Kim and Kim [35], who used multiview hybrid cameras
(consisting of eight high-frame-rate video cameras and six
ToF cameras) for motion capture. However, their technique
is highly dependent on skeleton tracking and thus is suitable
only for articulated motion.

Our joint optimization, which is performed to fuse the
color and depth information and estimate the motion field,
yields a novel scene flow method. Scene flow estimation for
depth cameras is a recent active research topic. For example,
Herbst et al. [36] extended the Horn-Schunck method [37] to
depth cameras with the depth data term for estimating the
scene flow from a consumer-level depth camera. Jaimez et
al. [14] proposed a total variation regularization term for
RGB-D flow estimation in real time. Piecewise rigid motion
priors were added to the scene flow estimation in [15].
Jaimez et al. [38] estimated the scene flow with the joint
optimization of motion and segmentation. Their method
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segments a scene with rigid motions. Sun et al. [11] ordered
each depth map into layers and assumed the motion field
in a single layer to be within the small range around the
mean rigid rotation. When objects in the same depth layer
have large and different motions, this method will introduce
artifacts (see Sec. 5.1).

As shown in [15], [38], the piecewise rigid regularization
term of the motion field enhances the precision compared
with methods such as [14], [36]. We follow the as-rigid-
as-possible energy to model isometric deformations, which
have been demonstrated for various graphics applications,
such as shape interpolation [39], shape deformation [40],
[41], [42] and 3D shape tracking [43]. In our work, the
as-rigid-as-possible energy is employed for the first time
for scene flow estimation with the assumption of nearly
isometric deformations.

3 HARDWARE SETUP

Our hybrid camera system is composed of two consumer-
level cameras, namely, a GoPro HERO 4 video camera and a
Kinect V2 RGB-D camera. The GoPro camera captures color
images of WVGA resolution at 240 FPS, while Kinect V2 is
able to capture depth maps of 512×424 resolution at 30 FPS.
As shown in Fig. 1, the GoPro is placed above the Kinect,
such that Kinect’s depth camera is vertically aligned with
the GoPro.

Calibration and alignment. The intrinsic and extrinsic
parameters of the GoPro and Kinect V2’s depth camera are
calibrated by the method of [44]. The lens distortion of the
color images from GoPro is corrected according to the intrin-
sic parameters of GoPro. We transform the depth maps from
the depth camera plane to the color camera plane by using
the method introduced by Park et al. [6]. After aligning
the depth maps with the undistorted color images, we crop
the images to retain the part that needs reconstruction. The
two cameras are synchronized in the temporal domain by a
flashlight. More specifically, we capture the flashlights and
then identify the first highlighted images from the color and
depth sequences that refer to the same point in time. Finally,
we acquire the aligned and synchronized depth maps, color
images, and camera intrinsic parameters of the cropped
and aligned images, which are denoted by D, C and A,
respectively.

4 TEMPORAL UPSAMPLING OF DEPTH MAPS

Our main goal is to temporally upsample the depth maps by
estimating a depth map corresponding to each color image
from a higher-frame-rate video camera, as illustrated in
Fig. 2. The optical flow term is employed to exploit the dense
2D motion information from the color images. To connect
between the 3D motion and 2D optical flow, a projection
term is employed. We use the popular point-to-point and
point-to-plane terms to exploit the start and end positions
of the depth maps reconstructed from the two consecutive
depth maps captured using Kinect V2 (Sec. 4.2). We also
employ regularization terms to enforce the local rigidity
and shortest path in the motion flow (Sec. 4.3). Considering
occlusion in the motion, we apply occlusion detection to
avoid artifacts resulting from the occluded regions (Sec. 4.4).

(a) Ct(k) (b) Ct(k)+1 (c) Ct(k)+2 (d) Ct(k)+3 (e) Ct(k)+4

(f) Dk (g) Dt(k)+1 (h) Dt(k)+2 (i) Dt(k)+3 (j) Dk+1

Fig. 2. Our main idea illustrated on synthetic chronological data. Given
input color images (a-e) and depth maps (f) and (j), we temporally
upsample depth frames by reconstructing intermediate depth maps (g-i).
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Fig. 3. Pipeline of our system.

The precalculated optical flow is used to detect the topology
changes (Sec. 4.5). Moreover, to fill the remaining holes,
we use both forward and backward reconstruction and a
bilateral filter (Sec. 4.6). We use a joint optimization to
determine the above data constraints and spatiotemporal
regularization terms (Sec. 4.7). Finally, the framework is
reduced to a scene flow method with pairs of color images
and depth maps (Sec. 4.8). The pipeline of our system is
shown in Fig. 3. All the above components work together to
reconstruct the depth maps and estimate the scene flow. The
importance of each component will be evaluated in Sec. 5.3.

4.1 Notations
Given a pair of consecutive depth frames Dk and Dk+1,
as illustrated in Fig. 2, let Ct(k) denote the color image
corresponding to Dk, Ct(k)+g denote the color image cor-
responding to Dk+1, and Ct(k)+s (s=1, · · · , g−1) denote
the intermediate color images captured between Ct(k) and
Ct(k)+g . g=4 for the synthetic example in Fig. 2. Our
ultimate goal is thus to reconstruct a depth map Dt(k)+s

corresponding to Ct(k)+s, s ∈ [1, g−1]. Our underlying
optimization will also reconstruct Dt(k)+g to exploit the
boundary constraints from Dk+1 in depth reconstruction.
Dt(k)+g will be replaced with Dk+1, the depth information
of which is accurate. The point cloud Mk is generated by
projecting Dk to the 3D space with the intrinsic parameters
A. The above and additional notations are summarized in
Tab. 1. In our setting of the capture rate (240 FPS) for the
GoPro and that (30 FPS) for Kinect V2, the value of g is 8.

4.2 Data Terms
To exploit the motion information from the color images,
we employ the optical flow data term, point-to-point term,
point-to-plane term and projection term as the motion es-
timation constraints. To estimate the optical flow at the
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TABLE 1
Notations.

Notation Exposition
k the index of the captured depth maps

g
the ratio of the color camera’s FPS to the depth
camera’s FPS

Dk , Dk+1
the first and second of a pair of consecutive depth
maps generated by Kinect V2

Dt(k)+s

a depth map to be reconstructed corresponding to
Ct(k)+s, 1 ≤ s ≤ g

Ct(k)+s

color images captured at the interval between Dk

and Dk+1, 0 ≤ s ≤ g, with Ct(k) corresponding
to Dk and Ct(k)+g to Dk+1

ps,i
the position of the i-th point in the point cloud
corresponding to Dt(k)+s; P = {ps,i}

Rs,i

a rotation matrix associated with the i-th point in
the point cloud corresponding to Dt(k)+s; R =
{Rs,i}

vs,i
optical flow at the i-th pixel in Ct(k)+s, 0 ≤ s ≤
g; vs is the optical flow for Ct(k)+s

Mk ,Mk+1 point cloud generated by Dk and Dk+1

interval between the consecutive depth maps Dk and Dk+1,
we use the color images Ct(k)+s, s ∈ [0, g], to recover the 2D
motion flow between Dk and Dk+1. The optical flow data
term is shown below:

Eopti(vs)

= λopti
∑

s∈[0,g−1]

∑
x,y

ρ(Ct(k)+s(x + vs,x,y + vs,y)

−Ct(k)+s+1(x,y)),

(1)

where vs,x and vs,y are the optical flow in the images along
the x-axis and y-axis, respectively. λopti is the weight of the
optical flow term and is chosen to be 8 in the implementa-
tion. ρ(r)=

√
r2 + ε2 is the kernel function that defines the

robust metric for addressing noise and outliers (ε=10−4 in
the implementation) [45], [46]. Furthermore, to improve the
optical flow value, we employ the weighted median filter to
avoid over-smoothing along object edges [47].

The previous RGB-D scene flow methods [11], [14], [15]
use local or global smooth terms to solve the undetermined
problem in the depth map field. In this work, we lift the
depth similarity constraint to the 3D space where the geom-
etry information can be explored better [2]. The advantage
of such a distance metric in the 3D Euclidean space instead
of in the depth difference is that not only the local geometric
distance but also the surface normal information can be
employed to measure the geometric distance. We project
depth map Dk to the 3D space to generate a point cloud
MK . The i-th pixel in Dk is projected to pi in 3D. The
connecting relationship between pixel i and its adjacent
pixels is created for the spatial coherency.

We employ the following point-to-point term and point-
to-plane term [48] to reconstruct the geometry constraints of
the depth map Dt(k)+g :

Epoint(pg,i) = λpoint
∑
i∈V
‖pg,i − p̃k+1,i‖22, (2)

Eplane(pg,i) = λplane
∑
i∈V
‖nT

k+1,i(pg,i − p̃k+1,i)‖22, (3)

where p̃k+1,i is the closest point to pk,i in Mk+1 and nk+1,i

is the normal vector of p̃k+1,i. The energy weights for the

point-to-point term λpoint and point-to-plane term λplane
are set to 9 and 10, respectively. Since the optical flow is
essentially the projection of the scene flow introduced by
the reconstructed depth maps, the projection function ψ(·)
can project the point to the video camera’s plane by A [6].
We model this constraint as follows:

Eproj(ps,i,vs,i)

= λproj
∑

s∈[1,g−1]

∑
i∈V

O(vs,i,Ct(k)+s)‖ψ(ps+1,i − ps,i)− vs,i‖22

(4)

and use the projection term to connect the optical flow and
3D point cloud. The energy weight λproj is set to 5. O(·) is
a function that indicates whether this point is occluded in
motion (Sec. 4.4).

4.3 Spatial and Temporal Regularization

With the observation that most of the objects in real-world
scenes move in a rigid or locally rigid fashion, we employ
the following locally rigid regularization term:

Erigid(ps,i,Rs,i)

= λrigid
∑

s∈[1,g]

∑
i∈V

∑
j∈Ni

wij‖(ps,i − ps,j)−Rs,i (pk,i − pk,j)‖22,

(5)

where Ni denotes points connected to the i-th point in
the point cloud and λrigid is set to 16. It is more likely
that the connected points with similar depth and color
would share similar locally rigid motions. These weights
wij are defined as wc,ij · wd,ij · wt,ij , with the depth
coherence wd,ij = exp(−‖pk,i − pk,j‖2/σ2

d), color coher-
ence wc,ij = exp(−‖Ct(k),i −Ct(k),j‖

2
/σ2

c ), and topology
change wt,ij = exp(−‖ei′,j′ − ei,j‖2/σ2

t ), where ei,j and
ei′,j′ are the Euclidean distance of the corresponding point
pair (i, j) in Mk and warped Mk, respectively (see Tab. 1
and Sec. 4.5). The connection of occlusive points is generally
less reliable. When at least one of pi and pj is occluded
or out of the image boundary and thus does not have
the corresponding point pair in Mk+1, wt,ij is set to 1. In
practice, σt = 0.015, σc = 1 and σd = 0.015. The total
quadratic variations are employed to regularize the motion
field and prevent an artifact being generated in large-scale
deformation [49]. This is defined as follows:

Ereg(Rs,i) = λreg
∑

s∈[1,g]

∑
i∈V

∑
j∈Ni

wij‖Rs,i −Rs,j‖22, (6)

where λreg is set to 0.8.
The temporal regularization term is employed to reduce

the uncertainty of the solution and to favor the solution
with the shortest path. This term is defined as the sum of
the Euclidean distances of the corresponding points in the
consecutive point cloud:

Eshort(ps,i) = λshort
∑

s∈[1,g]

∑
i∈V
‖ps,i − ps−1,i‖22, (7)

where λshort is set to 7.
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(a) (b) (c)

Fig. 4. The blue block in (a) moves to the lower right, resulting in (b). (a)
is warped by the optical flow; thus, (c) is generated. The black region in
(c) is the disoccluded area of (a), while the red region is the occluded
area. The red region in (c) appears in (a) but is covered in (b), while the
black area in (c) is present in (b) but is covered in (a).

4.4 Occlusion Detection
Due to different objects or different parts of the same object
moving with different speeds, there often exist occlusions in
the camera view. The occlusion leads to three problems.

First, the occlusion results in the projection relationship
error in Eproj , as the occlusion degrades the relation be-
tween the 3D motion flow and the optical flow. To reduce
the impact of the mismatch of the projection relation, we
adopt the idea in [50] to detect the occlusion based on flow
divergence and the pixel difference. The O(vs,i,Ct(k)+s)

function used in Eq. 4 is defined as exp(−‖div(s, i)‖2/σ2
1) ·

exp(−‖Ct(k)+s,i −Ct(k)+s+1,i+vs,i
‖2/σ2

2), where i+ vs,i is
the index of the pixel obtained by applying the translation
of vs,i to the index i [51]. div(s, i) is the divergence of
the optical flow. Based on our experience, we set σ1 = 1
and σ2 = 20. The motion of its connected points will yield
the occluded depth pixels without the need for optical flow
information.

Second, the occlusion also produces an outlier of Eopti

due to color pixel mismatch [52]. To address the outlier, we
use the robust kernel function ρ(r) in Sec. 4.2. However,
the outlier still makes the optical flow over-smoothed at the
boundaries [47]. This problem can be further alleviated by
applying the weighted media filter [47].

Third, the occlusion generates holes in the reconstructed
depth maps. The occluded surfaces are divided into occlu-
sion and disocclusion areas, as illustrated in Fig. 4 [53]. The
disoccluded objects can be detected in the reversed timeline.
In other words, the portion of the disoccluded objects can be
recovered from the corresponding frames in the backward-
reconstructed depth maps sequence. We will show how
these holes can be filled in Sec. 4.6.

4.5 Topology Change Detection
The connection between neighboring pixels describes an
object’s topology. Topology changes often occur in scene
objects that interact with each other via a clap, rebound or
handshake. In such interactions, the separation of points, or
the combination of points, is regarded as a topology change.
Both cases will change the connection of points at an object
boundary.

The topology changes due to the merging of separated
objects are solved by the point cloud stitching, with use of
the information regarding the optical flow and geometry
constraints (Sec. 4.2). We detect the topology changes of
separating objects by computing the distance change, with
respect to the adjacent points, between the point cloud and

(a) (b) (c)

Fig. 5. Topology change detection. The football in (b) is the football in
(a) after having bounced from the ground. (a) is warped by 3D motion
flow to (c). The red insets of (a) and (c) present the areas in which the
topology changes.

the warped one. The latter is obtained by warping the
original point cloud using the rough motion flow in 3D
space from Dk to Dk+1, as shown in Fig. 5. To estimate
the proximate motion flow, we project the optical flow that
is accumulated from Ct(k) to Ct(k)+g−1 to 3D space with A
and Dk. To keep the geometric information of the warped
point cloud consistent with that of the original one, we
use Epoint, Eplane, and Erigid to obtain a coarse result.
As mentioned in Sec. 4.3, we define a weight of topology
change wt,ij to represent topology changes between a pair
of points (i, j).

4.6 Hole Filling

To reconstruct the depth maps more completely, we fill the
holes in the depth maps. Holes occur due to either the
occlusion or the imaging principle of a depth camera. In
Fig. 6 (h), the cyan pixels exemplify the first type of holes,
which are caused by occlusion. The yellow pixels exemplify
the second type of holes, which natively exist in the input
depth maps. We use different approaches to fill these two
kinds of holes. The workflow is shown in Fig. 6.

To address the first type of holes, we use the forward and
backward reconstruction information together [54]. During
the forward reconstruction, the depth data of the occluded
portion in the initial frame are also missing in the next g−1
forward reconstructed depth maps. The occluded part of
the reconstructed depth data in the current frame is thus the
accumulated occluded part of the previous depth frames in
the current forward reconstructed sequence. On the other
hand, the occluded part of the forward reconstruction is
the disoccluded part of backward reconstruction. Thus, the
missing depth information of forward reconstructed maps
can be recovered from the backward reconstruction depth
maps. By comparing the final depth frame of forward recon-
struction (Dt(k)+g) with the initial depth map of backward
reconstruction (Dk+1), we can obtain the corresponding
relationship between the disocclusive depth data and the
pixels in the backward reconstructed depth map and thus
fill in the holes of this type, as shown in Fig. 6(i).

The second type of holes appears due to two main
reasons: imperfect alignment of the depth and color images
and environmental interference, such as hair, glare, motion
blur and the reflectivity of objects. Some of the holes of this
second type can also be filled using forward- and backward-
reconstructed depth maps. This is because the missing depth
data of the second type of holes can be obtained from
adjacent depth maps by Kinect V2. We use the bilateral filter,
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Fig. 6. Hole filling. (a-c) are the input color images. (d) and (e) are the input depth maps corresponding to (a) and (c), respectively. (f) is the forward-
reconstructed depth map corresponding to (b), and (g) is the backward-reconstructed result. Holes exist in the reconstructed depth maps (f) and (g)
due to either occlusion or the imaging principles. In (h), the pixels in cyan represent the first type of holes generated by occlusion. (i) is the depth
map fixed using forward- and backward-reconstructed depth maps. The yellow pixels of (j) are the second type of holes, which occur due to the
imaging artifacts in (i). (k) is the result after filling all the holes.

with the help of the color information, to fill in the residual
missing depth data [20].

4.7 Energy Minimization
At every interval between two consecutive Kinect V2 cap-
tured depth maps, we reconstruct the intermediate depth
maps by optimizing the following global energy Eq. 8,
which consists of the energy terms introduced in the pre-
vious section:

E(P,V,R)

= Eopti(vs) + Epoint(pg,i) + Eplane(pg,i)

+ Eproj(ps,i,vs,i) + Erigid(ps,i,Rs,i)

+ Ereg(Rs,i) + Eshort(ps,i).

(8)

This equation can be rewritten as the following summa-
tion of squared residues: E(x)=

∑
i gi(x)2=‖g(x)‖22, where

x is a vector of all variables and g(x) is a vector func-
tion, with its element function denoted by gi(x). Minimiz-
ing E(x) is a least squares problem. The Gauss-Newton
method is employed to solve this optimization [55]. In
the k-th Gauss-Newton iteration, we update the variables
according to xk+1=xk+∆x. ∆x is satisfied by the equa-
tion JT (xk)J(xk)∆x=−JT (xk)g(xk), where J(xk) is the
Jacobian matrix at xk. To solve these linear equations, we
apply the preconditioned conjugate gradient (PCG) solver
with several CUDA kernels [43].

The optical flow is initialized by the GPU-based
method [56]. In this optimization, we use three hierarchical
levels. During the prolongation from the coarse level to the
fine level, the bilinear interpolation is applied to the optical
flow and point cloud. The rigid rotation in Erigid remains
the same in the corresponding position in the coarse levels.

4.8 Scene Flow Estimation
This joint optimization framework will introduce the depth
maps and the scene flow simultaneously. If our input is a set
of color images, each of which has its corresponding depth

map, our method reduces to a standard scene flow method.
In Sec. 5.1, we give quantitative evaluations of our scene
flow method and show its advantage over the current state-
of-the-art works [11], [14], [15].

5 RESULTS AND DISCUSSIONS

In this section, we make both qualitative and quantitative
evaluations of our approach. Our technique was tested on
real-world complex scenes such as those depicting basket-
ball & games. There are many challenges in real-world
scenes, including occlusion, topology changes and moving
cameras. These challenges are demonstrated in different
cases in the following sections. From the visual results, it is
clear that our method performs better than the state-of-the-
art methods. These real-world scenes lack the ground truth
of scene flow and depth maps. To perform the quantitative
evaluations, the MPI Sintel dataset [16] and Middlebury
stereo dataset [17] with ground truth are employed.

Performance. The performance of our hybrid camera
system was measured on an Intel Xeon E5-2520 CPU with
32 GB of RAM and a single NVIDIA Titan X. Between
every pair of successive depth frames, we reconstructed
the missing depth maps (8 frames in total) according to
the color images taken by the GoPro. This whole process
took approximately 315.6 seconds on average for all the
tested sequences. At the coarse, medium, and fine levels,
the duration of an iteration was approximately 2 seconds,
3 seconds, and 15 seconds, respectively. At the coarse level,
the total time of more than ten iterations was 30 seconds.
This time was 45 seconds for the medium level and 255
seconds for the fine level. All three levels included 5 Gauss-
Newton iterations (within each iteration, there were 10 PCG
iterations). The average time for reconstructing one depth
frame was 39.5 seconds.

Parameters. We fine tune the optimal values of our
important parameters via a quantitative analysis, as shown
in Fig. 7. The x-axis is the range of each parameter, and
the y-axis is the average accuracy for different input x
values of all the sequences of the MPI Sintel dataset [16]
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Fig. 7. The root-mean-square error (RMSE) of the reconstructed depth maps against different parameter settings in all the sequences of the MPI
Sintel [16] and Middlebury stereo datasets [17]. The fixed default values of the weight parameters were selected as follows: λrigid=16, λopti=8,
λplane=10, λpoint=9, λproj=5 and λshort=7.
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(a) Color Images (b) Dolson et al. [13] (c) Tracking-Based
Method
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detection and topology
change detection

(e) Ours

Fig. 8. Visualization of errors between reconstructed depth maps and ground truth. Our method produces more accurate depth maps.

and the Middlebury stereo dataset [17]. We used the fixed
default parameter value in all the comparative experiments
in Sec. 5.

5.1 Quantitative Evaluation
Depth reconstruction. We compare our method with a
tracking-based method and the method of Dolson et al. [13].
The tracking-based method exploits the motion information
from depth maps with Epoint, Eplane, and Erigid and regu-
larizes with Ereg and Eshort but does not employ Eopti or
Eproj to take advantage of the color images (Sec. 4.2, 4.3).
The post-process, solver (Sec. 4.7) and the weights of indi-
vidual terms are the same as those of our method. Mean-
while, we also make a comparison with the method by
removing components for occlusion detection and topology
change detection. In the hole filling post-process, the holes
generated by occlusion are not filled. The state-of-the-art
work [13] is, to the best of our knowledge, the only existing
method for the temporal upsampling of depth maps given
inputs similar to ours. Their method also uses the color
information to interpolate the depth maps to recover more
depth information. In the original datasets, each synthetic
color image has its corresponding depth map. To evaluate
the ability of reconstruction, we temporally downsample the
depth frames, resulting in inputs similar to those from our
hybrid camera. To evaluate the precision, we compute the
RMSE of the reconstructed depth maps against the ground
truth, as summarized in Tab. 2. The results show that the

reconstructed depth maps of our method are more accurate
than those of others. This advantage can be seen based on
the visualized errors in Fig. 8.

TABLE 2
Quantitative evaluation of the depth reconstruction on the MPI Sintel

dataset [16] and Middlebury stereo dataset [17]. As shown in this table,
our method achieves the highest accuracy.

RMSE
Dolson
et al.
[13]

Tracking-
Based Method

W/O
occlusion
detection and
topology
change
detection

Ours

bamboo 1 614.3 784.4 263.33 238.3
alley 1 420.3 1048.5 403.05 61.8

sleeping 2 81.35 79.39 87.54 26.1
bandage 1 54.44 87.84 45.12 8.3
wood1 159.29 273.85 88.23 81.93
bowling2 482.82 433.17 174.23 155.92

Scene flow estimation. As discussed in Sec. 4.8, our
joint optimization method can be used to estimate a scene
flow given a set of input color images and corresponding
depth maps captured at the same frame rate. We evaluate
this scene flow method on the MPI Sintel dataset and Mid-
dlebury stereo dataset. Our approach is compared with the
state-of-the-art techniques for scene flow estimation, includ-
ing Layered-Flow [11], SR-Flow [15] and PD-Flow [14]. The
RMSE, average angular error (AAE), and end point error
(EPE) are used as the error metrics [15]. The quantitative
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Fig. 9. Reconstructed depth maps of real-world scenes. From top to bottom, the rows present the following: input color images, depth maps
reconstructed by the tracking-based method, results of the method of Dolson et al. [13], and results of our method, respectively.

evaluation results are given in Tab. 3. The numerical results
show that under all the error metrics and for almost all the
sequences, our method outperforms the other scene flow
methods and produces results closer to the ground truth.

TABLE 3
Quantitative evaluation of scene flow estimation on the MPI Sintel

dataset [16] and Middlebury stereo dataset [17]. The lower the error
values, the better the performance.

EPE PD-Flow SR-Flow Layered-Flow Ours
alley 1 9.07 2.76 1.01 0.13

ambush 5 34.1 4.59 2.73 0.84
cave 2 147.08 26.83 11.67 2.38

market 2 53.22 5.20 4.21 0.82
wood1 49.87 9.72 10.09 0.50
bowling2 109.60 10.82 5.84 0.54
AAE PD-Flow SR-Flow Layered-Flow Ours
alley 1 1.53 0.98 2.10 1.85

ambush 5 1.43 1.19 1.11 0.74
cave 2 1.60 1.44 1.57 1.30

market 2 0.99 0.75 1.24 0.28
wood1 1.12 1.25 1.44 0.03
bowling2 1.30 1.37 0.21 0.02
RMSE PD-Flow SR-Flow Layered-Flow Ours
alley 1 10.56 4.03 3.39 0.52

ambush 5 71.65 5.98 5.21 2.01
cave 2 235.49 29.81 14.86 5.93

market 2 73.03 9.36 7.48 2.96
wood1 125.44 10.09 30.20 0.77
bowling2 356.65 10.75 18.56 1.86

5.2 Qualitative Evaluation

In this subsection, we will evaluate our method on the data
of real-world scenes and compare it to the technique of
Dolson et al. [13] and the tracking-based method. We have
made the comparisons on multiple challenging examples
(see the accompanying video). Fig. 9 gives representative

(a) I1 (b) I2 (c) I3 (d) I4 (e) I5

(f) D1 (g) D5 (h) D3(GT) (i) D3(Ours) (j) D3( [13])

Fig. 10. Results for the frames of sequence wood1 in the Middlebury
stereo dataset [17]. (a)-(e) are input color images. (f) and (g) are input
depth maps. (h) is the ground truth (GT) depth map corresponding to (c).
(i) and (j) are the respective depth maps reconstructed by our method
and [13] corresponding to (c).

results. Since the tracking-based method does not take the
color information into account, it may fail to reconstruct the
depth information for a scene with fast motion. In contrast,
our method employs the color information to evaluate the
motion flow information, thus obtaining more accurate cor-
respondence across frames.

The method of Dolson et al. [13] employs a d-
dimensional Gaussian filtering framework to interpolate
depth maps by encoding color, time, depth and location.
However, their method does not take geometry into account,
which is important to maintain the structures of objects.
Without the constraint of this geometry prior, their method
will easily choose incorrect reference depth data to interpo-
late intermediate depths. As shown in Fig. 9, their method
causes artifacts with serious noise, as it patches the depth
maps of foreground and background objects with the back-
ground, foreground or invalid data without the restraint of
geometry. This problem is obvious in Fig. 9(d) and (e), as
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(a) Color Image (b) 1:8 (c) 1:16 (d) 1:24 (e) 1:32

Fig. 11. Downsampling results. (a) is the color image corresponding to the reconstructed depth map. (b) (c) (d) and (e) are reconstructed depth maps
with frame-rate ratios of the depth maps generated by Kinect V2 to the color images taken by the GoPro of 1:8, 1:16, 1:24, and 1:32, respectively.

(a) Color Image (b) W/O Epoint (c) W/O Eplane (d) W/O Eopti & Eproj (e) W/O Erigid (f) W/O Ereg

(g) W/O Eshort (h) W/O Occlusion De-
tection

(i) W/O Topology
Change Detection

(j) W/O Hole Filling (k) Ours

Fig. 12. An evaluation of the importance of individual components. (a) is an input color image whose corresponding depth map needs to be
reconstructed. (b)-(j) are the visualizations of error (the difference between the reconstructed depth maps and the ground truth) in our ablation
study.

the gym is so deep (more than 6 meters) that the depth
difference between the foreground and the background is
very large. Our approach achieves much better results,
mainly because of our careful consideration of the color (for
optical flow), space and time information, as well as the
topology and geometric relationships. As shown in another
example in Fig. 10, when the colors of the foreground and
background are similar, without geometry regularization,
the approach of Dolson et al. [13] easily produces artifacts.

The frame-rate ratio of the depth maps generated by
Kinect V2 to the color images taken by the GoPro is 1:8.
We also tested our method on 1:16, 1:24 and 1:32 ratios,
which are simulated by extracting the Kinect’s depth maps
at intervals of 2, 3 and 4 frames, respectively. It is expected
and shown in Fig. 11 that a higher ratio will lead to more
artifacts (e.g., on the legs in this example). These artifacts
are mainly due to the errors of topology change detection
caused by the cumulative error of optical flow.

5.3 Impact of Individual Components

To evaluate the importance of each term, we conduct an
ablation study of our framework. We evaluate using repre-
sentative frames from the MPI Sintel dataset, which involve
topology change, occlusion, and rigid and non-rigid trans-
formation. In Fig. 12, we visualize the errors against the
ground truth when one component is removed. Moreover,
we quantify the results using the RMSE between the recon-
structed depth maps and ground truth, as shown in Tab. 4.

Our method with all the components achieves the highest
accuracy. It is shown that each component of our method is
important, with Erigid being the most important term.

Importance of Epoint and Eplane. These two terms take
both corresponding point-pairs across the point clouds and
the normal of a point cloud into account. Dropping either of
them increases the reconstruction error, as shown in (b) and
(c) of Fig. 12.

Importance of Eopti and Eproj . Eopti takes full advan-
tage of 2D motion information from color images. Eproj

is used to connect 2D optical flow with 3D point cloud
movement. As shown in Fig. 12(d), when they are omitted,
there are more artifacts in the reconstructed depth map.
This is mainly because there are more mismatched nearest
point relations in Epoint and Eplane when the optical flow
information is not used.

Importance of Erigid. This term is used to regularize the
motion such that it is as locally rigid as possible. Since the
local rigidity of the motion is very common in real-world
scenes, this term plays a central role, as evidenced by the
most serious errors in Fig. 12(e).

Importance of Ereg . Ereg is employed to prevent the
artifact generated in large-scale deformation [49]. The result
without Ereg is shown in Fig. 12(f).

Importance of Eshort. This term is based on a temporal
prior that enforces temporal smoothness and penalizes the
jitter of a point cloud over time. Based on the observation
that the speed of an object is essentially constant over a
very short time, the Eshort term constrains the solution to a
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TABLE 4
Quantitative evaluation of component importance on the MPI Sintel dataset [16] and Middlebury stereo dataset [17]. Depth maps reconstructed by

our full components method achieve the lowest RMSE.

RMSE
W/O
Erigid

W/O
Eopti &
Eproj

W/O
Eplane

W/O
Epoint

W/O
Ereg

W/O
Eshort

W/O
Occlusion
Detection

W/O
Hole
Filling

W/O
Topology
Change
Detection

With all
the com-
ponents

alley 1 901.46 784.4 429.72 379.45 340.14 315.84 323.41 316.46 253.59 238.3
wood1 357.8 344.4 215.32 99.21 101.2 103.44 99.17 95.18 83.46 81.93
bowling2 432.91 461.64 339.73 230.73 347.07 279.71 194.48 181.69 169.76 155.92

(a) Color Images (b) With reconstructed high-frame-
rate (240 FPS) depth maps

(c) With Kinect-captured (30 FPS)
depth maps

Fig. 13. Human motion capture. (a) is a color image taken by the GoPro. The corresponding point cloud and captured pose are shown in (b) and (c),
respectively, which are captured from reconstructed high-frame-rate depth maps and Kinect-captured depth maps, respectively. The meshes in (b)
and (c) are reconstructed via linear blending skinning (LBS) based on the currently captured 3D skeletal pose. The mesh in (b) is more reasonable
than that in (c) and closer to the pose of the character in (a).

lower-dimensional subspace. The error against the ground
truth is shown in Fig. 12(g).

Importance of Occlusion Detection. Occlusion will
cause a mismatched correspondence relationship of Eproj ,
causing outliers of the optical flow and creating holes at the
edge of the object. To disable the occlusion detection, we
set O(vs,i,Ct(k)+s) to 1 (Sec. 4.1) and do not fill the holes
caused by occlusion. Fig. 12(h) and (j) are almost the same,
as the holes are generated by occlusion.

Importance of Topology Change Detection. As shown
in Fig. 12(i), when topology changes are not considered, ob-
vious artifacts occur on the horn and mouth of the dragon.

Importance of Hole Filling. The hole-filling post-
processing patches the invalid data in depth maps generated
by occlusion and Kinect imaging. The dominant invalid
depth data in the synthetic data is generated by occlusion. If
we do not carry out hole filling, clear artifacts occur around
the moving objects, as shown in Fig. 12(j).

5.4 Applications
Various applications could benefit from our system with
its reconstructed high-frame-rate depth maps. Here, we
demonstrate three applications: fast human motion capture,
rendering of stereoscopic images for a VR environment and
the depth-of-field effect.

Human Motion Capture. The state-of-the-art human
motion capture studies include [1], [58], [59]. In those works,
the input depth maps were generated by a Kinect at 30 FPS.
To capture fast human motion, we make use of the depth
maps from our system. We apply the full-body motion
capture algorithm [58] to the depth maps from our hybrid
system to capture the 3D skeletal poses of the fast human

(a)

(b) (c)

Fig. 14. Stereoscopic video rendering based on reconstructed depth
maps and color images taken by the GoPro. (a) is the color image
taken by the GoPro, (b) is the reconstructed depth map, and (c) is the
stereoscopic image rendered by the method of de Albuquerque Azevedo
et al. [57].

movement. As shown in Fig. 13, thanks to the high frame
rate and accurate depth maps of our hybrid system, the
capturing algorithm performs better than when using the
input from the Kinect directly.

Stereoscopic Image Rendering. Stereoscopic videos pro-
vide more immersive experiences for virtual reality, such as
3DTV and head-mounted display. There are several meth-
ods that employ depth data to generate and edit stereo-
scopic images [60], [61], [62]. In our system, a stereoscopic
video can be easily acquired from the captured color images
and reconstructed depth maps via a depth image-based
rendering (DIBR) [57]. DIBR is a technology that synthesizes
virtual views of a scene using monocular color images and
depth maps. With the help of DIBR, we synthesize a color
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(a) Color Image (b) Focus on Players (c) Focus on Back-
ground

Fig. 15. Depth-of-field effect: (a) is the entire sharp color image captured
using the GoPro. To isolate a player from the background, (b) and
(c) render with a small depth-of-field, causing the background and the
players to be out of focus, respectively.

video for the left eye and use the original color video for the
right eye. Fig. 14 shows an example of the resulting stereo-
scopic images (the method of de Albuquerque Azevedo et
al. [57]). Please also find the rendered stereoscopic video in
the accompanying video.

Depth-of-Field (DoF). The DoF effect, which makes
some objects in an image acceptably sharp and others blurry,
is a common technique in photography used to emphasize a
subject. Meanwhile, DoF is a render effect that is commonly
applied to images or animation [63]. The usual method
for producing a DoF effect in captured images is to use
light field cameras, which capture images at a rate of three
frames per second and are expensive. We use an image-
based algorithm to render the DoF effect in RGB-D images.
With the help of a reconstructed depth map, we can easily
simulate the DoF effect and carry out refocusing in color
images acquired with fast frame rates [10]. We implement
the method proposed by Kraus et al. [3] based on sub-
images to change the DoF of the acquired images. As shown
in Fig. 15, with the help of a reconstructed depth map,
we render the DoF effect in GoPro-captured color images
and refocus on players and the background separately to
emphasize different subjects.

5.5 Limitations and Future Work
Our work has taken the first step in addressing the in-
teresting issues of hybrid cameras in a temporal domain.
Our technique can be improved in multiple aspects. First,
our current unoptimized implementation is still too slow
to support real-time performance capture. The bottleneck
of our program is the transmission of data from the CPU
to the GPU. We will completely implement the algorithm
with CUDA to reduce the overhead of transfer and improve
the throughput. Meanwhile, our framework reconstructs the
sequence of depth maps together, using Dk+1 to reconstruct
previous depth frame Dt(k)+s. The reconstructed result has
a delay of 3 ∼ 4 milliseconds, even if the framework
achieves real-time performance.

Finally, our system does not reconstruct depth faithfully
when motion is too fast and occlusion is too serious. As
shown in Fig. 16, in the gap between the two legs, where
the occlusion is serious, and when the leg motion is very
fast, our reconstruction result suffers from errors. The less
accurate depth is due to a hole filling process error (Sec. 4.6),

(a) (b)

Fig. 16. Failure case. (a) is an input color image, and (b) is the cor-
responding reconstructed depth map. Our method fails to reconstruct
depth data in the highlighted yellow box because of occlusion and fast
motion.

as there is too little depth information regarding the gap.
This problem can be mitigated by using more powerful hole
filling methods, e.g., data-driven-based method [64] and
deep-learning-based method [65].
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