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Figure 1: The overall workflow of our method. Our proposed generator network converts individual input sketches into cor-
responding normal maps with little or no user intervention. Here we use RGB channels to represent 3D normal components.
The generated normal maps benefit various appliations such as surface relighting, texture mapping, etc. For instance here we
use the normal maps for Phong shading.

ABSTRACT
High-quality normal maps are important intermediates for repre-
senting complex shapes. In this paper, we propose an interactive
system for generating normal maps with the help of deep learning
techniques. Utilizing the Generative Adversarial Network (GAN)
framework, our method produces high quality normal maps with
sketch inputs. In addition, we further enhance the interactivity
of our system by incorporating user-specified normals at selected
points. Our method generates high quality normal maps in real time.
Through comprehensive experiments, we show the effectiveness
and robustness of our method. A thorough user study indicates
the normal maps generated by our method achieve a lower percep-
tual difference from the ground truth compared to the alternative
methods.
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1 INTRODUCTION
Normal maps take crucial parts in both academic research and
commercial production. It is of great importance for many graphics
applications such as shape reconstruction, surface editing, texture
mapping and realistic surface rendering etc. Surface normal map is
high-order differential information of the shape, and thus is not easy
for human to infer accurately in the early stage of design process.
Moreover, manually designing normal maps is a tedious process and
often requires a lot of resource input to get high-quality results. For
delicate shapes, manual methods are more problematic especially
for novice designers due to the shape complexity. In commercial
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production, professionals often spend hours to manually generate
a detailed normal map, greatly limiting the production efficiency.

Among various representations, the sketch is an intuitive rep-
resentation for designers to convey design concepts due to its di-
versity, flexibility, concision and efficiency. It is also a commonly
adopted medium to present shapes and other geometric informa-
tion. Using sketches to convey 3D information in 2D domain is
a natural approach that people often employ. Since surface nor-
mals are one of the most direct ways to encode 3D information,
sketch-to-normal is a predominant interpretation projecting the
2D concept to 3D space, which has been widely used in cartoon
shading, digital surface modeling, gaming scene enhancement and
so forth. Automatically inferring normal maps from sketches can
potentially lead to a useful tool for graphics designers.

In recent years, the research community has witnessed the great
capability of deep neural networks in various areas. Deep neural net-
works have become the common solutions behind many problems,
especially for image-related conundrums. Specifically, GAN-based
methods have presented a superb performance on a series of image
generating problems. More concretely, for guidance-based image
generation, GANs show remarkable improvements comparing with
conventional deep learning methods. Since both normal informa-
tion and sketch curves are well represented in the image domain,
the inference from sketches to normal maps can be achieved with
adoption of deep neural networks.

In this paper we present an interactive generating system, using
a deep neural network framework to produce normal maps from
input sketches. In our system, the sketch-to-normal map generation
problem is treated as an image translation problem, utilizing a GAN-
based framework to “translate” a sketch image into a normal map
image. To enhance the correspondence between the input sketches
and the generated normal maps, we incorporate a conditional GAN
framework, which generates and discriminates images with the
conditional guidance [20]. A U-net [24] architecture is applied in
the Generator to pass a smooth information flow in the generat-
ing process, further increasing the pixel-wise correspondence. We
employ the Wasserstein distance in our implementation to pro-
vide more effective guidance to update the network and reduce the
instability of the training process.

Since a sketch is a highly simplified representation of shapes,
there might be multiple shape interpretations or possible normal
maps for a single input sketch. We rely on users to resolve this
ambiguity problem. To achieve this, we provide a user interface
so that users can give the normal information at specific points
directly in the input sketch to guide normal map generation. Such
an interface also enlarges the design choice of normal maps. Our
system is efficient and generates the normal maps according to the
input sketch and point hints in real time.

We demonstrate the effectiveness of our method on a wide range
of comparisons in both quantitative and qualitative experiments.
We show the superb capability of our method in generating low-
error normal maps by comparing it against alternative methods,
including pix2pix [14] and Lun et al.’s [19], evaluated on three
categories of data. We validate the user interactivity by progres-
sively increasing the point hints, and evaluate the robustness of
our method by an experiment with incremental variations of input
sketches. From completely new hand-drawn sketches our method

can produce plausible results as well. The user studies further prove
the advantages of our method in the perspective of user perception.

2 RELATEDWORK
2.1 Sketch-Based Modeling
Sketch-based modeling is an active research area, and many re-
searchers have devoted to this field and presented fruitful works [21].
Specifically, reconstructing 3D shapes or intermediates from sketches
has been well studied for years but has still been drawing much
attention from both computer graphics and vision researchers due
to its ill-posed problem nature and the challenges (e.g., severe shape
distortion of sketches especially by users without drawing training).

Traditionally, researchers defined comprehensive rules to turn
2D sketches into 3D shapes. For example, Lumo proposed by Scott
F. Johnston [15] approximates lighting on 2D drawings based on
silhouettes and internal contours. Wu et al. [31] proposed an inter-
active system to generate 3D shapes with strokes in the reference
shapes. Shao et al. [27] utilized the cross-section lines to infer the
3D normal across the input sketch. Xu et al. [32] introduced an
interactive method for designing a normal map from a 2D isophotes
image. Sýkora et al. [28] proposed Ink-and-Ray, generating a “2.5D”
intermediate for illumination renderings based on hand-drawn im-
ages using a set of annotations. Li et al. [18] proposed BendSketch,
defining a set of rules to convert 2D strokes into 3D surfaces. Other
methods enable the creation of surfaces by exploiting geometric
constraints for specific types of line drawings, such as polyhedral
scaffolds [26] and curvature flow lines [22]. Different from the above
methods, we do not need explicit rules to encode the geometric in-
formation into the user input. Instead of generating an inflation-like
intermediate shape, the network learns the potential rules from the
sketch domain to the normal map domain directly, which preserves
more geometric features and generates more complex shapes.

With the development of deep learning techniques, learning
based methods have become effective tools in solving shape syn-
thesis problems. Utilizing the powerful inference capability of the
deep neural networks, many problems are solved easily. For exam-
ple, Lun et al. [19] used multi-view sketches as input to generate
depth maps and normal maps, and then combine them to gener-
ate a 3D model. Han et al. [10] proposed a system to encode 2D
sketch lines to modify the averaged face representation for genera-
tion of detailed face models. While our method directly converts
the sketches into the normal maps to represent shapes with no
assistance of other geometric intermediates. Similar to the normal
map generation procedure of Lun et al.’s [19], we aim at generating
delicate normal maps to encode detailed geometric information
from sketch inputs. However, Lun et al.’s [19] method generated
normal map together with depth map and binary mask, which
leads to inaccuracies compared to our single-objective normal map
generation.

2.2 Image Translation
Traditional image translation effects are achieved by mechanisms
based on handcrafted separate local image representation, e.g., im-
age quilting [7], image analogies [11], image denoising [3], etc. Efros
and Freeman [7] utilized a texture synthesis model for a correspond-
ing input-output image pair. Hertzmann et al. [11] proposed image
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analogies, which are based on a simple multiscale auto-regression
to generate filtered images. (Deleted previous reference [9]) More
advanced approaches use a dataset of input-output example pairs to
learn a parametric translation function using generative adversarial
networks (GAN) [9].

Mirza and Osindero [20] proposed Conditional GAN (CGAN),
adding additional information to the random noise to generate im-
ages. Improved GAN by Salimans et al. [25] employed featurematch-
ing and minibatch discrimination to improve the output. Iizuka et
al. [13] presented a GAN-based method for image completion, and
used a Dilated Convolution implementation in their completion
network. Recently, three works DualGAN [34], CycleGAN [38] and
DiscoGAN [17] were published nearly at the same time, generating
images in a bi-directional loop and ensuring the correspondence
of images between the two representing domains. Laplacian Pyra-
mid GAN (LAPGAN ) [6] and StackGAN [35] proposed to generate
images in a hierarchical manner. Using an Encoder-Decoder archi-
tecture, Wu et al. [30], Choy et al. [4] and Yan et al. [33] proposed
networks to generate 3D shapes in a voxelized representation with
a latent space vector encoded from real object images.

For surface normal representations, Eigen and Fergus [8] and
Wang et al. [29] proposed convolutional deep networks to solve the
surface normal prediction problem as a regression from a real scene
photo input. Different from [8] and [29], our method generates
normal maps for detailed object models instead of normal maps for
coarse scenes surfaces or semantic labels for scene understanding.
Isola et al. presented pix2pix [14], providing a general framework
for image-to-image translation, which has a very similar objective
to our work, converting images from an input representation to
the a desired representation. Our method, specifically, convert the
input sketches to normal maps with deep neural networks in the
manner of image-to-image translation just like pix2pix [14].

3 METHOD
Both normal maps and sketches can be well-represented in 2D
images. We thus treat the normal map generation problem as an
image-to-image translation process. Essentially, the objective of
our image-to-image translation is the distribution transformation
problem in two image representation domains, so we choose a GAN
framework for solving this problem in our method. In Section 3.1,
we introduce the objective function in our method. Our network
architecture is elaborated in Section 3.2 and illustrated in Fig. 2.
The idetails of the user interaction are presented in Section 3.3.

3.1 Objective Function
While conditional GAN (CGAN) [20] maps a random noise vector
z to an image y : z → y, we use a conditional GAN that learns a
mapping from a sketch image x and a noise vector z, to a normal
map y:

G : x , z → y. (1)
Using the conditional setting, the data distributions that genera-

tor G and discriminator D try to approximate become conditional
distributions [20]. In CGAN, the additional information is concate-
nated with the random noise vector in the input layer. As to the
image translation problems, feeding G with the input image that
guides the network to generate the output image is quite intuitive

and it is an effective way to incorporate the sketch information in
our method. Following [20], we define our objective function as
follows:

min
G

max
D

V (D,G) = Ex∼ps ,y∼pn [logD(y | x)]

+Ex∼ps ,z∼pr [log(1 − D(G(z | x)))].
(2)

Here, x represents the input sketch image, y is the correspond-
ing normal map and z is the random noise vector with the same
dimension as the latent space added to Generator G, and here ps ,
pn and pr represent the sketch domain, normal map domain and
random noise distribution, respectively.

In the original GAN, the objective for G is:Ez∼pr [log(1−D(G(z)))],
but this function causes gradient vanishing. To solve the problem,
the loss function can be modified as: Ez∼pr [− log(D(G(z)))], making
G maximize the possibilities of generated samples being identified
as real [9]. However, Arjovsky and Bottou [1] proved that optimiz-
ing such an objective function is equal to minimizing Kullback-
Leibler divergence (KLD) while maximizing Jensen-Shannon diver-
gence (JSD), but in fact, KLD and JSD are of the same direction.

Since JSD and KLD are incapable of measuring the input and
output distributions for GAN training, we adopt the settings of
WGAN [2], which uses the Wasserstein distance as the measure-
ment of distributions to improve the objective function. The objec-
tive function in Eq. 2 then becomes:

L = Ex∼ps ,y∼pn [D(y | x)] − Eỹ∼pд [D(ỹ | x)]

−λL1LL1 − λmaskLmask ,
(3)

where ỹ is the generated normal map with respect to the input
sketch x from the generated normal map domain pд . The previous
methods of GANs have found that it is beneficial to mix the G loss
with a traditional loss, for instance, L1 or L2 loss, etc [23]. Thus, we
add another two parts, LL1 and Lmask (in Eq. 6) to further regulate
the training process:

LL1 = Ey∼pn,ỹ∼pд [∥y − ỹ∥1], (4)

ỹ = Ex∼ps ,z∼pr [G(z | x)]. (5)
For user-specified normals at certain points, we add a mask loss

to further ensure the input information passes to the output (see
more discussions in Section 3.3). Here we choose L1 loss since
L2 loss encourages blurry results [23] [36]. L1 loss measures the
difference between the generated image and the real image, and
mask loss focuses more on the user selected pixels’ distances.

3.2 Network Design
The implementation of our network structure is illustrated in Fig. 2.
We first concatenate the sketch image (3-channel RGB image) with
a binary point mask (indicating position of user-specified hints,
1-channel image), resulting in H (heiдht) ×W (width) × 4 dimen-
sional input, and then feed the stacked input into the Generator
(16-layer network). For discriminator (4-layer network), each layer
consists of convolution, batch normalization and leak ReLU unit
to process the data flow. For generator G, we adopt an Encoder-
Decoder architecture [12], which is a common choice for many
image-based problems, to first extract the input information and
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Figure 2: Network structure of our method. On the left of the figure is a sample of training data, which contains a sketch input
image, a point mask and a ground truth normal map. For selected points, we set their corresponding values to 1 in the mask
(2) and copy the corresponding point normals from the normal map (3) to the sketch (1). We concatenate the sketch input (1)
and point mask (2) as the input of the Generator G to get the intermediate normal map (4), and then feed the intermediate
normal map together with the sketch and mask as the input of Discriminator D to verify the pixel-wise “realness” of the
intermediate normal map (4) compared to the ground truth (3). The discriminating information guides the Generator G to
update its parameters in the training stage. In testing, sketch input and point mask are fed to Generator G only, whose output
is exported as the final generated normal map. The number above or below each layer block indicates the number of layers
and the number on the left of each block denotes the spatial size of the corresponding network layer.

then infer and output the normal information based on the extracted
low-dimensional representation of the input.

The input passes through progressively down-sampling layers to
a bottleneck layer, and after we add a random noise vector the up-
sampling process begins. All the input information passes through
all layers in the network. The encoder component of the generator
is similar to the settings of discriminator D, while the decoder layers
are composed of ReLU, deconvolution, batch normalization and
dropout unit. After the encoder and decoder processing, we add a
Tanh function to generate the final results. For the network training,
we use the RMSProp optimizer in our implementation.

Although the low-level details differ in input and output, the
high-level structure is aligned, and that is taken into consideration
when we design the network. For image translation problems, it
would be desirable to pass the low-level information across the
layers to guide the generation [14]. Thus we incorporate the U-
Net [24] in G. Specifically, connections are added after the batch

normalization in the generator G between each layer i and layern−i ,
where n is the total number of layers in G. Each skip connection
simply concatenates all channels at layer i with those at layer n − i .

3.3 User Interaction
To incorporate user point hints, two additional losses are added
together with the Wasserstein loss in Eq. 3 to further regulate the
generation of the results. Users can directly assign a normal direc-
tion to a specific point in the input sketch with our user interface
as shown in Fig. 3. The selected point with the normal information
(assigned RGB color) is added to the sketch input, and the binary
mask at the corresponding point is set to one. In every iteration of
the training process, after the initial mask and the sketch are passed
through the Generator, we can get a generated pre-result, and then
replace the values of the masked positions with the user-specified
hints in this pre-result to ensure not only the point positions but
also its neighboring area present the specified normal.
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Figure 3: Our user interface. Users can select the positions in
the drawing pad (right) and assign desired normals to them
using the normal space (left).

We then smooth the mask with a Gaussian kernel to ensure the
neighboring pixels correspond to the point hints. For the mask
loss, we first differentiate the generated image and real image in L1
manner, then pixel-wisely product (⊙ in Eq. 6 below) the residual
image with the filtered mask, and finally get the average input point
loss of the generated result. The mask loss is formulated as:

Lmask =
1∑
mask

Ey∼pn,ỹ∼pд [∥y − ỹ∥1 ⊙mask]. (6)

To simulate the user-specified normals at certain points in prepa-
ration for the training data, we adopt the method in ideepcolor by
Zhang et al. [37] For each image, the number of input points is
generated by a geometric distribution with probability p = 1

8 . Each
point location is sampled from a 2D Gaussian distribution with
µ = 1

2 [H ,W ]T , Σ = diaд([(H2 )
2
, (W2 )

2
]) of the normal map area

(i.e., non-white pixels ), where H andW are the height and width
of the normal map. To ensure the generated normal maps have
clear boundaries, we also draw point hints from another geometric
distribution with probability p′ = 1

2 in the non-normal region (i.e.,
corresponding to white pixels). Adding the point hints not only
enables interactive control of normal maps but also accelerates
the network convergence procedure since the normals at the user-
specified points act as additional guidance in the training stage. An
example of the training data input is illustrated on the left of Fig. 2.

4 EXPERIMENTS
To get the corresponding sketch images and normal maps, we adopt
suggestive contours [5] proposed by DeCarlo et al. to generate line
drawings directly from a 3Dmodel under multiple views and render
its corresponding normal maps. The 3D shapes we use to generate
the training and testing data in the following experiments areChair
and FourLeдs from Kalogerakis et al. [16] since they have compli-
cated geometry and structure, and are representative man-made
and organic models, respectively. FourLeдs contains 24 models (19
for training and 5 for testing) and Chair consists of 20 models (16
for training and 4 for testing). We first make the 3D models’ orien-
tation upright, then rotate them horizontally and evenly sample 72
views for each model in a circle change for both training and testing
models. We repeat the above process with a altitude angle of 25° of

the upright models to enlarge the dataset. In addition, we construct
a dataset of primitive shapes, containing 50 basic 3D shapes (rotate
with altitude angles of 0°, 30° and 60°, resulting in 216 views for
each model since representative perception of the primitive models
are in all directions) for evaluations. The images for training and
testing are 256 × 256 pixels in size. It takes about one day to train
the network (FourLeдs: ∼ 28hrs , > 1300 images; Chair : ∼ 26hrs ,
> 1100 images). In the testing phase, it takes 0.025s to generate one
normal map using our network on average.

We illustrate some results of the testing models with the same
view angles as the training data in Fig. 4. We can see that our
method produces results with clear boundaries and smooth normal
textures. We also plot the error maps of the results compared to the
ground truth normal maps. Converting to degree value, our method
achieves loss at pixel-wised 1.9° on average for testing results. The
largest errors often appear in the boundary and the sudden change
of normal within a smooth area.

Using the Chair and FourLeдs datasets we compare our method
with two closely related works: pix2pix [14] and Lun et al.’s [19],
since they have similar objectives to ours. We train the pix2pix [14]
models with the same set of sketch-normal map image pairs and
set Lun et al.’s [19] output view number to 1 to generate single
view results instead of multi-view ones. In this experiment, we
incorporate no additional user input for both training and testing.
We compare the test results in a quantitative way: we compare
the difference between the results by different methods against
the ground truth using three metrics: L1, L2 distance and angular
difference. The quantitative comparison results are presented in
Table 1.

Table 1: Errors of different methods. We compare the gen-
erated results by pix2pix [14], Lun et al.’s method [19] and
ours to the ground truth normal maps. The values here are
the averaged pixel-wise differences of the normal areas in
the generated images (256 × 256 pixels).

Dataset Loss Type pix2pix Lun et al.’s Ours

Chair
Angular 21.270° 29.765° 11.517°

L1 0.235 0.307 0.154
L2 0.179 0.242 0.105

Four Legs
Angular 36.253° 35.236° 19.649°

L1 0.393 0.379 0.254
L2 0.294 0.278 0.171

We use the mask of the ground truth to prune the background
(non-normal) area out and calculate the error within the object
(normal) areas, since we care about the accuracy of the normal map
of a sketched object. We first normalize the output normal maps
to unit length and compute the pixel-wise angular difference (in
degrees) against the normalized ground truth normal maps. For
the pixel-wise L1 and L2 losses, we simply calculate the differences
between the corresponding normal vectors of the normal regions
in the manner of L1 and L2 norms, respectively.

Our method uses the Wasserstein distance, leading to lower
errors than pix2pix [14], which uses the original GAN loss. The
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low
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Figure 4: Examples of generated normal maps using our method. On the upper right of each group is the sketch input, and on
the lower right is the corresponding error map compared to the ground truth. We visualize the angular losses of the generated
normal maps, here the red channel corresponds to the error of the generated normal map, and white is zero error.

Wasserstein distance can effectively guide the network to conver-
gence. Lun et al.’s network [19] uses L2 distance as a part of objective
loss that produces blurry results, and causes larger errors than ours.
In Table 1, we can see that our method outperforms the other two,
and has significantly lower errors. Through paired samples t-test
for individual averaged error values per image in the test dataset
by three methods (same errors reported in Table 1), we confirm our
method significantly (Chair : pix2pix vs. ours: t = 13.94, p < 0.01;
Lun et al.’s vs. ours: t = 23.19, p < 0.01. FourLeдs : pix2pix vs. ours:
t = 22.77, p < 0.01; Lun et al.’s vs. ours: t = 27.87, p < 0.01.)
reduces the error values in the generated normal maps.

To further show the difference between the results by different
methods, we visualize the error maps of different methods in a box
plot of 144 views of each testing models in the FourLeдs dataset in
Fig. 5. In addition, we also choose 3 testing error maps to illustrate
the different error levels in Fig. 5. From the box plot, we can see
that the errors of our method are more concentrated compared to
pix2pix [14] and Lun et al.’s [19]. Ourmethod achieves amore subtle
difference from the ground truth. While the averaged pixel-wise
error values in Table 1 are very small, from the error maps in Fig.
5, we can easily perceive visual difference between the error maps
by different methods. Our method achieves better performance
in generating smooth normal maps, especially for the complex
boundary areas. See the supplemental materials for more generated
results using different methods.

We run a validation experiment to test how our method is robust
against the changes of view angle. We train the network with

pix2pix[14] Lun et al.’s[19] Ours
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Figure 5: The visualization of average pixel-wise angular
loss using different methods. The box plot shows the distri-
bution of error values of different methods. From the test
results we choose three views of different testing models as
examples to visualize the losses. Error maps marked by dif-
ferent color rectangles are generated by the corresponding
methods. The average angular losses are in degrees.

the FourLeдs and Chair dataset described above. In the test stage,
we experiment on the test models under different altitude angles
(from 0° to 330°), and same horizontal sampling scheme as the
training data. We also evaluate the cross-class generation capability
of our framework by training the network using one dataset or a
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Figure 6: Evaluation against different viewpoints and net-
works with different training data. The solid lines corre-
spond to the test resultswithChair data and the dashed lines
illustrate the test results of Four Legs data. The blue and red
curves represent the results using the networks trainedwith
the Chair and Four Legs datasets, respectively. The green
lines denote the results by the network using a combina-
tion of Chair and Four Legs as the training data. The normal
maps with different color frames are the testing results us-
ing the networks with specific rotation angles. The angular
loss for each generated result is calculated across the whole
image.

combination of the two datasets, but testing on the other dataset
model. The results are illustrated in Fig. 6.

We choose two models from theChair and FourLeдs test models.
Each of them are rendered with different altitude angles. From
the curves in Fig. 6, it can be seen that with the increase of the
altitude angles, the error values first go up, after reaching a peak,
the values decrease gradually generally for all the three networks
trained using different data, due to the used two altitude angles (0°
and 25°) for rendering the training data and the periodic nature of
angle. In other words, generally if the underlying viewpoints of
the input sketches are closer to those used for rendering training
data, the inferred normal maps are more accurate. It is expected
that using the same category of data for training and testing leads
to the best results (the red dashed curve and the blue solid curve).

In contrast, applying the network trained on the cross-class
dataset to a test model causes more severe errors, though the re-
constructed normal maps still roughly reflect the desired shape (i.e.
the red solid line and dashed blue line in Fig. 6). It is encouraging
that combing multiple categories of objects in training does not
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Figure 7: The evaluation of the point hints. Generally the
more point hints we use the more accurate normal maps
we can get. A more careful selection of point hints (at the
points with the largest errors) will lead to desired results
more quickly.

significantly influence the reconstruction accuracy. It can be seen
from Fig. 6 that the difference between the red dashed curve and
green dashed curve are nearly unnoticeable. The same trend also
appears in the blue solid and red solid lines of altitude angles within
[0°, 60°]. In the future we plan to train a network by using a large
number of object categories as the training data so that the same
trained network can be applied to sketches of different categories.
Our current experiment results show that the training with multiple
object categories does not require additional training time. More
testing results are illustrated in the supplementary materials.

To test the effectiveness of the user-specified point hints, we
train the network with a random selection scheme of point hints as
mentioned in Section 3.3 and evaluate the performance in terms of
the number of point hints. The evaluation results are illustrated in
the curve chart in Fig. 7 for the averaged accumulated angular losses
with respect to the normal areas for each normal map. The blue
curve represents the results of normal maps with randomly selected
points in the normal map area, and the red line indicates the results
of points selected with respect to the top N (the number of input
points) largest error points in the corresponding error maps. We get
the error maps by comparing the ground truth normal maps to the
generated normal maps from the clean sketch image (with no user-
specified point hint) input. We anticipate users will specify normals
at points with the large errors between the currently generated
normal map and a desired normal map in their minds.

The data in Fig. 7 is generated using a testChair model with 144
different views. The values in Fig. 7 are the average of the 144 views
in each group, we can see that generally the loss values in both
the red and blue lines go down with the increase of the numbers
of point hints, which validates that our system generates better
normal maps with the incorporation of user input hints. From the
inclinations of the two curves we can know that selecting points
with larger loss values more effectively reduce the generated errors.
From the shape of the red line, we can see that the error value will
remain a relatively constant low level after the large error region is
eliminated.

As shown in Fig. 8 we also evaluate our tool with respect to
the incremental changes of the input sketch. From the results we
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input

output

add 1 add 2 add 3original

Figure 8: Incremental refinement by adding additional
strokes, which lead to additional geometry details in the nor-
mal map. The modified strokes and corresponding parts in
the generated normal maps are highlighted using red cir-
cles.

can see that our system responds well with the modification of
the strokes. When we add an additional stroke in the sketch input,
the resulting normal map shows the corresponding details. On
the contrary, when we remove a stroke from the input sketch,
the geometric details will be smoothed out in accordance with
sketch modification. More results of the modification in sketches
are presented in the supplemental materials.

Input Sketches

Normal Maps

Figure 9: Test of hand-drawn sketches. Our system can in-
fer reasonable normal maps with completely new sketch in-
puts.

We also test our method with completely new sketches provided
by both experts with drawing skills and novices in sketching in
all the three classes of datasets. Several hand-drawn sketches and
corresponding generated results are shown in Fig. 9. The normal
maps in Fig. 9 preserve the characteristics of the training datasets,
showing smooth normal areas and strong correspondence with
the input sketches. For completely new sketches, our system can
provide plausible results with proper training data. For more results
of the freehand drawn sketches, see the the supplemental materials.

We conduct a pilot study among 12 users regarding the user
perceptual loss for the rendered normal maps generated by different
methods using Phong shader. In the first taskwe ask the participants
to choose the closest normal map given an input sketch and the

pix2pix[14] OursLun et al.’s[19]

Figure 10: Plot of user preferences for closest normal map
to the ground truth. The blue, red and green boxes represent
the distributions of the probabilities of the user choices for
pix2pix [14], Lun et al.’s [19] and our method, respectively.

ground truth as reference to test the perceptual losses of the three
methods, the task contains 10 sets of randomly selected normal
maps from the test models using our method, pix2pix [14] and Lun
et al.’s [19]. The results are summarized in Fig 10.

The green box in Fig. 10 shows the highest average proportion
among the threemethods, achieving 57.5% in identifying the normal
maps generated by our method as ones closest to the ground truth.
The average proportions for pix2pix and Lun et al.’s method are
17.5% and 25.0%. The t-tests (Ours vs. pix2pix [14]: t = 7.22, p <
0.01; Ours vs. Lun et al.’s [19]: t = 5.96, p < 0.01) proves that
our method is statistically better than the other two methods in
generating perceptually lower-error normal maps.
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Figure 11: Confusing rate for normal maps generated by 4
different methods. The red part in each bar represents the
proportion of normalmaps identified as real using a specific
method, and the blue part denotes the fake rate.

To investigate the accuracy of user perception in interpreting the
normal maps, we do another user experiment of normal map con-
fusing rate. In this experiment, we render 10 normal maps randomly
selected in the test set for FourLeдs with 4 methods: pix2pix [14],
Lun et al.’s [19], ours and the ground truth. We request the users to
label if a given normal map is real or fake in a random order. The
test results are plotted in Fig. 11.
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The average confusing rate (ratio of normal map identified as
real) of our method is 39.17% compared to 55% of the ground truth.
The confusing rates for pix2pix [14] and Lun et al.’s [19] are 30% and
31.7%, respectively. Our method achieves slightly higher confusing
rate than the other two methods but still lower than the ground
truth. In addition, the participants in this task give a difficulty factor
of 7.08 out of 9 (1 means easiest and 9 means hardest), indicating the
efforts required in this task are quite high and people find difficult in
interpreting the rendered normal maps directly. See the individual
user results and testing images in the supplemental materials.

5 DISCUSSIONS
In sum, we have presented an interactive method for normal map
generation. The implementation of conditional GAN framework
encodes sketch input to the latent representation and decodes the
latent space representation into normal map. By adopting the U-Net
architecture, our network presents a smooth data transition. The
incorporation of the Wasserstein distance provides precise gradient
information for the network training process. User-specified point
hints allow more direct control of the normal map and effectively
eliminate the ambiguity of the sketch representation. The effective-
ness of our technique has been demonstrated by qualitative and
qualitative experiments. Our method outperforms the alternative
solutions based on pix2pix [14] and Lun et al.’s [19].

Figure 12: Less successful caseswith corresponding sketches.
There are some generated results with obvious visual arti-
facts: one of the legs of giraffe is disconnected, the back area
of the chair is messy, the surface normal of the sphere is not
evenly distributed, and in the back region of the hand drawn
chair.

Despite the good performance in many cases, our method does
not perform well in certain cases. In Fig. 12, we can see that our
method produces obvious visual artifacts in complex sketch areas
and delicate areas. There are also generated artifacts with patches
outside the drawn sketch containing spuriously predicted normals.
This is a common phenomenon for GAN-based methods and may
be solved by adding more user input hints. For the large area of un-
even normals, we can also consider utilizing some post-processing

techniques to reduce the artifacts. Furthermore, the testing results
are highly dependent on training data, providing relatively worse
results for cross-class generation as discussed previously. For the
user-specified point hints, since the normal maps are highly struc-
tured representations of 3D shapes, users cannot arbitrarily assign
a point normal far from the potential candidates.

One of the future directions might be to explore the GAN train-
ing techniques to improve the capability of our current networks,
reducing the artifacts in the generated results. Since the current
method can only generate smooth normal maps, another potential
direction can be the post processing technique to add more details
in the generated normal maps according to the user design. Our
current user interface enables user-specified point hints, it might
be interesting to incorporate the stroke-based normal assignation
for more compact user interaction.
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APPENDIX
To illustrate the qualitative comparison of the generated results by
different methods, we add some of the generated normal maps in
Fig. 13. We add the complete comparison result in the supplemental
materials.

pix2pix Lun et al’s Ours Ground Truth

Figure 13: Side-by-Side comparison of results by different
methods. For the complete set of testing results, please con-
sult the supplemental materials.
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