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Figure 1: Our electors voting algorithm automatically and instantaneously computes a semantic correspondence between the sitting dog and
the standing elephant by considering their skeletons. A large set of selected electors vote for the skeletal feature pairs (middle) to synthesize the
final correspondence between the two shapes (right). Corresponding nodes that are matched by our algorithm are rendered in the same colors;
two incorrect matchings are marked with a red square.

Abstract
This paper challenges the difficult problem of automatic semantic correspondence between two given shapes
which are semantically similar but possibly geometrically very different (e.g., a dog and an elephant). We argue
that the challenging part is the establishment of a sparse correspondence and show that it can be efficiently solved
by considering the underlying skeletons augmented with intrinsic surface information. To avoid potentially costly
direct search for the best combinatorial match between two sets of skeletal feature nodes, we introduce a statistical
correspondence algorithm based on a novel voting scheme, which we call electors voting. The electors are a rather
large set of correspondences which then vote to synthesize the final correspondence. The electors are selected via
a combinatorial search with pruning tests designed to quickly filter out a vast majority of bad correspondence.
This voting scheme is both efficient and insensitive to parameter and threshold settings. The effectiveness of the
method is validated by precision-recall statistics with respect to manually defined ground truth. We show that high
quality correspondences can be instantaneously established for a wide variety of model pairs, which may have
different poses, surface details, and only partial semantic correspondence.

1. Introduction
Shape correspondence is a difficult problem. Humans are

competent in such a task for recognizable shapes since we
are familiar with the semantics of shape components. How-
ever, inferring semantics is still extremely difficult, and thus
correspondence algorithms have to rely solely on matching
geometric properties. The correspondence problem becomes
particularly difficult when the shapes exhibit large variation
in poses and surface details, since the similarity measures of
local geometric properties become irrelevant.

Many applications like cross parametrization and defor-
mation transfer require semantically meaningful correspon-
dence, which, however, is typically found with user assis-
tance. A notable automatic correspondence solution is the
work of Zhang et al. [ZSCO∗08]. Their method automati-

cally searches for the best correspondence between shapes
that significantly differ in poses and local geometric details.
However, it measures the quality of every possible corre-
spondence by evaluating the deformation distortion of local
surface details, which is indirect and expensive, taking an
order of dozens of minutes to compute. Recently, Lipman
and Funkhouse [LF09] limit their input to nearly-isometric
surfaces and propose a faster automatic correspondence al-
gorithm based on Möbius voting, but the running time is still
of an order of minutes. A fast automatic correspondence is
needed to allow processing a large number of models, deal-
ing with model database and applying learning methods.

The curve-skeleton is an effective abstraction of an ob-
ject’s geometry and structure. Curve-skeletons naturally in-
corporate the notion of parts, which are likely used by the
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human recognition system to identify semantic correspon-
dences [Heb49]. Often, skeletons are augmented with the
local radius, providing additional valuable geometric infor-
mation. Matching two shapes through their skeletons is in-
tuitively a promising strategy since skeletons provide struc-
tural information which is crucial for establishing correspon-
dence. However, matching 3D skeletons directly [HSKK01,
TS04, SSGD03, BMSF06] is not a straightforward task due
to the connectivity variation which leads to high computa-
tional complexity (finding a common subgraph is an NP-
hard problem). The challenge in designing a general shape
correspondence algorithm stems from the fact that the com-
binatorial search space is exponential. Thus, a simple evalu-
ation of each possible combination of feature pairs, even for
two small feature sets, is clearly computationally prohibitive.

We observed that although there is no rigorous definition
on what a good correspondence is, it is rather easy to iden-
tify very poor correspondences. This motivated us to design
a statistical method to synthesize a high quality correspon-
dence rather than a direct search for the best correspondence
using score function. The key idea is to quickly form a set
of reliable electors which then vote on individual feature-to-
feature matching. This large set of electors passed a cascade
of pruning tests designed to detect different types of bad cor-
respondences. Note that the aim of the fast pruning process is
not to perform very accurate filtering; in fact it is very likely
that some wrong correspondences pass the tests and a few
correct ones are pruned. However, most electors have high
probabilities of containing a significant subset of the best set
of feature-to-feature correspondences. Thus an aggregation
of the feature-to-feature votes of all the electors ultimately
generates a high-quality correspondence (Figure 1).

The presented algorithm is fast, fully automatic and easy
to implement. We show experimentally that our statisti-
cal approach successfully generates good quality correspon-
dences for a wide variety of model pairs with similar seman-
tic structures. It is robust to some degree of fuzziness in the
definition of the electors set, thus not requiring careful set-
ting of thresholds and parameters in the pruning tests. The
algorithm supports (i) partial matching where the two shapes
possibly have components that do not correspond, (ii) differ-
ent poses, and (iii) shapes with large variation in their sur-
face details (see examples in Figures 5 and 6). We validate
the effectiveness of the method by precision-recall statistics
with respect to the manually defined ground truth. We show
that, typically, correspondences between two shapes, such as
those shown in Figure 5, are computed in only 2-4 seconds.
Finally, we demonstrate the effectiveness of our correspon-
dence algorithm in two applications: animation transfer and
tagging of shape components.

2. Related work
We classify extensive previous work related to shape

matching and feature correspondence according to the prob-
lem they attempt to solve: shape retrieval, registration and

correspondence. We also review existing voting methods in
the context of digital geometry processing.

Shape retrieval. Retrieving shapes that are similar to a
given query shape from a database involves shape match-
ing. However, determining the similarity between two given
shapes does not necessarily require finding an exact corre-
spondence between their shape components. In fact, there
exist successful retrieval systems based only on statistical
shape descriptors [SF07, GSCO07] or spectral decomposi-
tion [JZ07,DvLV08], without finding correspondence. There
are other retrieval systems which provide correspondence
between the query shape and the retrieved shapes; we clas-
sify them below under the shape correspondence category.

Shape registration. The registration process matches cor-
responding regions to align multiple scans of the same ob-
ject taken from different viewpoints. Most existing meth-
ods detect salient features using local surface signatures
and find feature correspondence based on the assumption
that local surfaces are rigidly transformed. This rigidity as-
sumption leads to simpler salient feature definition, low-
dimensional feature representation and smaller search space.
Various search schemes have been proposed, such as iterated
closest point [CR03] and combinatorial search [GMGP05].
More advanced methods have also been proposed to work
under non-rigid warp due to device nonlinearities [BR07] or
approximate piecewise rigid transformations [CZ08, CZ09,
LSP08, HAWG08]. However, all these methods are not ap-
plicable to finding correspondence between shapes with
large variation in surface details.

Shape correspondence. There has been relatively less
previous work on finding correspondence between two ob-
jects with different surface details. Since establishing low-
level geometric feature correspondence is unreliable and
meaningless here, semantic correspondence needs sought,
demanding global and structural shape descriptors. A vari-
ety of methods have been proposed to construct a graph (e.g.,
through skeleton extraction [SSGD03,CDS∗05], Reeb graph
construction [HSKK01, BMSF06, TVD09]) which provides
a high-level structural description of a shape. Each graph
node corresponds to a semantic part of the shape and is
assigned topological and/or geometric signatures for graph
matching, forming attributed graphs.

Previous work typically focused on 1-1 correspondences
between graph nodes. To enable partial matching, a com-
mon approach is finding a maximum subgraph isomorphism.
However, finding an exact subgraph isomorphism is an NP-
complete problem. To avoid exponential complexity, differ-
ent matching heuristics have been proposed. Many previ-
ous methods [HSKK01,TS04,SSGD03,BMSF06] match the
common subgraphs by searching along graph connectivity.
Such an approach is either sensitive to topological differ-
ences or requires complicated strategies to edit the topo-
logical structures. Noticing that visually similar attributed
graphs may have completely different topological structures,
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Bai and Latecki [BL08] proposed to ignore all internal nodes
as well as all graph edges, and match only graph endpoints
by comparing their geodesic paths using sequential match-
ing. Our method also seeks a 1-1 correspondence between
subsets of graph nodes without considering the edge corre-
spondences. However, apart from supporting partial match-
ing, our method finds correspondences for structurally im-
portant internal nodes, which are essential for applications
like animation transfer. Note that all these previous methods
do not explicitly consider the spatial configuration of sym-
metric components and thus often suffer from the symmetry
switching problem [ZSCO∗08].

Like ours, there are other methods that do not directly
search the graphs, but perform a combinatorial search.
Funkhouser and Shilane [FS06] describe a priority-driven
search that allows 3D shape retrieval from a database by
ranking any subset of k feature pairs on the query and tar-
get objects. However, their method is mainly designed under
local rigidity assumption. Recently, Zhang et al. [ZSCO∗08]
introduce a deformation-driven combinatorial search algo-
rithm for finding a 1-1 correspondence between shape ex-
tremities, without considering internal structure correspon-
dences. Each possible correspondence is evaluated by de-
forming one of the models to align the corresponding fea-
ture pairs and measuring the resulting distortion. Their tech-
nique is robust to large shape variance and solves the sym-
metry switching problem. However, computing deformation
is an overly costly process, thus interactive performance is
not achievable.

Voting Methods. Voting has been extensively used in
estimating parametric shapes or transformations. It is typ-
ically based on the assumption that a shape or transfor-
mation representation is low-dimensional and can be char-
acterized analytically. Based on the rigidity assumption,
RANSAC [FB81] repeatedly chooses a random subset of
sample feature pairs on the query and target shapes and then
evaluates the matching error of the two shapes to vote for the
transformation induced by the chosen samples. Assuming a
known and low-dimensional transformation space, geomet-
ric hashing [LW88] pre-computes all possible alignments of
the target model with respect to every subset of its features
and stores them in a hash grid, allowing fast computation
of best transformations between the query and target models
by voting. Chang and Zwicker [CZ08] propose to vote for
a set of rigid transformations in the transformation space to
register articulated shapes. Such voting-based methods have
proved to be very robust to significant noise and naturally
support partial matching [LG05, GCO06, AMCO08].

The recent work of Lipman and Funkhouse [LF09] is
probably the most closely related to ours. Observing that the
space of isometries is of low dimensionality, they devise a
voting-based correspondence algorithm for nearly-isometric
surfaces. Unlike the above voting methods which mostly rely
on local shape descriptors and vote for transformations, their

work leverages the invariants of global conformal structures
of the meshes and votes for individual feature-to-feature
correspondences. Our work resembles theirs in voting for
feature-to-feature correspondences but we aim to find in-
trinsic correspondences between surfaces with semantically
similar features, which may be far from isometric and thus
the search space is no longer of low dimension.

3. Electors Voting Correspondence

We give an overview of our method in this section. We
pose the problem of shape correspondence as the problem of
establishing a semantic correspondence between the curve
skeletons of two models. Specifically, our objective is to find
a 1-1 semantic correspondence between two sets of feature
nodes of the curve skeletons, comprising terminal nodes and
junction nodes (see Figure 1). The terminal nodes represent
the extremities of the shape while the junction nodes (with
at least three incident bones) capture the shape topology.

Our automatic correspondence algorithm operates in two
steps. First, it performs a combinatorial search using fast
pruning tests to eliminate exponentially many bad corre-
spondences, leaving behind still a large set (possibly thou-
sands) of more reliable correspondences, which we call elec-
tors (Section 4). Second, the electors cast votes on individual
candidate feature pairs to establish the final correspondence
(Section 5).

The first step involves
a branch-and-bound search
on a combinatorial tree (see
the right figure). Every tree
node represents a possi-
ble feature-to-feature cor-
respondence, except for the
root which is an auxil-
iary node and represents an
empty set. A path from the root to any tree node (e.g., high-
lighted path in figure above) represents a possible corre-
spondence solution comprising all the feature-to-feature cor-
respondences along the path. The tree is expanded while
searching from the root. A node is added only if the new
correspondence set including the new node passes a cascade
of pruning tests, otherwise the subtree rooted at that node
is pruned. Each of the tests efficiently filters away different
types of incorrect correspondences by considering different
geometry or topology information. The tests are ordered by
their time complexities to achieve the best efficiency.

On completion of the search, every tree node† represents
an elector, which contains all the feature-to-feature corre-
spondences along the path from the root to that node. In the

† More specifically, nodes at level 4 or above. See Section 4 for
more details.
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second step, every elector casts one vote for each of its con-
stituent feature pairs (see inset figure and examples of voting
results in Figures 1 and 4). The feature pair with the highest
votes is then iteratively picked subject to 1-1 and topological
conditions to incrementally form the best correspondence.
We will show that the electors voting step is robust to inex-
act pruning in the electors selection step.

4. Electors Selection
In this section, we describe the search process which ap-

plies pruning tests to each tree node and eventually identify
the electors.

4.1. Combinatorial Search

We use a combinatorial tree search similar to Zhang et
al. [ZSCO∗08]. However, unlike [ZSCO∗08] which per-
forms a best-first search based on an explicit score function
to evaluate the quality of a correspondence set, we expand
the tree in a breadth-first-search manner.

In the first level (i.e., the child level of the root node),
we consider only every possible junction feature pair instead
of every possible feature pair. This leads to a smaller search
space based on the premise that a good correspondence must
match at least one junction pair. In every subsequent level,
we expand a tree node (representing a feature pair) by con-
sidering every other feature pair that has both its feature
nodes not in any feature pair along the path from the root.
This condition enforces 1-1 feature correspondences. In ad-
dition, to avoid redundant computation, we ensure that each
possible correspondence is uniquely represented as a path in
the search tree. This is achieved as follows: when expand-
ing a tree node, we consider adding only those feature pairs
that succeed the current tree node according to a predefined
ordering that has all junction feature nodes preceding non-
junction nodes.

A new tree node representing a feature pair is added
only if the newly formed set of feature-to-feature correspon-
dences passes all the pruning tests, denoted by T1 to T4.

4.2. Pruning Tests

We design the set of pruning tests based on the observa-
tion that incorrect correspondences often lead to easily mea-
surable deviations of intrinsic information associated with
individual features (T1), pairs of features (T2), and three or
more features (T3 and T4). The tests are applied in a cas-
cading manner, with the faster tests first, such that the most
computationally expensive test is only applied to those cor-
respondences that are not eliminated by the preceding tests.

We denote the sets of skeletal feature nodes of two input
models as P̂ and Q̂, between which we seek a 1-1 seman-
tic correspondence. For simplicity of notation, in this sec-
tion we let (pk,qk), pk ∈ P̂ and qk ∈ Q̂, denote the feature
pair being considered for addition to the k-th level of the
search tree. The set Ω = {(p1,q1), . . . ,(pk,qk)} denotes the

new correspondence set containing all the feature pairs on
the path from the root to (pk,qk).

T1: Node-Centricity. We define the centricity cp of fea-
ture node p as the average geodesic distance from p to
all other skeletal nodes‡: cp = 1

|P| ∑pi∈P geo(p, pi), where
geo(p, pi) is the geodesic distance between p and pi along
skeletal paths. Larger values of cp means p is further away
from the center of the shape. We normalize cp to [0,1]
by dividing it by the maximum centricity value of individ-
ual models, which makes the pruning test independent of
the scales of individual models. We reject the feature pair
(pk,qk) if their centricity difference is larger than a thresh-

old:
|cpk−cqk |

(cpk +cqk )/2 > εC. We use a relative difference here since
longer paths usually bear larger absolute difference.

T2: Path-Length and Path-Radius. When considering
adding (pk,qk) to the tree, we test if all the corresponding
new skeletal paths have similar lengths and average path
radii. We reject (pk,qk) if either one of the following is true:

|geo(pk, p j)−geo(qk,q j)|
(geo(pk, p j)+geo(qk,q j))/2

> εC, ∀(p j,q j) ∈Ω, (1)

|rad(pk, p j)− rad(qk,q j)|
(rad(pk, p j)+ rad(qk,q j))/2

> εC, ∀(p j,q j) ∈Ω, (2)

where geo(·, ·) and rad(·, ·) are the geodesic distance and
the average path radius of two feature nodes along skele-
tal paths. The local radius at a skeletal node is computed
as the closest distance of the node to the input polygonal
mesh. Again, we normalize the values of path-length and
path-radius to the range [0,1]. These two quantities provide
shape information in both local and global scales and are in-
variant to local bending (i.e., pose invariant). Note that we
could use a unified threshold εC for both T1 and T2, since
both are in terms of spatial distances (geodesic distance and
local radius).

T3: Topology Consistency. Applying a strict topology
consistency test on a (partial) correspondence set is infeasi-
ble since two skeletons generally have different topological
structures (see an example in Figure 1). Instead, we apply a
local topology consistency test so that the subgraphs formed
have similar local topological structures (see Figure 2). Let
pi and q j denote the closest (in terms of geodesic distance)
junction feature nodes of pk and qk, respectively, among the
feature nodes already inserted into Ω (i < k and j < k). If
both such junction nodes exist in Ω but pi is not matched
with q j (i.e., i 6= j), we reject (pk,qk).

T4: Spatial Configuration. A correspondence that passes
the above three tests may still be a bad correspondence.
Without considering any spatial information of the skele-
tons, T1 to T3 regard any ordering or switching of similar

‡ Including both feature nodes and non-feature nodes (i.e., skeletal
nodes with two incident bones).
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Figure 2: Topology consistency test (T3) and Spatial configuration
test (T4). Blue squares are nodes that are already correctly matched.
Top: T3 rejects feature pair (pk,qk) since their nearest matched
junction nodes (i.e., pi and p j) do not form a matched pair. Bottom:
T4 detects large rotation distortion caused by flipping of similar un-
matched components (e.g., hind legs).

components at a branch node as the same, easily causing
wrong matching of similar components. For example, they
cannot identify local flips of hind legs of the models in Fig-
ure 2. Therefore, to avoid the symmetry-switching problem
and further prune away incorrect correspondences, we con-
sider the spatial relationship between the feature pair (pk,qk)
and the previously matched feature pairs in Ω.

Consider the ideal case of matching an object to itself
(possibly rotated). An incorrect correspondence that con-
tains wrong matches (such as a switched matching of legs in
two animal models) would involve a certain transformation
which is significantly different from a pure rotation. There-
fore, we measure the difference between that transformation
and a pure rotation to evaluate the similarity between the
spatial configuration of a pair of node sets.

Articulated models like animals and human bodies of-
ten have different poses, which also cause the transforma-
tion between matched nodes to deviate from a pure rotation.
An ideal solution is to first normalize two different poses to
be the same, which, however, is a challenging problem on
its own due to the unknown correspondences between the
poses. Thus, we chose to alleviate the influence of different
poses by performing a spatial embedding using a variant of
the least-squares multidimensional scaling (MDS) [EK03]
which spans out the branches of the skeletons (Figure 3).

MDS maps measurements of similarity among pairs of
geometric entities into an Euclidean space. Elad and Kim-
mel [EK03] use a least-squares MDS to normalize the poses
of meshes; here we use it to normalize skeletons. We replace
the similarity measurement used in [EK03] (i.e., geodesic
distance along surface) with the geodesic distance between
skeletal nodes along skeletal paths. Similar to [EK03], we
then use an iterative majorization method to embed individ-
ual skeletons to the Euclidean space while retaining the sim-

Figure 3: The skeletons are pose-normalized by performing a spa-
tial embedding that avoids switching of symmetry components. The
matching colored nodes indicate the result of our algorithm.

ilarity measurement in a least-squares manner. Note that the
iterative least-squares MDS works directly in the original
3D domain (see accompanying video) and keeps the origi-
nal spatial ordering of the skeleton nodes, which is crucial in
addressing the common symmetry-switching problem. Fig-
ures 1 and 3 show some pose-normalization results.

Our spatial configuration test is then performed on the
pose-normalized skeletons. We use a linear transformation,
i.e., a 3× 3 matrix denoted as Apq, to represent the non-
translational transformation between the two matching node
sets containing pk and qk, respectively. Specifically, we esti-
mate the best-fit linear transformation Apq that maps the vec-
tors {p′k−d − p′k, . . . , p′k−1− p′k} to {q′k−d − q′k, . . . ,q

′
k−1−

q′k}, where p′i and q′i are the pose-normalized positions of the
feature nodes. For efficient computation, we use only a small
fixed number of matched nodes to determine Apq (d = 3 in
our case).

To determine the difference between the linear transfor-
mation Apq and a pure rotation, we measure the difference
between Apq and its rotation component Rpq found by po-
lar decomposition. The determinant of Rpq is −1 when
the transformation involves a reflection, leading to an un-
desirable correspondence (i.e., a global flipping). To de-
tect such undesirable global flipping effect, we multiply
Rpq with −1 when det(Rpq) = −1. We define the rota-
tion distortion RDpq = ‖Apq−Rpq‖F , where ‖ · ‖F is the
Frobenius norm. Figure 2 shows a case with large rota-
tion distortion. To make the distortion measure symmetric,
we also compute RDqp of the transformation Aqp which
maps the positions {q′k−d , . . . ,q′k} to {p′k−d , . . . , p′k} and let
RDΩ = max{RDpq,RDqp}. We reject a correspondence if
the rotation distortion are larger than the given threshold:
RDΩ > εRD.

Thresholds and Implementation Details. To achieve
faster performance, we apply pose normalization to the in-
put skeletons before starting the search process (i.e., before
performing any pruning test), since it needs done only once
and does not influence tests T1-T3. Our method is robust to
threshold settings in the pruning tests, since the search and
prune process only aims at eliminating a vast majority of bad
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feature correspondences rather than finding the best one. In
our implementation, we simply set εC = 0.5 and εRD = 1.
We apply T2 only to nodes at level k ≥ 2 since at least two
nodes are needed to define a skeletal path. Similarly, T4 is
applied only to level k ≥ 4, since at least four feature pairs
are needed to define an affine transformation. We let the cor-
respondence sets associated with nodes at level k ≥ 4 be the
electors. Denote the set of all electors as C = {Ωi}.

5. Voting Process

The set of electors may be in the order of thousands,
making a detailed evaluation of each of them to select the
best one still potentially costly. Moreover, it remains an ex-
tremely difficult problem to design an effective evaluation
procedure that reliably yields the best correspondence. In-
stead, we design an efficient electors voting method. We con-
sider all electors as equally weighted (i.e., independent of
the correspondence size and number of nodes at a particular
tree level). In this section, we let (pi,q j) denote an arbitrary
feature pair, where the subscript i ( j) is now the pre-defined
node index of pi in P̂ (q j in Q̂). Each matching feature pair
(pi,q j) in an elector Ωk contributes one vote. Specifically,
we construct a 2D score table S, where the element si j is the
total occurrences of the feature pair (pi,q j) in all electors:

si j = ∑
k

Φi, j,k, Φi, j,k =
{

1 if (pi,q j) ∈Ωk,
0 if (pi,q j) /∈Ωk.

(3)

Clearly, a feature pair (pi,q j) with a higher score has a
higher probability of being a correct matched feature pair.
Figure 4 visualizes the votes for matching the dog and feline
models. Observe that the feature pairs with high scores in-
deed correspond to the manually predefined ones. Moreover,
the visualization shows that while the spatial configuration
test T4 further prunes away wrong correspondences and in-
creases the correctness percentage of the remaining electors,
it better discriminates the correct feature pairs from the rest.

Once we have the scores for the individual feature pairs,
the next task is to form the final correspondence Ω

∗. Tra-
ditional algorithms for finding a maximum matching in a
bipartite graph weighted by our scores are expected not to
work well, since they are unable to enforce a global ordering
and are confused by object symmetries [BL08]. A straight-
forward solution is to sum the scores of all feature pairs for
each elector in C and identify the elector with the largest
summed score as Ω

∗. However, this gives sub-optimal re-
sults, as discussed in Section 6. Instead, we apply a greedy
algorithm to construct Ω

∗, All the feature pairs are first
sorted by their scores, and the pair (pi,q j) with the high-
est score is iteratively added to Ω

∗ subject to satisfying the
following conditions:

� 1-1 mapping: Neither pi nor q j is already in Ω
∗;

� Topology consistency: Same as the T3 pruning test, i.e.,
the closest junction nodes of pi and q j that are already in
Ω
∗ must match.

Figure 4: A visualization of votes for matching dog and feline before
and after applying T4, demonstrating that T4 has good discrimina-
tive power. The winning feature pairs picked by our algorithm (cir-
cles) coincide with the manually defined ground truth.

Note that the objective of the topology consistency check
is not to ensure that the selected feature sets form a common
subgraph of the original skeletons. Due to connectivity vari-
ation in the skeletons, such a strict topology constraint would
cause some features to have no match. For example, the junc-
tion nodes at the body of the dog and elephant models in Fig-
ure 1 would have no match due to their very different local
connectivity. On the other hand, we note that not enforcing
a strict topology checking could lead to mismatches like the
junction nodes at the neck of these models.

The iteration stops when all the features of one model are
matched, or if all the remaining feature pairs violate the 1-1
and topology consistency tests. This means the size of Ω

∗

could be larger than the maximum size of all Ωk, implying
that the voting process can in fact recover a pruned good
correspondence. Since the sorting of integer scores can be
done in linear time (i.e., O(|P̂||Q̂|)), the whole voting pro-
cess takes only O(|P̂||Q̂|+ |C|(|P̂|+ |Q̂|)), where |C| is the
number of electors, and |P̂| and |Q̂| are the numbers of fea-
ture nodes in the two models. Therefore, the voting process
is efficient, typically taking less than a second with 10000
electors.

6. Results and Validation

For simplicity and efficiency, we use the skeleton extrac-
tion algorithm based on mesh contraction proposed by Au et
al. [ATC∗08]. In any case, our algorithm is not restricted by
a specific skeleton extraction method.

Timing. We assume that the skeletons and their pose-
normalized versions are precomputed and they form part
of the object’s representation. Their computation time de-
pends on the model size, taking about 7s for models with
10,000 vertices [ATC∗08]. All the data were recorded on
an Intel Core 2 Dual T5750 machine with 2GB memory,
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Figure 5: Matching a dog with different four-legged animals with different surface details: cat, triceratop, Asian dragon, horse, wolf, cow and
tiger. Incorrect feature pairs are marked with red squares. Unmatched features nodes are not drawn.

using a single thread implementation. In addition, we also
precompute the radius and centricity of each skeletal node
and the geodesic distances between every pair of feature
nodes. This takes negligible time due to the small skele-
ton size. In terms of memory usage and processing time,
the correspondence algorithm is dominated by the search-
ing process, which is dependent on the number of features.
For matching the dog with various animals, the searching
process takes: 1.05s (horse), 0.74s (cow), 4.20s (feline) and
4.68s (elephant). In contrast, achieving comparable results,
the technique of [ZSCO∗08] reported taking dozens of min-
utes for shapes with few thousands vertices and the approach
of [LF09] takes around 6 minutes. For matching objects with
many feature nodes, interactive response may be unattain-
able. For example, the two elephant pair in Figure 6 (22 and
23 features) took 32s, thus some simplification of the skele-
tons might be necessary.

Results. We first demonstrate the effectiveness of our
method on four-legged animals since they vary greatly in
shapes and have clear semantic correspondences. Figure 5
shows our correspondence results for the dog and seven
other four-legged animals. Our method produces good qual-
ity correspondences for all these pairs in that prominent fea-
tures (e.g., legs and tail) are all correctly matched, includ-
ing pairs with large geometry difference like dog with Asian

#L T1 only T1 to T2 T1 to T3 T1 to T4
1 30 17% 30 17% 30 17% 30 17%
2 3390 8% 1488 10% 1488 10% 1488 10%
3 159840 8% 20491 13% 20148 13% 20148 13%
4 n/a n/a 115896 16% 111252 16% 13550 20%
5 n/a n/a 316059 19% 290863 19% 15314 25%
6 n/a n/a 469487 23% 405760 23% 11992 27%
7 n/a n/a 417734 29% 334098 30% 4724 38%
8 n/a n/a 234298 33% 173424 34% 1214 51%
9 n/a n/a 76372 37% 51672 38% 147 88%

10 n/a n/a 11448 40% 6544 40% – –

Table 1: Pruning data for dog-elephant. Each pruning test succes-
sively reduces the search space and increases the correctness per-
centage. Electors are at level L≥ 4. n/a mean out-of-memory error.

dragon, and dog with feline. Small features such as ears and
nose may be mismatched in some cases, due to small nearby
features having similar skeletal information (e.g., node posi-
tions, centricity, path lengths) and thus difficult for the prun-
ing tests to distinguish. We argue that the challenge in the
general correspondence problem is to find a correct coarse
mapping, which is typically manually defined. Once known,
existing techniques can be applied to refine a coarse corre-
spondence (e.g., [SP04]).

Our correspondence algorithm is general, allowing match-
ing a wide variety of models as shown in Figure 6 and
the supplemental material. These examples also demonstrate
that our algorithm is not restricted to symmetric or loop-free
skeletons, and can match fairly complex shapes such as the
motorcycles.

Pruning Performance. Table 1 lists the number of elec-
tors at each tree level for the dog and elephant models in
Figure 1, with 11 and 23 feature nodes, respectively. Observe
that using both T1 and T2 greatly reduces the search space
which is no longer exponential. T3 and T4 successively fur-
ther prune away more correspondences. T4 has good dis-
criminative power, but requires relatively costly computa-
tion, hence it is applied last. In this example, applying T4
before T3 (for nodes at level 4 and above) would increase
the searching time from 3.9s to 4.2s.

Thresholds. Our method is insensitive to thresholds
thanks to the robustness of the voting process against cer-
tain missing data. The thresholds are also insensitive to the
model type since the tests are not used to select a best cor-
respondence. For example, experimentally we did not find
any noticeable difference in the quality of the correspon-
dences with εC set within [0.4,0.7] and εRD within [0.5,1.5].
In general, the thresholds setting has to tolerate local shape
differences between the two input models while distinguish-
ing global structural differences in bad correspondences. We
found that the current setting gives a good balance between
the two roles. It is noteworthy that the pruning tests may
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Figure 6: Our correspondence algorithm is general, allowing matching of a wide variety of model pairs, which may have different poses,
surface details, partially matching semantic components, and small topological difference (e.g., tail of elephant and engine of motorcycles).

Level dog-cat dog-cow dog-horse dog-triceratop
1 12 25% 12 25% 17 18% 12 25%
2 330 21% 456 20% 582 18% 423 23%
3 2365 23% 4305 20% 5532 19% 4117 25%
4 1883 29% 2008 27% 3991 23% 3110 35%
5 1692 37% 1926 34% 3869 29% 3875 44%
6 826 45% 1474 44% 2232 41% 3401 55%
7 151 55% 572 60% 594 53% 1953 68%
8 12 88% 72 69% 99 68% 651 77%
9 – – – – 9 85% 113 84%
10 – – – – – – 7 91%

Table 2: Comparing the correspondence sets at each tree level with
manually tagged ones. Note the increasing correctness percentage
at higher tree levels.

leave behind some bad correspondences as well as prema-
turely prune away some subtrees containing good correspon-
dences. However, the subsequent voting process is tolerant
to such fuzziness in the electors set due to its high degree of
correctness. This tolerance is illustrated in Table 2. In this
example the largest electors have 9 feature pairs, but the cor-
respondence Ω

∗ found by our algorithm has 11 matching
feature pairs (Figure 5), demonstrating that simply selecting
the final correspondence from the set of electors may give
sub-optimal results.

Validation. Table 2 shows the percentages of the correct
feature pairs in the correspondence sets at each tree level
compared to the manually predefined ground truth. Observe
that the percentages increase with the tree level, showing
that the pruning tests successfully filter away bad correspon-
dences. Since we use only the correspondence sets at level 4
and above as the electors, we avoided those with relatively
more incorrect matching pairs at the first three levels. Table 3
shows the high precision and recall scores of our algorithm
when cross-matching the eight animal models in Figure 5.
Precision is defined as a/b and recall as a/c, where a is the
number of correct feature pairs returned by our algorithm, b
is the number of feature pairs output by our algorithm, and c
is the number of manually tagged feature pairs.

Comparisons. We compare our method with the method

#1 #2 #3 #4 #5 #6 #7 #8
#1 11/11 11/11 11/11 11/11 11/11 11/11 9/11
#2 11/11 8/9 11/11 10/12 12/12 11/12 10/12
#3 11/11 8/11 11/11 12/12 11/11 7/9 12/12
#4 11/11 11/11 11/11 10/11 11/11 14/14 7/8
#5 11/11 10/12 12/12 10/11 12/12 11/13 10/11
#6 11/11 12/12 11/11 11/11 12/12 10/12 9/12
#7 11/11 11/12 7/11 14/14 11/13 10/12 10/14
#8 9/11 10/12 12/12 7/11 10/13 9/12 10/14

Table 3: Precision (upper triangle) and recall (lower triangle)
scores of matching the 4-legged animals in Figure 5 using our algo-
rithm. #1:Dog, #2:Cat, #3:Cow, #4:Triceratops, #5:Tiger, #6:Wolf,
#7:Asia Dragon, #8:Horse.

Figure 7: The method of Zhang et al [ZSCO∗08] fails to establish a
reasonable correspondence for models with very different geometry
(bottom).

of Zhang et al. [ZSCO∗08] in terms of correspondence
results. Since directly running their algorithm on high-
resolution models is computationally prohibitive, we first
decimate the models down to a few thousand vertices be-
fore running both algorithms. For models exhibiting mod-
erate variation of geometric details, their method is able
to find good correspondences comparable to ours. However
their method fails to produce reasonable results for models
with very different geometry, as shown in Figure 7. We have
also compared our method with [BMSF06] which searches
for a subgraph isomorphism between two DAGs created by
simplifying Reeb graphs defined on the object surface. For
fairness of comparison, we use their Reeb graphs as in-
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Figure 8: Comparing our result (bottom) with Biasotti et
al. [BMSF06] (top), which has symmetry switching problem and in-
correct matches (highlighted by red lines) due to construction of a
common subgraph.

Figure 9: Our algorithm may produce semantically incorrect cor-
respondences when (left) components have different semantics but
similar geometry or (right) shapes have large structural difference.

put to our algorithm. Like other skeleton-based matching
methods, their method cannot handle symmetry components
(see switched fore legs in Figure 8). Besides, there are mis-
matched features at the heads due to the strict construction
of a common subgraph between the matching nodes.

Limitations. Generally speaking, semantic correspon-
dence is an ill-posed problem. Our automatic algorithm is
purely geometric-based, oblivious to the semantics of parts.
Therefore it may mismatch components with different se-
mantics but similar geometry (e.g., insects pair in Figure 9).
This may lead to large errors (e.g., mismatch long tail and
neck of two dinosaurs or back-and-front of human bodies)
or small local errors (e.g., small components in Figure 5).
We speculate that high-level shape signatures (e.g., face de-
tection, symmetry detection) are needed to further improve
matching quality. However, this likely leads to slower re-
sponse and, more importantly, loses the generality of the
method in matching a wide variety of shapes. Another solu-
tion is to allow limited user interaction when the fully auto-
matic solution fails. The user can specify one or more feature
pairs that must appear in all electors.

Finally, our algorithm may fail to produce desirable cor-
respondences between models whose curve-skeletons do not
represent well the object shapes (e.g., man-made models
such as some chairs) or models with large extra components
which imply large structural difference (e.g., centaur and hu-
man in Figure 9).

Figure 10: Automatic tagging of shape components using the mod-
els in Figure 5 as pre-tagged training set. One node is incorrectly
tagged.

7. Applications
We demonstrate the use of our automatic correspondence

algorithm in two applications.

Animation Transfer. Making animation transfer more
accessible to non-expert users is an application of our auto-
matic correspondence solution. Typically, character anima-
tion is transferred through compatible skeletons of different
characters. The compatible skeletons are usually specified
by users through a time-consuming process, limiting the use
of animation transfer systems to only professional users. A
notable exception is the work of Baran and Popović [BP07],
which automatically embeds a template skeleton to mod-
els of the same class but possibly with very different ge-
ometric details. Unlike their work, we do not rely on any
existing template skeleton, but construct compatible skele-
tons directly from shape correspondence. Since our corre-
spondence algorithm already provides a 1-1 node correspon-
dence, we need only form compatible paths connecting the
nodes. For simplicity, we assume that compatible skeletons
are tree structures. This allows us to keep the (unique) short-
est geodesic path between every pair of geodesically adja-
cent nodes that have corresponding nodes on the other skele-
ton as compatible paths. Possible overlapping sub-paths are
then split to ensure a 1-1 path correspondence. In the accom-
panying video, we demonstrate the use of our compatible
skeletons in producing visually pleasing animation transfer
between characters with different geometric details.

Tagging Shape Components. Providing semantic infor-
mation as prior knowledge to an automatic shape corre-
spondence solution can increase its accuracy. The fast speed
of our correspondence algorithm allows matching of many
models within a reasonable time. Assuming the availability
of a training set containing models of similar semantic struc-
tures and the model parts are tagged as left/right fore/hind
legs, upper/lower body, tail, head, mouth, left/right ears, etc.
Then, given a new input model, we apply our shape corre-
spondence algorithm to match the new model with each of
the training models. By summarizing the tags of the match-
ing features of the training models, we tag the parts of the
new model. We only tag a feature if the matching features of
the training models have consistent tags. Specifically, if the
majority tag is less than half of the size of the training set, we
mark the feature as uncertain and do not assign a tag. As an
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example of this application, we automatically tag the raptor
and pig in Figure 10 using the 4-legged animals in Figure 5
as our training set.

8. Conclusion
We have presented a fast and fully automatic correspon-

dence algorithm that allows matching of a wide variety of
shapes with semantically similar structures but different ge-
ometric details. We avoided the potentially slow approach of
direct searching to find the best correspondence. Instead, we
designed an electors voting scheme whereby the electors are
quickly selected through a combinatorial search. This large
set of reliable electors then enables the use of a fast statistical
voting process to construct a high quality correspondence.

Our algorithm represents a step towards solving the chal-
lenging problem of automatic shape correspondence. There
are many possible ways to extend our algorithm, e.g., ex-
tending it to handle shapes with larger structural and topo-
logical differences, and incorporating limited semantic anal-
ysis to improve the accuracy of automatic correspondence.
Finally, besides shape correspondence, we believe that our
framework can offer efficient solutions to other problems
that have no well-defined optimal criteria.
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