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A B S T R A C T

This paper proposes a novel colorizaiton tool for intuitively creating smooth-shaded
vector graphics. Our technique takes advantage of Diffusion Curves, a powerful vector
graphics representation. Rather than specifying colors along curves in previous works,
we allow a user to intuitively paint on regions of arbitrary line drawings. Once the user
scribbles on drawings, our algorithm automatically estimates the colors along the curves
of drawings, resulting in smooth color regions as close as possible to the user specifica-
tion. Compared with the previous color estimation techniques for image vectorization,
we propose a new diffusion curve colorization algorithm for fitting sparse colors of
input scribbles. Our approach is fast, and provides instant feedback to the user. We
have tested our system on a variety of line drawings with varying shape complexity,
and shown that our technique can produce visually pleasing smooth-shaded images in-
tuitively and effectively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Vector graphics images remain invaluable for a broad range2

of 2D applications because of their resolution independence,3

compactness of representation, and powerful editability. Visu-4

ally pleasing vector graphics heavily relies on color gradients5

to achieve soft shadows, diffuse shading, and various material6

effects. Existing vector-based drawing tools, such as Adobe7

Illustrator and CorelDraw, offer only limited support for rep-8

resenting complex color gradients. Researchers have proposed9

more powerful tools for handling complex gradients, including10

gradient mesh [1], gradient layers [2], diffusion curves [3] and11

the extended curve-based vector graphics [4] [5] [6].12

Creating vector graphics is not an easy work. Both gradient13

mesh and gradient layers have not provided a natural way for14

free hand creation of vector graphics from scratch. The concept15

of drawing shapes by first sketching and then developing colors16

seems to be very natural and intuitive. However, existing curve-17

based vector graphics has focused on how to represent complex18

gradients with a preliminary drawings, but has not provided an19

efficient approach to specify curve colors, which still require20

much efforts and high drawing skills. 21

As illustrated in Figure 1, we adopt a scribble-based user in- 22

terface, which has been used in various interactive applications 23

(see detailed discussion in Section 2). Our new interface al- 24

lows users to intuitively paint color scribbles in regions of line 25

drawings (expressed as predefined curves). The system auto- 26

matically computes color points along input curves, and then 27

creates smooth gradients on both side of the curves by a diffu- 28

sion process. Our approach provides instant feedback to users 29

and produces better visual effects, compared with both an exist- 30

ing color estimation algorithm proposed by Jeschke et al. [7] 31

and LazyBrush, a pixel-level hand-drawn coloring technique 32

[8] (see the detailed discussion in Section 5). 33

The main contribution of this work are therefore: 34

• A novel tool for interactively creating vector graphics of 35

complex gradients, which allows painting on regions in an 36

intuitive way. 37

• An automatic diffusion curve coloring algorithm for fitting 38

sparse colors of input scribbles. 39

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
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(a) (b) (c) (d)

Fig. 1. Representative results generated by our proposed scribble-based colorizaiton system. The user-specified scribbles (colored lines in the respective
top right images) on the input line drawings (top left images), result in the images in the bottom row.

2. Related Work1

Diffusion Curves. Diffusion curve [3] was proposed as a new2

vector-based primitive, which allows arbitrarily shaped curves3

to shade an image through a diffusion process. A most recent4

work [5] generalizes the classic expression of diffusion curves,5

to allow more color control away from the diffusion curves. To6

create or edit color gradients, a user is required to specify color7

points on diffusion curves and thus make indirect changes to the8

shading of images. To address this issue, we present a scribble-9

based diffusion coloring user interface. For simplicity we focus10

on the origin diffusion curves, but our approach could be ex-11

tended to diffusion curve variants. A diffusion curve image is12

rendered by solving a Laplace equation (Equation 1) , which13

is computationally expensive. Many existing methods [9] [10]14

have been studied to facilitate interactive applications, and we15

adopt [9] for rendering in our system implementation, which is16

discussed in detail in Section 5. Bowers et al. [7] proposed a17

ray tracing approach to evaluate the color contributions of each18

diffusion curve for a given pixel. Later prevost et al. [11] take19

the benefits of such a vectorial representation to facilitate their20

ray tracing approach. Our algorithm is motivated by their ray21

tracing method (see detailed discussion in Section 3.2).22

Reverse Problem of Diffusion Curve Images. Although ef-23

ficient rendering of diffusion curve images has been well ex-24

plored, its inverse problem of creating diffusion curves from25

raster images remains challenging. Since Orzan et al. [3] pro-26

vided a simple approach based on canny edge detection, several27

approaches for curve extraction or color estimation for diffusion28

curves have been proposed. A recent work [12] focused on the29

problem of directly optimizing curve geometry, and [13] [14]30

largely focused on optimizing curve coloring with curve geom-31

etry predetermined. These works were proposed for natural im-32

age vectorization, and not suitable for sparse scribble inputs of33

our problem.34

Sketch-based Content Generation. Sketches are the most el-35

ementary primitives in painting, both digitally and physically.36

Researchers have long been aware of the gap between sketches 37

and visually appealing artworks, and various ideas have been 38

proposed for converting simple sketches into richer and more 39

expressive images. Sykora et al. [8] proposed a novel fexi- 40

ble painting tool for easily coloring in various drawing styles. 41

However, they have no consider on color gradients. Michal 42

et al. [15] proposed the brush and fill tools for digital image 43

painting, but has mainly focused on texture synthesis. Recently, 44

due to the effectiveness of deep learning, several learning-based 45

methods have been proposed for sketch-based image genera- 46

tion. Isola et al. [16] and Su et al. [17] respectively generate 47

textures and shades on sketches. PaintsChainer [18], Sangkloy 48

et al. [19] and Liu et al. [20] are techniques for sketch col- 49

orizaiton. The main difference from our work is that they gen- 50

erate natural images, while we create vector graphics. A quick 51

comparison with PaintsChainer will be discussed in Section 5. 52

Scribble-based User Interface. Scribble-based UI has been 53

adopted for various interactive applications such as coloriza- 54

tion of images [21] [22], and has also been extensively used 55

for sketches, including for sketch segmentation [23], for data- 56

driven segmentation [24] and for lazy selection [25]. In our 57

approach, we make use of a similar user interface, but aim 58

for turning an input line drawing into a smooth-shaded vector 59

graphics with the diffusion curve representation. 60

3. Overview 61

3.1. User Interface 62

Our system provides a scribble-based user interface for interac- 63

tive coloring on line drawings. The system also supports pro- 64

gressive coloring, which gives instant feedback to users and al- 65

lows them to adjust effects by a casual way. Note that our cur- 66

rent implementation uses mouse inputs, but it naturally support 67

pen inputs as well. Typically, a user starts with a small number 68

of color scribbles, and then fine-tunes the colorization results 69

by adding more scribbles. See Figure 2 (a)-(b)-(c)-(d). A user 70
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(a) (b) (c) (d)

(e) (f )

User Workflow

System Pipeline

Fig. 2. Overview. (a)-(b)-(c)-(d) shows the user workflow of progressive coloring. (a) and (c) show user input scribbles. (b) and (f) show corresponding
feedback of our system. (c)-(e)-(f)-(d) illustrates the computation pipeline of our system. (e) illustrates the core computation of assigning each curve
segments with a corresponding input color. The colored curve segments are then transferred to color points (f), and be diffused to generate the finnal image
(d).

progressively marks color scribbles on the canvas by dragging1

the mouse cursor while holding a button (Figure 2 (a)). The col-2

oring process is triggered once each marking scribble is drawn3

(Figure 2 (b)). The user then inspects the colorization result and4

decides if more scribbles need to be added. It is therefore crit-5

ical that our system generates color points on the curves with6

very little delay. We present a novel color estimation algorithm7

to achieve real-time feedback.8

3.2. Methodology9

Background. We start by briefly revisiting the Diffusion10

Curves, which are curves that diffuse colors on both sides of11

space that they divides. Orzan et al. [3] formulat the diffusion12

curve image as the solution to a Laplace equation with a Dirich-13

let boundary condition (Equation 1).14 {
I(x, y) = C(x, y) pixel (x, y) ∈ curves

∆I(x, y) = 0 otherwise
, (1)15

where C(x, y) is the boundary condition defined by curve col-16

ors.17

Jeschke et al. [13] introduce an automatic diffusion curve col-18

oring algorithm. However their approach is designed for fitting19

dense colors of image vectorization, which would cause seri-20

ous artifacts when dealing with scribble-based user inputs (see21

the detailed discussion in Section 5). In contrast, our approach22

supports fitting the sparse colors of input scribbles.23

System Pipeline. Given color scribbles marked by the user and24

a set of curves in an input drawing, our goal is to define a set of25

color points and the corresponding color values along the curves26

so that the resulting image matches the user inpus as closely as27

possible. The core of our approach is to assign the input colors28

to corresponding curve segments (Figure 2 (e)). The resulting29

colored segments are finally transferred to color points (Figure 30

2 (f)), which are diffused by Equation 1 to generate smoothly 31

shaded vector graphics. The above process is performed every 32

time the user adds a new scribble, and repeated until no more 33

scribbles are added. 34

We will discuss the algorithm details in Section 4. Starting with 35

a single scribble marked by a user, our method computes a set 36

of curve segments that are influenced by the scribble (Section 37

4.1). With more scribbles added by the user, a curve segment 38

can be influenced by multiple scribbles. We compute a par- 39

tition for such curve segment, leading to that each partitioned 40

cruve segments is assoiated with an independent scribble and is 41

assigned with its color (Section 4.2). 42

4. Methodology 43

4.1. Single Scribble Influence 44

Motivated by the ray tracing rendering framework proposed by 45

Bowers et al. [7]), we compute the influence of each pixel cov- 46

ered by the scribble to its surrounding visible curve points. 47

Our technique starts with visibility test, which is akin to seeking 48

visibility on a 2D map that commonly occurs in games. There 49

are various methods to calculate visibility in 2D. We adopt the 50

method presented in [10], which considers visibility only in 51

terms of the curve nodes. The visibility algorithm finds a set of 52

surrounding curve nodes of a particular point (denoted as p) and 53

lists them in a counterclockwise winding order, as illustrated in 54

Figure 3 (a). 55

For a more complex case as shown in Figure 3 (b), we obtain 56

the visible curve nodes of a whole scribble (which is uniformly 57

sampled and denoted as Pscribble), and aim to drop those which 58

are excluded from the influnce scope of the scribble. To achieve 59

this goal, we limit the influence of the whole scribble in a local 60
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region. As no explicit closed boundary is defined, we find a1

sequence of visible curve segments that implicitly define a local2

region, listed in a counterclockwise winding order, which are3

called boundary curve segments (see green nodes in Figure 34

(b)). We then detect the visible curve nodes inside the implicit5

region formed by the boundary curve segments, which are also6

influenced by the scribble (see orange nodes in Figure 3 (b)).7

s1

s2

s4

s3

p
p1

p2

p3
p4p5

Pscribble

(a) (b)

Fig. 3. Visibility test. (a) shows the visibility test from a single point. (b)
shows the visible curve nodes to a scribble, which are marked with colors.
Our algorithm distinguishes nodes that are on implicit boundary (green),
inside the boundary (orange), and those are excluded from the influnce
scope of the scribble (blue).

Energy Function. To obtain the boudary curve segments,8

we formulate an energy minimization problem on the visibility9

graph G. Figure 4 shows how the visibility graph is constructed.10

For each sampled point pi ∈ Pscribble, the visibility algorithm11

[10] generates a sequence of curve nodes in counterclockwise12

order, from which we create a circuit of visibility curve seg-13

ments, denoted as Cvis(pi) (for example Cvis(p) = s1 → s2 →14

s3 → s4 → s1 in Figure 3 (a)). We then construct a visibility15

graph G = (S,N ) by combining {Cvis(pi)}, where S is a set of16

nodes, each corresponding to a curve segment by merging over-17

lapped segments of {Cvis(pi)} (for example, node s1 is partially18

visible to each pi in Figure 4), and N is a set of edges by uniting19

the connectivity between curve segments from {Cvis(pi)} (see a20

detailed illustration in Figure 4). Note that in our implementa-21

tion, we have omitted the curve segments shorter than a given22

threshold (3 sampled points) in computation of Cvis(pi).23

Given the visibility graph G = (S,N ), we consider the bound-24

ary curve segments as a circuit in a broad sense. Thus a solu-25

tion candidate is denoted as C = {s1, .., sn}, which meets that26

for each (si, si+1) there is a path on G. To determine an optimal27

solution C∗, we formulate the energy function E as:28

E(C) = µ
n∑
i=1

D(si) + (1 − µ)
n∑
i=1

V (si, s(i+1) mod n) (2)29

The terms of E is designed based on the following key obser-30

vations or rules:31

• Rule 1 Suppose the number of scribble points that this32

curve segment is visible to is κ. With an increase of κ,33

the probability that a curve segment is adopted increases.34

• Rule 2 The closer a curve segment is to the scribble, it is35

more likely that the curve segement is influenced by the36

scribble.37

p1

p2

p3
p4p5

s1

s2

s3

s4

s5s6

s7

s8
s9

s10

s1

s2

s3

s4

s5s6

s7

s8
s9

s10

(b)(a)

Fig. 4. Visibility graph constructed from the visibility test of Figure 3 (b).
In detail, the edge connectivity comes from {Cvis(pi)} : Cvis(p1) leads to
s1 → s2 → s3 → s4 → s10 → s8 → s9 → s1; Cvis(p2) leads to s1 → s2 →

s3 → s10 → s5 → s6 → s7 → s8 → s9 → s1; Cvis(p3),Cvis(p4),Cvis(p5)
leads to s1 → s2 → s10 → s4 → s5 → s6 → s7 → s8 → s9 → s1
respectively.

• Rule 3 The longer a curve segment is, it is more likely that 38

the curve segement serves as a part of the boundary. 39

• Rule 4 For geometric and semantic reasons, the implicit 40

boundary that is formed by curve segments favors conti- 41

nuity between two successive curve segments. 42

Here D(s) captures the properties of an individual curve seg- 43

ment (e.g., length and distance to the scribble etc.), V (si, si+1) 44

evaluates the cost of continuity from curve segment si to si+1, 45

and µ is a weight to balance the influence between the two terms 46

(empirically, we found µ ∈ [0.3, 0.5] and set to 0.5 by default). 47

The individual curve cost D(s) is measured according to Rules 48

1-3 in our implementation. In Equation 3, the first term 49

evis(s,Pscribble) measures the number of visible (see Rule 1), 50

the other two terms edist(s,Pscribble) and elen(s) measure the 51

distance to the scribble (Rule 2), and the length of the curve 52

segment (Rule 3), respectively, and α, β, γ are the weights to 53

balance the three terms (α + β + γ = 1, and each is set to 1
3 by 54

default). 55

D(s) = αevis(s,Pscribble) + βedist(s,Pscribble) + γelen(s),
(3)

The continuity cost V (si, sj) according to Rule 4 is expressed 56

as Equation 4. Empirically, we measure collinearity as the dis- 57

tance (denoted as |gap|) between the closest points on si and 58

si, and (θi + θj)2 as the positive angular difference between the 59

endpoint tangents of si and sj , where weight η (in the range 60

[0, 1] and set to 0.4 by default) balances the two terms. 61

V (si, sj) = η‖gap‖ + (1 − η)(θi + θj)2 (4) 62

Energy Minimization. Our minimization approach starts with 63

enumerating all of the solution candidates. We first find all 64

elementary circuits on the directed graph G, denoted as {Cj}. 65

Then for each circuit Cj = {sj,1, sj,2, ..., sj,m}, we obtain 66

a subset of circuit elements that minimizing E, denoted as 67

C∗j = {s∗j,1, s
∗
j,2, ..., s

∗
j,m∗ }. The solution minimize E therefore 68
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is C∗ = argminE(C∗j ). The number of all solution candidates1

can reach up to exponential growth, and therefore that simplely2

using an exhaustive search to find the optimal solution might3

be computational prohibited. To support immediate feedback4

to users, we adopt approximate algorithms to reduce computa-5

tional complexity, in both steps of finding circuits and minimiz-6

ing the energy on each circuit.7

The details are discussed in Algorithm 1. To find all circuits8

candidates, we adopt a branch-and-bound approach, based on9

the framework of existing approches [26, 27] for finding all el-10

ementary circuits of a directed graph. We only allow a limited11

number of circuits (denoted as σ, empirically σ ≤ 50). The12

approximate algorithm adopts a heuristic search for finding the13

circuits with low cost as early as possible. We progressively14

search by graph connectivity, in order of costD(s) for seed ver-15

tices of the path, and in order of cost V (s, sadj) for adjacent16

vertices.17

Starting with sj,k = mini∈[1,m] D(sj,i), we compute the best18

candidates on a particular circuit by finding the shortest path on19

{sj,k, ..., sj,m, sj,1..., sj,k−1} from sj,k to sj,k−1, with the total20

energy of a path defined as the sum of vertex weights and edge21

weights (defined by cost D(s) and V (sj,v, sj,u), respectively)22

along the path. This problem can be effectively solved by using23

dynamic programming.24

Algorithm 1. Energy minimization on the visibility graph

Input: visibility graph G = (S,N ), upper bound of circuits
numbers σ

Output: C∗ that minimize E
1: function EnergyMinimize(G = (S,N ))
2: local variables: circuits = ∅

3: loop s ∈ G in order of D(s)
4: P ← {s}
5: FindCircuit(G,P)
6: svisit ← True
7: loop Cj = {sj,1, sj,2, ..., sj,m} ∈ circuits
8: sj,k = mini∈[1,m]D(sj,i)
9: C′j = {s′j,1, s

′
j,2, ..., s

′
j,m}

10: = {sj,k, ..., sj,m, sj,1..., sj,k−1}

11: loop i ∈ [1,m]
12: loop t ∈ [j + 1,m]
13: E ′j(i, t) = D(s′j,t) + V (s′j,i, s

′
j,t)

14: C∗j = ShortestPath(G′j = (C′j , E ′j), s′j,1, s
′
j,m)

15: C∗ = argminE(C∗j )

16: function FindCircuit(G = (S,N ),P)
17: if Size(circuits) > σ then Return
18: s← Front(P)
19: loop {s, sadj} ∈ N in order of V (s, sadj)
20: if sadj = Front(P) then
21: Push(circuits,P)
22: if u < P and uvisit = False then
23: Push(P, sadj)
24: FindCircuit(G,P)
25: Pop(P)

4.2. Multiple Scribble Coloring 25

In the previous section, we discussed how to find influenced 26

curve segments of a single scribble. Now we focus on the curve 27

segments under the effects of multiple scribbles. Once a new 28

scribble is added, its influenced curve segments would overlap 29

with those which are assoiated with a particular scribble added 30

in previous steps (Figure 5 (a)). We then partition the over- 31

lapped segments into many pieces so that each piece is assoiated 32

with either its previous scribble or the new scribble (Figure 5 33

(b)). Finally each curve segement is assoiated with definitely 34

one scribble before another new scribble is added. Our com- 35

putation therefore occurs in a pair of scribbles in each step of 36

adding one scribble. In other words, the label of each partition 37

is 1 or 2 (Figure 6). 38

(a) (b)

Fig. 5. When a blue scribble is added, its influenced curve segments overlap
with those are assoiated with red scribbles previously, which are marked
with blue in (a). (b) shows that the overlapped segments are partitioned
into pieces either colored with red or green.

Energy Function. Given a uniformly sampled curve segment 39

Pcurve and two user input scribbles, our target is to label each 40

curve points with 1 or 2. The label results are denoted as 41

{lp}p∈Pcurve , which could also be constructed as curve segments 42

denoted as Scurve = {si} (Figure 6). 43

s1

s2

s3

s4

p

∈ Q1
i

∈ Q2
i

label = 1

label = 2

Pcurve

scribble1

scribble2

Fig. 6. Illustration for the ray tracing from a particular curve points as well
as partitioning results, denoted as s1, s2, s3, s4.

Our goal is to obtain the best labels combination which satisfies 44

the following three constraints: (1) The distance between the 45

scribble and its corresponding curve points should be as small 46

as possible; (2) The scribble is visible to its corresponding curve 47

points, as much as possible, with considering of the block of the 48



6 Preprint Submitted for review / Computers & Graphics (2019)

other scribble; and (3) Not too many curve segments generated1

by the labelling process are desired.2

We first define L(p) as the measure term of each p ∈ Pcurve. By3

minimizing the sum of this term, denoted as Σp∈PcurveL(p), the4

first two constraints are satisfied. To compute the L(p) (Equa-5

tion 5), we start with making rays from p in a counterclockwise6

order by angle δ (empirically, δ = 5), which generates a se-7

quence of nearest intersection points Q that can be divided into8

two subsets, denoted as Q1 ∈ scribble1 and Q2 ∈ scribble2
9

(see Figure 6).10

L(p) =
n(Qlp )

n(Qlp ) + n(Q3−lp )
+

d(Q3−lp , p)
d(Qlp , p) + d(Q3−lp , p)

, (5)11

where n(Qi) computes the number points in Qi, and d(Qi, p)12

computes the average distance of Qi to p.13

To satisfie the third constraints, we define an evaluation term14

H(x) = 1
2−e

x
τ−x

. H(x) is a function whose value grows slowly15

at the beginning (from x = 0) and quite fast when x grows out16

of a threshold that is controlled by τ (τ = 20 by default and17

the threshold is x = 8). Setting x as the number of the curve18

segments constructed from {lp}, this term adds a large penalty19

when {lp} introduces too many pieces (note that x ≥ 2 in our20

case).21

Combining the two terms together, the final energy minimiza-22

tion problem is defined as:23

min
{lp}p∈Pcurve

Σp∈PcurveL(p) + ωH(counts(Scurve)), (6)24

where ω is a balancing weight (set to 0.1 as default).25

Energy Minimization. As discussed above, we formulate26

a combination optimization problem, which can be simplely27

solved by an exhaustive search by enumerating all possible la-28

bel combinations. However, such an approach could be quite29

time consuming as the length of curves goes long.30

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

{ci}

label = 1
label = 2
vertices
neighborhoods

Fig. 7. Illustration of the vertices and neighborhoods of our local search
graph, in which the initial state is c0.

Here we introduce an approximate method by local search, the31

graph of which is constructed as 7 shows. The local search32

starts with an average partition as initial state (c0 in Figure 7). 33

With a current state, we define neighborhoods by two rules: (1) 34

a bit change of points numbers between each two connected 35

pieces, respectively. (eg. c1, c2 with current state c0; c8, c9, c10 36

and c11 with current state c4 in Figure 7); (2) adding more pieces 37

by cutting each piece separately. (eg. c3, c4 with current state 38

c0; c5, c6, c7 with current state c4 in Figure 7) To avoid getting 39

stuck on a local minimum, a simulated annealing algorithm is 40

used in practice. 41

Note that the input scribbles in different orders might gener- 42

ate visually slightly different results (Figure 8). It is mainly 43

because we take an approximate approach to solve the energy 44

minimization problem. 45

Input Scribbles

1− 2− 3 1− 3− 2 2− 1− 3

2− 3− 1 3− 1− 2 3− 2− 1

1

2

3

Fig. 8. An example of results generated by inputs scribbles in different or-
ders. Left shows the three input scribbles, denoted as 1, 2 and 3 respec-
tively. Right shows 6 results of all permutation of scribble orders.

5. Results and Discussion 46

We implemented our method in C++, Python and GLSL 47

(OpenGL4.1) as a real-time drawing application running on the 48

OS X/Linux platform. A notebook (running OS X 10.9) with 49

Intel(R) Core(TM) i7 2.40GHz, 8GB RAM and a graphics card 50

NVIDIA GeForce GT 650M was used as the testing device. 51

The algorithm output depends on a few key parameters: weight 52

µ in Equation 2, α, β, γ in Equation 3, η in Equation 4 and ω 53

in Equation 6. Typically parameter values are selected within 54

their corresponding ranges, and we used fixed parameter setting 55

for generating all results (see Section 4). 56

We have tested the system on 12 line drawings (A-L), as listed 57

in Figure 9. The set of line drawings covers different types of 58

objects or scenes, including fruits, animals, man-made objects, 59

human portraits etc. Our experiments show that our algorithm is 60

able to achieve real-time performance on this device: for a typ- 61

ical input scribble, it takes 0.01−0.1 seconds for color comput- 62

ing, and 0.6 seconds for rendering (The render process adopts a 63

GPU diffusion solver proposed by [9] , which was implemented 64

in GLSL). Our results are shown in Figure 1, 12, 13 and 16. 65

These visually appealing results can be created in a short time, 66

while it usually takes longer than an hour with tools provided 67

by previous diffusion curve coloring tools and traditional com- 68

mercial tools such as Illustrator. A typical editing session for 69

the results shown here was in 5 − 20 minutes, depending on the 70

complexity of drawing shapes and the level of details the user 71

wishes to achieve. 72
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A B C D

E F G H

I J K L

Fig. 9. Line drawings used in our tests. A-H are vectorized hand-drawns.
I-J and K-L come from vectorized pixel images that were used in [13] and
[9], respectively.

Figure 10 shows the flexibility of our tool. Our technique is1

largely insensitive to shape curves, and allows the user scrib-2

bles cross multiple regions. The scribbles are permitted to over-3

lap each other, which largely decreases the frequency of undos.4

Figure 11 shows that our tool can produce more color variations5

by adding more scribbles (top row), while in the other examples6

richer visual effects can be produced by providing more geom-7

etry details with additional curves and scribbles (bottom row).8

Two additional examples with more complexity are shown in9

Figure 12.10

(b)(a) (c) (b)(a) (c)

Fig. 10. Our tool permits scribbles to move out of range of boundary (b),
cross multiple regions (a), overlap with each other (c).

5.1. Comparison11

Under the same scribble configuration, we compared our tool12

with previous works, including the LazyBrush tool (Sykora et13

al. [8]), a color estimation tool for diffusion curves (Jeschke et14

al. [13]).15

Note that unlike LazyBrush and Jeschke et al. [13], which 16

both model the competition among all the scribble, our tool 17

processes user-specified inputs progressively every time a new 18

scribble is added. The global computation of both LazyBrush 19

and [13] would take a few seconds to a few minutes, which 20

are relatively slow for instant feedback. In our test, the perfor- 21

mance of LazyBrush depends on the number of scribbles and 22

resolution of images, and [13] depends on the number of color 23

points of diffusion curves, which would be up to ten minutes 24

for complex gradients. In contrast, our progressive computa- 25

tion can provide instant feedback (0.01 − 0.1 seconds) for each 26

scribble. For a typical input line drawing, it usually requires an 27

artist to input 20 − 60 scribbles for creating an art work. 28

Inputs Result Add Scribbles F inal Result

Inputs Result Add Curves and Scribbles F inal Result

Fig. 11. Adding scribbles (top) or curves (bottom) to produce more color
variations.

Fig. 12. Additional results. Left: Input line drawings and user-specified
scribbles. Right: results produced by our system.

Figure 13 shows the comparison of visual effects. Jeschke et 29

al. [13] suffers from serious artifacts for local inputs: gener- 30

ating out-of-range colors and incomplete coverage, and some- 31

times producing undesired colors as shown in Figure 13 and 32

16. To address these issues, a possible solution could provide 33
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a complete image first by applying image segmentation, which1

is then followed by image vectorization of [13]. LazyBrush is2

the state-of-the-art technique for pixel-level hand-drawn color-3

ing or segmentation. Howerver it is not always guaranteed that4

desired labels can be achieved, especially in the open region.5

We provide the results in comparison to those by a combination6

of LazyBrush and color estimation approach of [13] in Figure7

16.8

Figure 14 shows a comparison with a typical deep learning tech-9

nique for line drawing colorization, PaintsChainer [18]. Due to10

the implementation constraints, we are able to provide as sim-11

ilar scribbles as input to the two systems. It can be seen from12

Figure 14 middle and right that PainsChainer is able to generate13

interesting results even with very few scribbles but suffers from14

unnatural colors and artifacts, which though might be alleviated15

by the recent two-stage sketch colorization framework [20]. In16

contrast, our technique allows more accurate control of results17

(Figure 14 left).18

Input Scribbles Jeschke et al. [13] Our Results

Fig. 13. Comparison with Jeschke et al. [13].

5.2. Pilot Study19

To evaluate the usability of our system, we conducted a pilot20

study to compare our interface with the original interface de-21

signed for Diffusion Curves [3]. We invited 8 volunteers (a1 to22

a8) to participate in the study. Two participants (a1, a5) were23

with good drawing skills. The other 6 participants had little24

drawing experience or knowledge.25

Design and Procedure. We prepared 2 line drawings (vector26

graphics) to be colorized by each participant, as listed in Figure27

15 (a), and a reference image for each line drawing that could28

be refered to by the participants as listed in Figure 15 (b). Each29

participant was first given a short tutorial of two coloring inter-30

faces, by a short practice on an line drawing that was different31

Our Result Paints Chainer Paints Chainer with less scribbles

Fig. 14. Comparison with PaintsChainer.

from the two assigned ones. Next, each participant colorized 32

the assigned 2 line drawings. For each line drawing, a partic- 33

ipant painted with one of two interfaces, in the form of free 34

drawing (as close to as but not necessarily exactly the same as 35

the reference image). Then a similar colonization is required to 36

be done with another interface. Figure 15 (c) (d) shows repre- 37

sentative results created in the study. Half of the participants 38

with and without good drawing skills (a1-a4) started with our 39

system first. During the study we recorded the time for coloriz- 40

ing each drawing with each interface. Finally, the participants 41

were asked to complete a questionnaire. 42

(a) (b) (c) (d)

Fig. 15. (a) and (b) are the input line drawings and reference images used
in the study, respectively. (c) and (d) are the representative results created
with our interface and the original interface designed for Diffusion Curves,
by the same participants.

Results. Paired t-test found that our system significantly out- 43

performed the original interface of Diffusion Curves (t = 44

−8.88, p = 0.00004 and t = −10.32, p = 0.00002 for ba- 45

nana and tomato examples respectively). The drawing time 46

of our system was a bit slower than expected (average: 7min 47

and 13min for banana and tomato examples respectively), but 48

was still significantly faster than the original interface (average: 49

12min and 33min respectively). We observed that with our in- 50

terface the participants could achieve a coarse result in a short 51

time as expected, however they put more efforts in producing 52

detailed color variation. We suspect the time for creating richer 53
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Input Scribbles Jeschke et al. [13] LazyBrush Jeschke et al. [13] after LazyBrush Our Results

Fig. 16. More results in comparison with Jeschke et al. [13] and its combination with LazyBrush.

visual effects can be shortened once the users are more familiar1

with our tool.2

After completing the coloring tasks, in the questionnaire each3

participant was asked to rate the coloring interfaces, in terms4

of ease of use and ease of learning on a discrete scale from5

1 (poorest) to 5 (best). For the ease of learning, only one6

participant (a7) had no preference. The remaining the partic-7

ipants gave a higher rating to our system. Paired t-test con-8

firmed that the ratings of our system were significantly higher9

(t = 7.0, p = 0.0002). All the participants found our interface10

were easier to use (t = 9.0, p = 0.00004).11

5.3. Limitations and Future Work12

As shown in Figure 17, our technique might not produce sat-13

isfactory results. It is possible that desired areas are not fully14

covered by our approach, and the user needs more efforts to15

refine them with more input scribbles. In the future work, we16

speculate that such limitations can be addressed by using multi-17

bounce ray cast, to achieve user desired scope as much as pos-18

sible.19
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