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Figure 1: Scale-aware insertion of virtual objects into videos. Top: Input frames with extracted dimension and optimized size
information of objects in videos (‘G’ for the ground-truth sizes, and ‘E’ for the estimated sizes). The red lines indicate the
extracted plausible dimensions of the objects. Bottom: Output frames with different objects inserted with proper sizes.

ABSTRACT

In this paper, we propose a scale-aware method for inserting virtual
objects with proper sizes into monocular videos. To tackle the scale
ambiguity problem of geometry recovery from monocular videos,
we estimate the global scale objects in a video with a Bayesian
approach incorporating the size priors of objects, where the scene
objects sizes should strictly conform to the same global scale and
the possibilities of global scales are maximized according to the size
distribution of object categories. To do so, we propose a dataset of
sizes of object categories: Metric-Tree, a hierarchical representation
of sizes of more than 900 object categories with the corresponding
images. To handle the incompleteness of objects recovered from
videos, we propose a novel scale estimation method that extracts
plausible dimensions of objects for scale optimization. Experiments
have shown that our method for scale estimation performs better
than the state-of-the-art methods, and has considerable validity and
robustness for different video scenes. Metric-Tree has been made
available at: https://metric-tree.github.io

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces

1 INTRODUCTION

As one of most important research problems in computer graphics
and VR/AR, inserting virtual objects into real video scenes has
enormous applications for both individual users and mass video
owners. For example, automatic insertion of virtual objects into mass
videos brings advertisers and content owners new opportunities by
monetizing their video assets. Seamless merging of virtual objects
into videos should take into account many aspects, including scene
geometry recovery [4,27], illumination recovery [15], rendering [15],
and an inserted object’s position [40] and sizing [35]. However, most
of the videos capturing real-world scenes are captured by monocular
cameras often without any recording camera parameters, and thus
existing geometry recovering methods [4, 27] often fail to recover
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Figure 2: The miniature brings fake illusion to people on the size of
a scene.

the actual scene metrics of such videos. This is known as the scale
ambiguity problem.

We observe that the perception of an actual size of a scene in an
image mainly depends on the knowledge of the sizes of objects in
the scene [14] (see Fig. 2). There are certain regular sizes of many
objects in human and natural environments, such as the fixed size
of A4 papers, limited size choices for beds, and a limited size range
for chairs due to their use for human users. Such sizes following
the customs of humans and size distribution statistics of natural
objects, bring the background knowledge for size perception and
thus make it possible to automatically estimate the actual sizes of
scenes in monocular videos. This motivates us to design a two-stage
system to estimate the scaling factor between a physical (or actual)
size and the size of a 3D scene recovered from a monocular video.
Our approach first extracts the plausible dimensions of objects from
semantic segmentation of a 3D point cloud reconstructed from an
input monocular video and then optimizes the scaling factor by
incorporating the actual size distribution of object categories. In this
way, the actual scene size in a monocular video can be calculated
and virtual objects can be inserted with proper sizes.

Some pioneer works [25, 35] have shown the effectiveness of
such hints in scale estimation in scene recovery from monocular
videos, and discovered at least two difficulties, making the problem
non-trivial:

• Objects might be partially detected or partially visible, making
their size estimates inaccurate.

• The scale estimation decreases in accuracy due to intra-class
variations in size, or even fails if no object is detected.

We propose the following novel strategies to cope with these two

https://metric-tree.github.io


issues, and make scale-aware insertion of virtual objects more auto-
matic.

Limited capturing views often cause incompleteness or inaccu-
racy of object geometry recovery by sparse or dense structure from
motion (SFM) methods, so that the three dimensions of a 3D object
detected in a video may not be all plausible to depict the size of
this object. Observing the spatial features of incomplete objects,
we extract plausible dimensions of objects from semantic segmen-
tation of the point cloud. A key observation is that all the lengths
in the recovered geometry divided by their physical sizes should
strictly conform to a global scaling factor. As the variance in sizes
of object categories, we optimize the scaling factor by maximizing
the likelihood of lengths of extracted dimensions divided by their
physical sizes according to the size distributions of objects of these
dimensions.

The richness of object categories and the accuracy of their size
distributions are crucial to estimate the scaling factor. The existing
works take advantage of size priors by indicating the heights of
several object categories, such as bottles [35]. In order to put it in
application, we collect the physical size prior of different semantic
objects from Amazon and Wikipedia, and build Metric-Tree, a hier-
archical representation of sizes of objects according to their category
trees. Metric-Tree has five hierarchical levels and more than 900
object categories as leaf nodes, covering the furniture, car, electric
appliance, person, and so on. For each category, we build a Gaussian
Mixture Model (GMM) model on 3D sizes of the associated objects
according to the collected size data.

The results of different interior and outdoor scenes show that
although every object category contains variance in size, the scale
estimation error rapidly decreases along with the number of objects
involved in scale optimization. The scale estimation error can be
reached less than 8% in average in the Kitti dataset for outdoor
videos and our captured indoor-scene videos in daily lives.

In summary, our work has two contributions:

• We propose a large-scale dataset of sizes of object categories:
Metric-Tree, a hierarchical representation of sizes of more
than 900 object categories as well as the corresponding images,
connecting the appearance and the size of each object category.

• We propose a novel scale estimation method that extracts plau-
sible dimensions of objects for scaling factor optimization
to alleviate the incompleteness of geometry recovery from
monocular videos.

2 RELATED WORK

2.1 Object insertion in videos
Synthesizing realistic images or videos by merging virtual objects
into real world scenes seamlessly is one of the longstanding goals
of computer graphics and one of the main applications in AR/VR.
Although there is still no completely automatic solution as far as we
know, different aspects of relative research have been taken out to
make this process more intelligent and thus automatic. The underly-
ing geometry of scenes in videos can be recovered by structure from
motion (SFM) and visual simultaneous localization and mapping
(vSLAM) techniques [4, 27]. Capturing, estimating and rendering
with scene illumination are summarized by [15]. Context-based
recommendation for object insertion in visual scenes is a relatively
new topic, and there have been some pioneer works on recommen-
dation in image [40] by modeling the joint probability distribution
of object categories, and object recommendation systems by neu-
ral networks [37]. For automatic insertion of virtual objects into
monocular videos, the size of inserted objects is a critical factor to
influence the photo-realistic effects of the resulting videos. However,
the scale ambiguity problem for monocular videos has been largely
unexplored and is the focus of our work.

2.2 Scale estimation
Due to the classical problem of scale ambiguity in the 3D recon-
struction from monocular videos, at least one scale-related piece
of knowledge needs to be introduced to recover the actual size of
the overall scene. Some methods combine sensors, such as inertial
measurement units (IMUs) [7, 9, 11, 21, 23] and LiDAR [3, 39]
into SLAM systems to estimate the unknown scaling factor. Other
methods incorporate camera setup information as priors into SLAM
systems, such as camera height in a car based on the ground plane
assumption [10,33,34,44,45] and the information of the camera’s off-
set relative to a vehicle’s axis of rotation when the vehicle turns [30].
Those methods with additional sensors or camera setup information
achieve impressive results,whereas they do not meet our need for
addressing the scale estimation problem for monocular videos in
absence of the camera parameters.

In the autonomous driving area, a large number of visual odometry
systems incorporate semantic information by object tracking or in-
stance segmentation to address the scale drift problem [2, 13, 18, 36],
where the basic idea is to find semantic-level feature correspon-
dences among key frames and combine them with feature matching
into bundle adjustment. Their goal is to alleviate the scale drift same
as the loop closure, and our method is to estimate the actual size of
a scene captured in a monocular video.

Ku et al. [16] proposed a 3D object detection method from an
image, and derive 3D bounding boxes of three object categories
including car, pedestrian and cyclist, in actual sizes. To achieve this,
they take advantage of the LiDAR data in training to learn the shape
and scale information. The strong prior knowledge of point clouds of
scenes provides pretty good estimation on object sizes but also limits
the application of their approach to a wider range of scenes. Our
method makes use of a new dataset of sizes of object categories and
their corresponding images for instance segmentation and scaling
factor estimation. Our dataset is much easier for expansion than
point clouds to cope with many more new types of objects.

Sucar et al. [35] present a pioneer work on scale estimation from
monocular videos, and their approach is the closest to ours. They
use the YOLO v2 network for the object recognition task and project
an object’s bounding box in an image frame into a 3D scene to
calculate the object’s height and thus estimate the scaling factor
based on the assumed height distribution. They experimentally
demonstrate the feasibility of their method under ideal conditions,
but their performance on real object size distributions has not been
evaluated. One shortcoming with their approach is its prescription
for the vertical orientation of the scene. We propose a more advanced
method for plausible dimension extraction of objects and incorporate
a size dataset of object categories for scaling factor optimization,
thus achieving more accurate results (see Section 6.1).

2.3 Datasets of object sizes
Some existing works have collected size data for sizing the 3D
shapes in a 3D collection. Shao at el. [31] proposed a method for
transferring physical scale attributes between web pages and 3D
Shapes. They leverage the text and image information to connect
web pages and shapes. The former is used for matching web page
text with object text to build a direct connection. The latter relies
on visual similarity to construct a joint embedding space between
images and shapes. Finally, scale attributes can be transferred be-
tween the closest pairs in the embedding space. Savva at el. [28]
proposed a probabilistic graphical model for sizing the collections
of 3D shapes. They also collect 3,099 furniture items in 55 cat-
egories and transfer the sizes to other 3D shapes by maximizing
the probability distribution with size priors of object categories and
the scale consistency of co-occurrences of objects in 3D scenes in
virtual scenes. Savva at el. [29] further connected more physical
attributes of objects with 3D shapes including weight, static support
and attachment surfaces. We focus on the sizes and appearances



Figure 3: The pipeline of our method.

of object categories in the image space, and collect a much larger
dataset involving more than 900 categories with sufficient samples
in each category to support scene size understanding. Some pro-
fessional websites, such as dimensions.guide1 also provide sizes of
everyday objects and spaces that make up the world. These websites
mainly serve industrial design, and have only a few typical samples
for each category.

3 OVERVIEW

Our system for scale-aware virtual object insertion into monocular
videos follows the general pipeline of virtual object insertion, as
shown in Fig. 3. It begins with reconstructing a 3D scene repre-
sented as a point cloud from an input monocular video [1]. We
then perform instance segmentation of the point cloud by fusing
per-frame segmentation. The key step is scale estimation between
the point cloud and the actual scene (Section 5). In this step, due to
the incompetence of objects in the point cloud, we extract plausible
dimensions of objects and optimize the scaling factor by incorporat-
ing with the priors of size distributions of the corresponding object
categories. We assume the actual sizes of virtual objects are known,
so that they can be inserted with proper sizes by multiplying the
estimated scaling factor. Our proposed dataset Metric-Tree (Section
4) provides not only the strong priors of size distributions to scaling
factor optimization, but also provides image samples for semantic
segmentation.

4 METRIC-TREE: A REPOSITORY OF OBJECT SIZES

As mentioned above, the richness of object categories and the ac-
curacy of their size distributions are crucial to estimate the scaling
factor. However there is no open source repository of object di-
mensions, and thus we have to collect abundant sizes of objects for
constructing distributions of sizes. Our approach is based on three
key facts and assumptions:

• In the real world, the dimensions of most objects are fixed, or
with a small range of changes in some dimensions.

• The dimensions of objects’ minimum bounding boxes are con-
sistent and very close to physical sizes.

• The sizes of objects in a real scene are interrelated, and the
sizes of objects in the same scene should be consistent.

Webpage Data. Like [31], we collect the sizes of objects with
their images and texts through the Internet. We crawl the Ama-
zon websites to extract the physical sizes of object categories (e.g.,
”table”, ”chair”, etc.). Besides, for the other objects that do not
appear in Amazon (like ”car”, ”hydrant”, ”person”), we crawl from
Wikipedia, Crate&Barrel, car websites, etc. for gathering their sizes
and corresponding images. We finally get about 10,000 raw cate-
gories, among which there are about 80,000 raw items with category
annotation, and images (from the source websites we crawled, and

1https://www.dimensions.guide

Figure 4: The structure of Metric Tree. The hollow dots are ex-
panded nodes and the solid dots are folded nodes.

most of them are with white background). After removing categories
without any size information and merging the similar categories, we
build a dataset of object sizes with a five-level tree structure based
on WordNet [22] with about 900 categories in the leaf nodes.

Metric-Tree. As shown in Fig. 4 (which shows the part of
Metric-Tree, due to space limitations), Metric-Tree is a tree struc-
ture, with each node being an object category. Each node has two
components: a set of dimension data and a dataset of images of the
corresponding object category. We organize the size data based on
WordNet by generating a tree structure and attaching the dimensions
and corresponding images to leaf nodes. For categories not included
in WordNet, we use a multi-person proofreading method to insert
them into the data structure. For inner nodes, the dimension data
set and image data set are all defined as the aggregate of all their
children. For each category, we build a Gaussian Mixture Model
(GMM) for 3D sizes of the objects as a size distribution according
to its dimension data set.

We also use BASNet [24] to perform foregound segmentation to
extract foreground objects.

As the state-of-the-art fine-grained classification methods still do
not work well, we retrain Mask R-CNN [12, 38] as our instance seg-
mentation network. We select 43 object categories of segmentation
according to the following rules:

• The divergence of size distribution of object categories is low.
Fig. 5 illustrates the size distributions on height of several
typical categories with different divergence.

• The number of samples in the dimension data set is enough to
depict the size distribution.

• There are additional training data in other famous datasets.

The traing set of the images is the combination of image datasets
of corresponding object categories and correponding subsets with



Figure 5: Size distribution of severeal typical object categories.

Figure 6: Instance segmentation results from Mask R-CNN.

the label of object categories in the COCO dataset [19], ADE20K
[42, 43] and Open Images [17].

5 SCALE ESTIMATION WITH PLAUSIBLE DIMENSIONS

5.1 Instance segmentation on point clouds
We use the open source OpenSfM [1] system integrated with the
PatchMatch [32] to reconstruct 3D scenes, and use Mask R-CNN
[12, 38] retrained by our collected image data(Section 4) to perform
instance segmentation(Fig. 6). Although some existing methods
provide instance-level point cloud segmentation, such as MaskFu-
sion [26], given that it uses RGB-D inputs, we cannot ensure its
validity with RGB inputs, so we clarify our approach below.

After 3D reconstruction and instance segmentation on frames
{Fi}N

i=1, for frame Fi, we get the point cloud Si, the camera pose
Ci and the segmentation results {Oi j}Mi

j=1, where Mi is the number
of recognized objects and Oi j includes the class ci j of the j-th
object oi j and the pixel-level mask mi j(see Fig 6 for example). We
map the 2D instance segmentation results to the point cloud. Each
point is labeled according to the 2D instance where its projection
is located. Given the point cloud Si of i-th frame and segmentation
results {Oi j}Mi

j=1, the reconstructed point cloud si j of object oi j in
this frame is

si j = { p | p ∈ Si ∧ p̂ ∈ mi j}, (1)

where p̂ denotes the projection of p in frame i.
The next step is to merge point clouds of the same object that

are split in different frames to get the complete point cloud of that
object. For a real object A in the scene, let Oi1 j1 , . . . ,OiNA jNA

denote
the recognition of A in different frames, where NA is the times A

Figure 7: 4 bottles are recovered incompletely due to blocking in
the scene shown in Fig 6. Dimension extraction is required to obtain
plausible dimensions.

appears. Then the merged point cloud of A is

SA = ∪NA
k=1 sik jk . (2)

To solve the problem of correspondence of instances of the same
object in multiple frames, we propose an incremental point-cloud
merging method that recovers all real objects in the scene by merging
point clouds frame by frame. In the following discussion, without
loss of generality, we consider only the case where objects are of the
same class, otherwise we can split the point clouds by classes first,
since point clouds with different classes obviously do not correspond
to the same objects.

Let U = {uk}K
k=1 denote the intermediate point cloud during

merging process and K denote the number of objects we have ob-
tained. Initially, U is empty. If the previous g frames have been
merged, then we consider the relationship between the current U
and the reconstructed point cloud Sg+1 of the g+ 1 frame: some
of the point clouds in Sg+1 correspond to objects already in U and
some of them are new objects (the subscript g+1 is omitted follow-
ing for brevity). Here we define the distance between point cloud
A = {ai}M

i=1,B = {bi}N
i=1 (without loss of generality, let M ≤ N) as

D(A,B) =
1
M

M

∑
i=1

min
∀b j∈B

‖aib j‖. (3)

where M = |S| denotes the number of instances recognized in frame
g+ 1. We calculate the distances of uk ∈U and s j ∈ S based on
above distance definition. Then we greedily look for the point cloud
pair (uk,s j) with the smallest distance and mark them as the same
object until the distance D(uk,s j) exceeds a predefined threshold
or one of U or S has completed the match. After repeating this
process frame by frame, we complete the point cloud merging(see
1 for pseudocode). The merged point cloud may have some noise
resulting from incorrect feature point reconstructions or inaccurate
merge, so we can obtain the main part of each object after further de-
outlier operations. Here KNN [5] and the isolated forest method [20]
are used.

5.2 Dimension extraction for 3D objects
Since in practice we mostly use the length, width and height of an
object, also known as dimensions, to describe its size. To deter-
mine the orientations of the object, We first use the camera pose
to determine the orientation of the bottom. In order to reduce the
uncertainty of the orientation estimation, we make the following
assumptions about the camera and the scene: the roll of the camera
is zero, and the object is placed on a flat, horizontal surface. Based
on these assumptions, we can constrain the direction of the bottom
surface of the object. Let {~ri}N

i=1 denote the x axis of the camera in
all frames, as well as the right directions. Then the normal vector~n
of the desired horizontal plane is the solution of this least-squares
minimization problem by denoting R = [r1r2 . . .rN ]

T :

~n = argmin
~x ∈ R3, ‖~x‖=1

‖ R~x ‖. (4)



Algorithm 1 Incremental point cloud merging

Input: point clouds from all frames S = {si}N
i=1

Output: object point clouds U = {uk}
1: U ← empty list
2: for si ∈ S do
3: U ← MERGEPOINTCLOUD(U,si)
4: end for
5: return U
6:
7: function MERGEPOINTCLOUD(U,s)
8: m← |U |, n← |s|
9: Û ←U , ŝ← s

10: U ← empty list
11: while Û not empty and ŝ not empty do
12: ui,s j← argmin∀ui ∈ Û , s j ∈ ŝ D(ui,s j)

13: if D(ui,s j)< threshold then
14: break
15: end if
16: Û = Û \ui, ŝ = ŝ\ s j
17: U =U ∪{(ui∪ s j)}
18: end while
19: U =U ∪ ŝ
20: return U
21: end function

It is easy to know that ~n is the unit eigenvector corresponding to
the minimum eigenvalue of RT R. After the bottom of the object is
identified, the problem is reduced to a 2D point cloud dimension
calculation, which can be solved by minimum bounding box method.

We have found that the dimension extraction of objects is sus-
ceptible to the results of reconstruction and segmentation, with the
corresponding dimension of an object being inaccurate when the
local point cloud is relatively sparse and incorrectly segmentation
occurs. We therefore introduce dimension confidence (also called
reliability) to measure the results and to provide guidance for subse-
quent scale optimization. A reliable reconstructed point cloud should
have a similar density in all regions, so we estimate the reliability of
the dimension computation based on this assumption.

We divide the 3D bounding box where the object locates into
8× 8× 8 space grids and count the points in each grid. Let G =

{G(x,y,z)}
x,y,z=8
x,y,z=1 denote these grids and N(G) denote the number of

points G contains where x,y,z correspond to the direction of length,
width and height, respectively. We define the global density of the
point cloud as follows:

ρg =
∑G∈M N(G)

|M|
,where M = {G|G ∈G , N(G)> 0} (5)

and similarly define the density of point clouds on both sides of the
length direction as follows:

ρxhead =
∑G∈Mxhead

N(G)

|Mxhead |
,ρxtail =

∑G∈Mxtail
N(G)

|Mxtail |
,

where Mxhead = {G(x,y,z)|G(x,y,z) ∈M,x = 1} ,
Mxtail = {G(x,y,z)|G(x,y,z) ∈M,x = 8}.

(6)
In this way we can determine the reliability of the beginning and end
of the object in that direction, that is, the reliability of the dimension.
The confidence (see Figure 8 for an example) of this dimension is
defined as (similarly for other dimensions):

ηx =
1
ρg

√
ρxhead ·ρxtail . (7)

Figure 8: Top: an example scene. Bottom: the dimensions and con-
fidence of different objects. The first row contains apple, notebook,
and bottle. The second row contains laptop, mouse, and table. The
data are annotated in the form of [dimension]([confidence]). Unreli-
able dimensions are marked red if we take 0.7 as the threshold.

When the confidence falls below a certain threshold, we assume that
the results of this dimension are unreliable and accordingly do not
use the distribution of this object in three dimensions in the scale
optimization process, but instead degrade it to a two-dimensional
distribution.

(a) 0 degree (b) 30 degrees (c) 45 degrees

Cases ηx ηy ηz

a 0.912 1.077 0.926
b 0.885 1.001 0.543
c 0.593 1.045 0.291

Figure 10: Top: A bottle is placed at three different angles relative
to the vertical direction. The three cases are (a) 0 degree, (b) 30
degrees and (c) 45 degrees, respectively. Bottom: confidence of
three dimensions in the three cases.

Usually, objects are placed upright on a horizontal plane. In
such cases, our dimension extraction is accurate and efficient. when
objects are tilted, the estimated height of these objects can be smaller
and the length and width can be larger accordingly, and however the
confidence on these dimensions will also go down (see Figure 10
for example), so that these dimensions tend not to be selected. Even
there are few such dimensions extracted with errors, the accuracy
of our algorithm will not decrease significantly, since we use all the
objects in the scene to optimize the scaling factor.



5.3 Scaling factor optimization
The reconstructed point cloud is similar with the real scene, and
there is a proportional coefficient s between them. For a distance
estimated by the point cloud l, let l∗ denote the real distance and
they have the following relationship:

s =
l∗

l
. (8)

We call s as the scaling factor. The goal of scale optimization is
to find the most likely scaling factor s∗ based on the statistical
distribution of object sizes. Let {mi}N

i=1 denote the objects that
appear in the scene, where mi has its dimensions as

Li = (wi, li,hi), i = 1,2, . . . ,N (9)

Let {ϕi(L)N
i=1} be the obtained size prior, each described by a

GMM model. Assuming that the size of each object is independent
of each other, with Bayesian Rule, we have

P(s|m1,m2, . . . ,mn)

∝ P(s|m1,m2, . . . ,mn−1) P(mn|s)

∝

N

∏
i=1

P(mi|s)

∝

N

∏
i=1

ϕi(sLi).

(10)

Thus the best scaling factor s∗ is

s∗ = argmax
∀s∈R+

N

∏
i=1

ϕi(sLi). (11)

Since it is difficult to find mathematically precise optimal values for
the above problems, we estimate the above probabilities on a series
of discrete candidate values s ∈ [smin,smin +∆s, . . . ,smax], and select
ŝ with the maximum probability as the estimated scaling factor. In
the course of the experiment, it was found that usually ∏

N
i=1 ϕi(sLi)

is well convex near the maximum value, thus almost ensuring that
|ŝ− s∗|< ∆s.

In the actual optimization, because some objects do not have
high confidence in a certain dimension, or the certain dimension of
some category of objects is insignificant or hard to collect, in such
cases we do not use all three dimensions, but rather prescribe which
dimensions of a certain type of objects to use as a priori distribution
(e.g., length-width distribution for keyboard, height distribution for
human, etc.), that is, determining ϕi, and consider the calculated
confidence to decide which dimensions of objects to use, that is,
determining Li.

6 RESULTS AND DISCUSSION

In this section, we conduct several experiments including compar-
isons to the existing techniques to verify the effectiveness of our
method. We also present virtual object insertion results as well as
qualitative evaluation by a user study. Finally, we perform additional
experiments to show the necessity of dimension extraction and the
importance of richness of size priors to the accuracy of scaling factor
optimization.

6.1 Comparison on scene size estimation
We choose [35] as our baseline, since the goal of this work is similar
to ours, which is to calculate the global scale of the scene. We com-
pare the performance of scale estimation by these two approaches
on two datasets: the Kitti raw data [8] as an outdoor dataset and our
captured indoor video dataset.

Figure 11: Inserted objects with their physical sizes.

Table 1: Performance comparison on video
datasets.

Method Amount Sucar et al. Ours

Err Std Err Std

Indoor 5 0.168 0.049 0.072 0.025
Outdoor 18 0.163 0.099 0.074 0.034

Datasets. To demonstrate the robustness and superiority of our
method, we use both an indoor dataset and an outdoor dataset for
comparison. For the indoor dataset, we captured 5 indoor videos
including sitting room, kitchen, toilet, bedroom and study and mea-
sured the sizes of objects in these videos as a validation set. For
the outdoor dataset, We choose 18 video sequences from the Kitti
raw Data supported by Geiger et al. [8] according to the segmenta-
tion results. This outdoor dataset contains processed color stereo
sequences and 3D Velodyne point clouds, with the known camera
parameters and 3D object tracklet labels.

Comparison. For fair comparison, we use Mask RCNN as the
2D object detector and OpenSfM as the reconstruction module for
our approach and [35]. We calculate the accuracy of the global
scale by using the relative error of the estimated object sizes and
the physical object sizes for validation. In our experiments, we use
millimeter as the unit. Since the method in [35] can only estimate the
heights of objects, we use the mean of the relative error between the
estimated object height and the ground-truth height over all objects
as the error metric. The comparison results in Table 1 show that the
relative error of our algorithm is nearly 10% lower than the baseline,
reflecting the robustness and superiority of our method.

Processing timings. We tested the performance of our method
on a PC with i7-6850k CPU and Nvidia 1080 Ti, 32G RAM. In our
experiments, video frames range from 100 to 400, and the processing
time of OpenSfM is relative to the square of the number of frames.
For example, if there are about 100 video frames, OpenSfM takes
about 36 mins. The processing time of other modules is relatively
fixed. Specifically, instance segmentation and point cloud segmen-
tation take about 0.3s and 0.2s per frame, respectively. Dimension
extraction takes about 0.02s, and the optimization step takes about
0.004s for an entire video. Therefore, a real-time vSLAM and a
lightweight instance segmentation implementation would greatly
improve the overall performance.



Figure 12: Synthesis results of insertion of virtual objects in Fig.11. Rows 1 and 3 are input videos and Rows 2 and 4 are output videos.

Figure 13: The results of user study.

6.2 Virtual object insertion results

We present 10 synthesis virtual object insertion results for indoor
and outdoor scenes with automatic determination of the sizes of the
inserted objects, shown in Fig. 1 and 12. The corresponding videos
can be found in the supplementary materials. Note that currently we
manually choose the position in the scenes.

We conduct a user study to evaluate the synthesis results qualita-
tively. We sample 30 frames from the above synthesis results (3 for
each) containing the inserted virtual objects from near, medium and
far distant for outdoor videos and from different views for indoor
videos. Fig. 12 shows a few representative frames. For each frame,
we also generate the synthesis results for the same virtual objects at
the same positions with only the difference in size with the interval [-
30%,-20%,-15%,-10%,-5%,0%,5%,10%,15%,20%,30%] relative to
our estimated sizes. Then 27 subjects were invited to judge whether
or not the inserted objects in the synthesis results are reasonable
in size by answering Yes or No. All the subjects were university
students above the age of 20.

Figure 13 illustrates the average scores of all scenes from all
participants. The horizontal axis corresponds to the the difference

in size relative to our estimated sizes, and the vertical axis is the
averaged score (1 for YES) for all participants.

The peak of the curve is 0.65, showing that human size judgments
have significant variation, and can be influenced by context and
familiarity [6]. Despite the variation, there are still some useful
conclusions from the curve. First, our score is above 0.5 showing
that more than half participants agree with our results. And the peak
is on the -0.05 of X-axis, which means that the ground truth of size
appears at 0.95 times our estimated sizes, showing that the scale
error of our method is around 5%.

6.3 Discussion

With/without dimension extraction. There is a simple strategy by
sending all the three dimensions of segmented objects in point clouds
to scaling factor optimization in order to provide more hints on sizes.
This is helpful apparently only for relatively good 3D reconstruction
results from carefully captured videos, for example, with the camera
moving around a center of the scene. However, most of the captured
videos involve more complicated camera movement, causing only
partial geometry recovered from the videos. We did an experiment
on the same scenes in scaling factor optimization with the extracted
dimensions or directly with the dimensions of bounding boxes. The
results show that the relative error of the scaling factor increases
from 7% to 30%.

Limitations. Our method estimates actual object sizes in the
process of 3D reconstruction, and thus would fail when OpenSfM
fails, e.g., due to static views or highly dynamic scenes. We assume
that the intrinsic parameters of the camera are fixed and the roll of
the camera is zero, which are common cases in real life, so that
scene object sizes should strictly conform to the same global scale.
Our method can cope with scenes with some objects that are not
upright, but will fail if a scene is totally in a mess.

Relation between scale accuracy and the number of ex-
tracted dimensions. We show some experiment results to illustrate
how the estimated accuracy of scale is related to the number of
extracted dimensions of objects incorporated in scale optimization.
Fig. 14 shows the relation between extracted dimensions and scale
accuracy of 23 scenes. In this experiment, we gradually decrease the
number to 3 of extracted dimensions for simulation and illustrated



Figure 14: The relation between extracted dimensions and scale
accuracy.

as scatter plot. The figure shows the rapidly descending trends of
scale accuracy along with the number of extracted dimensions.

We did a simulated experiment on the Structure3D dataset [41].
This dataset contains 3,500 house designs and over 343 thousand
instances in 24 categories. The size distributions of all 24 categories
are calculated by instance size statistics. We select different numbers
N of objects randomly from each house, then disturb the sizes of se-
lected objects in no more than a relative error R, and finally estimate
the average of scale of each house. Fig. 15 is drawn with N in range
of [1−10,20,50] and R in range of [0,3%,6%,9%,12%,15%]. The
results provide us several interesting observations, which can guide
the choice according to the performance of semantic segmentation
and 3D reconstruction:

• The scale error decreased rapidly when the number of recog-
nized objects is below 10.

• The accuracy of bounding box of recovered objects in scenes
is a critical factor to scale estimation, so that the extraction of
plausible dimensions is quite important to the incomplete and
inaccurate recovered geometry.

• In the case of the same number of recognized objects, our scale
accuracy in inaccurate geometry can compete the simulated
results depending on the precise size distribution, showing that
a fine-grained classification method is preferred to indicate a
more precise size distribution of objects.

7 CONCLUSION AND FUTURE WORK

With the aid of the object size distribution in Metric-Tree, we are
able to make relatively accurate scale estimates of the scenes in
monocular videos without other size inputs, resulting in the scale-
aware object insertion. And the experiments on real scenes show
that our method is a significant improvement on the scale estimation
problem relative to similar previous work. Besides, the user study
indicates that such virtual object insertion results are consistent with
users’ perceptions of scales.

Metric-Tree with a large physical size information as priors can
be applied to more and more visual fields, including scale drift cor-
rection in automatic driving drift, layout scheme optimization in 3D
scene synthesis, object pose optimization for object pose estimation.
The collected images are helpful to fine grained classification, and
conversely, the scale estimation also needs a fine grained classifi-
cation method to indicating more precise size distribution of the
objects.

Figure 15: The scale accuracy in simulation data.
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