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Abstract
This paper presents an intuitive sketching interface for interactive hairstyle design, made possible by an efficient
numerical updating scheme. The user portrays the global shape of a desired hairstyle through a few 3D style
curves that are manipulated by interactively sketching freeform strokes. Our approach is based on a vector field
representation that solves a sparse linear system with the style curves acting as boundary constraints. The key
observation is that the specific sparseness pattern of the linear system enables an efficient incremental numerical
updating scheme. This gives rise to a sketching interface that provides interactive visual feedback to the user.
Interesting hairstyles can be easily created in minutes.

1. Introduction

Realistic looking hair is an important feature of vir-
tual characters which appear in many applications, such
as movies and games. While significant progress has
been made on hair simulation [BAC∗06] and rendering
(see [MM06] and references therein), hair modeling still re-
mains a difficult problem. This is due to the huge number of
individual hair curves on a human head (typically more than
100K) and the large variance of hairstyles.

The key contribution of this paper is a hairstyle design
system equipped with a sketching interface and a fast vec-
tor field solver. The user draws freeform strokes to create
and edit a few style curves which depict the global shape of
the desired hairstyle. The hairstyle is generated by following
the flow lines in a vector field, which is transparent to the
user. The vector field is formulated as the solution of a linear
systemAx = b with the style curves acting as boundary con-
straints. Despite the high sparsity ofA, directly solving the
system is still too slow (more than twenty seconds for 50K
variables) for user interaction. Instead, we observe that mod-
ifying the style curves induces only the changes ofb and the
diagonal elements ofA. Once initialized, the linear system
can be efficiently re-solved incrementally due to the special
pattern, usually taking a few seconds.

The combination of the sketching interface and the effi-
cient vector field solver gives rise to a user-friendly system.
User continuously draws strokes to modify the hairstyle, re-
sponding to the interactive feedback, until satisfied. Inter-

esting hairstyles can be easily created (see Figure1 for an
example).

2. Related Work
A variety of hair modeling techniques have been proposed

(see the latest survey in [WBK∗07]). We review the work
mostly related to ours.

Direct Hair Modeling. Many previous interactive hair
modeling techniques directly manipulate the geometry of
hair curves, or a group of hair curves, called a hair clus-
ter [GW97,KN02,Mal05]. Modeling a complete hair model
with such techniques could be tedious and time-consuming
(usually several hours) since hundreds of hair clusters have
to be created manually.

Vector Field-based Hair Modeling. Vector field-based
techniques can effectively reduce manual work by auto-
matically tracking the hair curve flow in a vector field.
The idea was first explored by Hadap and Magnenat-
Thalmann [HMT00]. Yu [Yu01] extended the idea by in-
troducing more vector field primitives to create more com-
plex hairstyles. Major limitation of these methods is that the
global vector field is continuously represented as the super-
imposition of many local vector fields generated by those
primitives. When the vector field is changed, several minutes
are needed to re-evaluate the vector field and re-generate a
hair model. The high computational cost makes user inter-
action inconvenient. Moreover, the vector field is modified
via positioning and rotating primitives in space; it is some-
times not very intuitive that how a primitive will affect the
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Figure 1: A realistic hairstyle created using our systemin five minutes. The user is allowed to design interesting hairstyles by
intuitively sketching three types of style primitives: streaming curve, dividing curve and ponytail.

hairstyle [Yu01]. Instead of using a single vector field, Choe
et al. [CK05] proposed to use a set of styling vector fields
and apply individual vector fields each time to generate more
complex hairstyles, such as braid hair. However, their styling
vector fields are produced using a procedural approach, not
allowing users to fully design hairstyles.

Sketching Interface for Hair Modeling. Sketching in-
terface for 3D design has been proved intuitive [ZHH96,
IMT99]. Mao et al. [MKIA04] were the first to apply
sketching to hair modeling, but their approach only as-
sumes symmetric smooth hairstyles. The recent approach
of Malik [Mal05] allows user to draw freeform strokes to
mimic various hairstyling operations on individual hair clus-
ters. Since the user directly manipulates the hair geome-
try and the influence of the editing operation is local, it is
not easy to design a globally complex hair style. Wither et
al. [WBC07] proposed a sketch-based interface for control-
ling a physically-based hairstyle generator.

Image-based Hair Modeling. Recently, researchers have
shown that automatic hair geometry reconstruction based on
computer vision techniques is possible [PoS04, WOQS05].
Typically multiple images are captured about the subject
head, and dense hair curve geometry is recovered from hair’s
photometric or stereoscopic properties. While current results
are impressive, the use of these approaches are limited by
data capturing conditions.

Figure 2: Left: bounding volume, vector field and style
curves.Right: hair curves generated from scalp.

3. System Overview
The system consists of four components (see Figure2): a

head mesh, a vector field defined in the bounding volume, a
set of style curves, and a resulting hairstyle consisting oftens
of thousands of hair curves. To design a specific hairstyle,
user first sketches a few style curves depicting the global
shape. These style curves are created and modified via draw-
ing freeform strokes. A discrete vector field is defined in a
3D uniform grid within the bounding volume of the head.
It is formulated as the solution of a linear system. Differ-
ent boundary constraints are derived from style curves for
the vector field. For example, a stream curve (cyan curves in
Figure2) causes its neighboring grid points to have their di-
rectional vectors set along its tangent, and a dividing curve
(red curve in Figure2) causes the neighboring grid points
on its two sides to assume roughly opposite directions (indi-
cated as short yellow lines).

Once solved, the vector field automatically generates a
hairstyle. Each hair curve starts from a root point on the
scalp and grows along the flow directions in the vector field.
Equipped with an efficient incremental solver for the lin-
ear system, our system allows the user to modify the style
curves, re-solve the linear system and generate the new
hairstyle in several seconds. The interactive visual feedback
greatly facilitates the design process.

4. Fast Vector Field Computation
This section introduces the linear system which produces

a vector field for hair growth. We use a Laplacian system as
a field interpolator, given the boundary constraints derived
from the style curves. A fast solver based on incremental
Cholesky factorization is presented.

4.1. Laplacian System as Field Interpolator

In recent years, the Laplace operator has been extensively
adopted in mesh editing due to its ability to produce smooth
deformation (see [Sor06] and references therein) and we
adopt a similar formulation. For each vertexvi of the grid,
the discrete Laplace operator is defined as

∆(ti) = ∑
j∈N(i)

1
N(i)

(t j − ti),
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whereti is a directional vector defined atvi andN(i) is the
index set of the 1-ring neighboring vertices ofvi .

We formulate the problem of field interpolation as a min-
imization problem with cost function,

E(t1, . . . , tn) =
n

∑
i=1

||∆(ti)||
2 +ω2 ∑

i∈C
||ti − ci ||

2
, (1)

whereC = {k1, . . . ,km} is the index set of boundary con-
straints, andω is the weight of the soft constraints (ω = 100
in our implementation). It is well known that the above mini-
mization is equivalent to solving the following linear system
in a least-squares sense

At(x) =

(
D
W

)
t(x) =

(
0

ω c(x)

)
= b(x)

, (2)

where matrixD is ann×n matrix with the entries from the
discrete Laplacian,W = (wi j )m×n, andwi j is ω if ki = j , and

0 otherwise. The column vectorst(x) and c(x) contain the
x-component ofti andci , respectively. Similar systems are
defined fory andz components. Solving Equation (2) in the
least-squares sense leads to a system of normal equations:

ATAt(x) = (DTD +WTW)t(x) = ATb(x)
. (3)

Note thatWTW is a diagonal matrix.

4.2. Incremental Cholesky Factorization

When the user changes the style curves, the set of bound-
ary constraints is updated (see details in Section5). This re-
quiresWTW to be updated, the right hand side of Equation3
to be changed (DTD remains unchanged), and the system
to be re-solved. Although the system matrix is very sparse,
solving the system with 50K unknowns still takes more than
twenty seconds.

A key observation is that changing the boundary con-
straints (via modifying the style curves) only affects the di-
agonal elements ofWTW. Specifically, the number of af-
fected elements is|C̄−C|+ |C− C̄|, whereC and C̄ are
the old and new sets of boundary constraints, respectively.
Consequently, for such special modifications to the system
matrix, solving the normal equations by modifying the ex-
isting Cholesky factorization ofATA is much more efficient
than solving the system from scratch [DH99]. Efficient mod-
ification of sparse Cholesky factorization is only possible
for some special cases. Specifically, given a sparse positive
definite matrixATA and its associated Cholesky factoriza-
tion, its modification is efficient only whenATA goes to
ATA + RTR (called anupdate) or ATA − RTR (called a
downdate), whereR is an arbitrary matrix [DH99].

We adapt the incremental Cholesky factorization. First,
we perform a general sparse Cholesky factorization

LLT = ATA = DTD +WTW,

which is pre-computed only once. Given the new boundary
constraints set̄C, similar to the definition ofW, we letW+

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3: Editing a stream curve (blue). (a) and (b): support-
ing surface (purple) and the associated viewpoint of a stream
curve. The supporting surface is either (a) a degenerate rule
surface interpolating the stream curve and the associated
viewpoint or (b) a strip composed of lines locally orthogonal
to each triangle formed by a stream curve segment and the
viewpoint. (c) and (d): cut operation: the hint stroke (green)
is long and runs across the stream curve on the supporting
surface; (e) and (f): concatenation operation: the hint stroke
starts near the stream curve and ends far away from it, pos-
sibly out of the supporting surface (in which case the depth
is extrapolated from the last segment on the supporting sur-
face); (g) and (h): insertion operation: the hint stroke starts
and ends near the stream curve.

and W− denote the matrices corresponding tōC−C and
C−C̄, respectively. The new system matrix is

ĀTĀ = DTD +WTW +WT
+W+ −WT

−W−.

The new Cholesky factor̄L is computed by performing an
update toL:

L̃L̃T = LLT +WT
+W+,

followed by a downdate tõL:

L̄L̄T = L̃L̃T −WT
−W−.

Once the new Cholesky factor is computed, back-
substitution is simply used to compute the vector field. We
perform the incremental Cholesky factorization using an ef-
ficient sparse Cholesky factorization package [Dav07].

5. Sketch-based Hairstyle Design System
Our current implementation supports three kinds of style

primitives: stream curve, dividing curve and ponytail. The
ponytail primitive is a composite style consisting of four
style curves. We represent a 3D style curve as a sequence of
connected line segments. Each segment is of the same length
as the discretization size of the vector field for convenience.
These style curves are created and modified by sketching
freeform strokes.
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Figure 4: A dividing curve and its boundary constraints.
Left: a local coordinate frame defined on the curve. Bound-
ary constraints are defined in the local xy planes. The tilting
angleα of a local plane is interpolated from two parameters
α0 andα1. Right: boundary constraints on a local xy plane.
Blue vectors mimic the local shape of the parting hairstyle
and follow the tangents of a Gaussian function, which passes
through the originp at its inflexion point and with its local
shape controlled by two parametersσ and h (set to 1 and
0.5 by default, with the unit as step size in the vector field).
Red vectors explicitly represent the discontinuities around
the parting line in the vector field and stop hair from grow-
ing across the parting line. Their magnitude is set smaller
than 1 (we use 0.3) to reduce their global effect.

Depth determination is the main difficulty in 3D editing
using 2D input devices. Our system relies on the scalp sur-
face or asupporting surfaceassociated with a style curve for
depth determination.

Stream Curve. This is the simplest style primitive. It
indicates the general flow direction of the hairstyle. Every
segment of a stream curve will designate neighboring grid
points as boundary constraints, each of which has its direc-
tional vector set as the direction of the segment’s tangent
(blue vectors in left of Figure5). Optionally, to prevent hair
growth beyond the end of the stream curve, we extrapolate
and append a few empty segments. The magnitudes of the
related directional vectors vanish gradually, from unit length
to zero (red vectors in left of Figure5).

A stream curve is created by drawing a stroke starting
from the scalp. The depth of the starting point is the depth
of the intersecting point on the scalp (Figure3(a)). For each
subsequent stroke point, if it is still on the scalp, it takes
the depth of the scalp point, otherwise its depth is set as the
depth of the last point on the scalp. A stream curve is usually
long and needs incremental refinement from different view-
points. To facilitate editing, itssupporting surfaceis defined
via expanding the stream curve in its neighborhood, and with
respect to the viewpoint. We provide two ways of building
the supporting surface, as illustrated in Figure3(a)(b). User
can freely change the viewpoint of a stream curve and/or
switch between the two supporting surface modes to rebuild
the supporting surface that is convenient for editing.

Once created, the user may edit a stream curve by sketch-
ing ahint strokestarting on its supporting surface. Depend-
ing on the general direction, starting and ending points, a

centripetence

spine

profile

cross section curve

C1

R1

R2

C2

Figure 5:Left: a stream curve and its boundary constraints.
Middle: a ponytail primitive and its boundary constraints.
Right: four style curves of a ponytail primitive.

hint stroke is interpreted as three different editing operations
(see Figure3(c)-(h)).

Dividing Curve. Many hairstyles have a clear dividing
line on the head where hair strands part and flow in opposite
directions. A dividing curve is drawn on the scalp to repre-
sent such a line (see Figure4). To model the discontinuities
in the vector field around the parting line, a local Cartesian
coordinate frameL = {x,y,z} is defined at every unit point
p on the dividing curve (Figure4(a)), wherey is the nor-
mal of the scalp atp, andz is the tangent of the dividing
curve atp rotated by a tilt angleα that can be easily adjusted
by the user. Boundary constraints are defined in the local
xy planes, on two opposite sides ofy axis. The local shape
of the boundary constraints can be easily adjusted via a few
controlling parameters. See Figure4 for details.

A dividing curve must be on the scalp and is relatively
short, thus can usually be created by drawing one stroke on
the scalp (inappropriate ones can be easily discarded). User
can then draw a hint stroke on each side of the dividing curve
(in the strip spanned by the yellow lines in Figure2) to adjust
the tilting angle of each local plane (see Figure4).

Ponytail. The ponytail primitive consists of four style
curves: a spine curve, a cross section curve, and two pro-
file curves (Figure5). The creation and editing of the spine
curve is the same as that of a stream curve. The user then
changes the viewpoint, rebuilds the supporting surface, and
sketches the cross section curve and profile curves on it. A
set of cross sections (circles) is then generated along partof
the spine curve between the profile curves. LetC1 andC2
denote the first (near scalp) and the last cross sections re-
spectively.

Three types of boundary constraints are derived (Fig-
ure5). The first type (purple) are defined at grid points near
to the cross sections, with their directions along the longitu-
dinal directions of the revolutional shape. The second type
(blue) are at grid points near the spine curve. Their direc-
tion assignment is the same as for stream curves except that
we start near the cross sectionC2 (since fewer changes of
boundary constraints means more efficient modification of
Cholesky factorization). The third type (green), called cen-
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Figure 7: A hairstyle with a short parting line, created withseven stream curves and a dividing curve.

tripetal constraints, are introduced to make the vector field
flow into the first cross sectionC1. They point to the center
of C1 and are defined at the region between two concentric
circlesR1 andR2 lying on the plane ofC1. The radii ofR1
andR2 are proportional to the radius ofC1 (we use 1.3 and
1.9). The magnitude of the last set of constraints is a parame-
ter to control the tightness of the ponytail (we use the default
value of 0.6). Essentially, the introduction of the centripetal
constraints transfers the complexity of creating a ponytail
from the user to the design of the ponytail sketch tool. With-
out the centripetal constraints, the user would need to draw
many more stream curves to guide the hair curves to pass
through the cross sections.

6. Implementation and Results

System Initialization The bounding volume and resolu-
tion of the discrete vector field is fixed during the whole
design process. The vector field resolution depends on the
desired hairstyle. A low resolution (about 25K variables) is
used for smooth hairstyles, and high resolution (about 50K
variables) for complex hairstyles such as a ponytail. The ini-
tialization of the linear system takes tens of seconds.

Hair Growth. To generate hair curves from the vector
field, root points are first uniformly sampled on the scalp,
with a small amount of randomness added. Two spherical
coordinatesθ ∈ [0,180) andφ ∈ [0,360) are used for scalp
surface parameterization, and the hair density is controlled
via the sampling steps of these two angles. Each hair curve
is a sequence of connected line segments. In hair growth, let
p denote the current end point of a hair curve, a new segment

Figure 6: A smooth hairstyle created with ten stream curves.

l ·v(p) is appended, wherev(p) is the directional vector lin-
early interpolated from the vector field, and the scalarl takes
a smaller value than the step sized in the vector field to make
the growth smooth (l = 0.5d in our implementation). Hair
growth is terminated when|v(p)| is too small (< 0.05 in our
implementation) orp is out of the bounding volume.

Scalp Penetration Detection and Avoidance. It is not
guaranteed that the flow lines in the vector field will not pen-
etrate the scalp, which is undesirable and should be avoided.
If necessary, the user can draw enough stream curves (usu-
ally about ten) around the scalp so that the flow lines in
the vector field will not penetrate the scalp. We use a sim-
ple strategy to alleviate such non-essential user interaction.
User first designs a hairstyle by drawing style curves with-
out considering the scalp penetration problem. When a sat-
isfactory hair shape is obtained, for each grid point near the
scalp with direction pointing inwards†, its direction is first
replaced with its projection on the tangent plane of the near-
est scalp point. All the grid points near the scalp are then
added as boundary constraints. The magnitude of these di-
rections are set small (we use 0.3) to reduce global influ-
ence. This step is done only once in the design process. This
strategy is useful for saving user interactions when designing
complex hairstyles such as ponytails.

Rendering. We use a free Renderman compliant software
Aqsis [Aqs07] and the hair rendering algorithm proposed by
Kajiya and Kay [KK89] to render all the results.

Results. Figure6 shows a result created only using stream
curves. Figure7 demonstrates a typical hairstyle with a part-
ing line. Figure8 demonstrates a hairstyle with two pony-
tails. The hairstyle in Figure1 uses eleven stream curves,
four dividing curves and one ponytail primitive. All exam-
ples are created in a short time. The most complex hairstyle
in Figure1 takes five minutes.

7. Conclusion
We present a hairstyle design system supported by an in-

tuitive sketching interface and a fast vector field solver. User

† This can be easily detected by computing the angle between the
direction and its nearest scalp normal.
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Figure 8: A hairstyle with two ponytails, created with four stream curves and two ponytail primitives. This is created inthree
minutes. See accompanying video for a demo.

can modify the hairstyle with interactive visual feedback.In-
teresting hairstyles can be easily designed.

Due to the smooth interpolation in the vector field, the out-
put hairstyles of our system may lack local variations that are
present in real human hair. There are two possible solutions.
More style primitives may be designed to introduce high lo-
cal variations, such as curls. Such an approach will require
much higher resolution of the vector field and interactive re-
sponse may become a problem. Another approach is to inte-
grate previous hair modeling techniques as a post-processing
step to add local details. Since the global shape and the posi-
tions of the hair curves are already satisfactory, post process-
ing on such output is easier than designing hairstyles from
scratch. Therefore, our system could be used as an indepen-
dent design tool or a complementary pre-processor for other
hair modeling techniques.
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