
Optimal Boundaries for Poisson Mesh Merging

Xiaohuang Huang1,2 ∗ † Hongbo Fu2 ‡ Oscar Kin-Chung Au2 ‡ Chiew-Lan Tai2 ‡

1Zhejiang University 2Hong Kong University of Science and Technology

Abstract

Existing Poisson mesh editing techniques mainly focus on design-
ing schemes to propagate deformation from a given boundary con-
dition to a region of interest. Although solving the Poisson system
in the least-squares sense distributes the distortion errors over the
entire region of interest, large deformation in the boundary condi-
tion might still lead to severely distorted results. We propose to
optimize the boundary condition (the merging boundary) for Pois-
son mesh merging. The user needs only to casually mark a source
region and a target region. Our algorithm automatically searches
for an optimal boundary condition within the marked regions such
that the change of the found boundary during merging is minimal
in terms of similarity transformation. Experimental results demon-
strate that our merging tool is easy to use and produces visually
better merging results than unoptimized techniques.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Boundary representations;

Keywords: optimal boundaries, Poisson mesh merging

1 Introduction

Directly modeling 3D geometric objects from scratch is often diffi-
cult and time-consuming. Instead, mesh editing techniques aim to
create models by modifying existing ones, usually obtained from
3D scanners. Mesh merging, as one of the most popular mesh
editing tools, produces new meshes by composing parts of existing
models. For example, user can merge the body of a women model
with the tail of a fish to create an interesting mermaid model. Mesh
merging is achieved either by blending details of meshes through
an intermediate surface or by deforming the merging boundaries of
meshes as well as the meshes themselves and stitching the merging
boundaries together. Our method falls into the second category.

In recent years, several differential mesh editing techniques have
been proposed (see the latest surveys in [Sorkine 2006] and [Huang
et al. 2006]). Besides their easy implementation, these techniques
support intuitive user interface: they allow the user to simply ma-
nipulate parts of a surface, called handles, and the deformation of
the rest surface is computed by solving the Poisson equation subject
to boundary condition from the handles.

By regarding the merging boundaries as the boundary condi-
tion, differential techniques are directly applicable to mesh merg-

∗This work was done while Xiaohuang Huang was an exchange student

at the Hong Kong University of Science and Technology.
†e-mail: huangxiaohuang@cad.zju.edu.cn
‡e-mail: {fuhb, oscarau, taicl}@cse.ust.hk

ing [Sorkine et al. 2004; Yu et al. 2004]. Without loss of generality,
in this paper we consider the merging problem as the deformation
problem of a source mesh when the source merging boundary is
deformed to the corresponding merging boundary on a target mesh,
which is never deformed.

Regardless of the specific differential representation (e.g. the
Laplacian coordinates [Sorkine et al. 2004; Lipman et al. 2004] or
gradient field [Yu et al. 2004]) used in these techniques, we call all
the merging tools based on these techniques Poisson mesh merging,
as all of them need to solve a set of Poisson equations subject to the
Dirichlet boundary condition. After merging, the errors from the
change of the boundary condition in the source mesh are distrib-
uted over the region of interest in the least-squares sense. However,
if the boundary condition undergoes large distortion, the merging
procedure may still produce seriously distorted results. The dis-
tortion is especially large near the boundary condition (Figure 1c),
as it provides soft or hard constraints to the deformation optimiza-
tion [Sorkine et al. 2004]. Therefore the effectiveness of the exist-
ing Poisson mesh merging techniques is highly dependent on how
carefully the user specifies the merging boundaries (the boundary
condition).

A similar problem exists in Poisson image editing. Poisson im-
age editing [Pérez et al. 2003] may generate bad image composi-
tion results, especially when the boundary conditions on the source
and target images severely conflict with each other. To address the
problem, Jia et al. [2006] propose to compute an optimized bound-
ary condition for Poisson image editing: a boundary condition is
optimal if it undergoes only a translation transformation in {r, g,
b} color spaces during composition.

Motivated by [Jia et al. 2006], we present an algorithm for easy
Poisson mesh merging. It finds an optimal merging boundary
within the regions casually marked by the user. A new objec-
tive function is proposed to find a boundary condition under an
(unknown) similarity transformation during merging in the least-
squares sense. Unlike images, meshes often have irregular sam-
pling. We incorporate an edge-based weighting scheme to alleviate
the influence of irregular sampling. Similar to [Jia et al. 2006], we
use an alternating optimization method to solve the resulting com-
plicated nonlinear optimization problem. After obtaining the opti-
mized boundary condition, we apply one of the state-of-the-art dif-
ferential mesh editing techniques, dual Laplacian mesh editing [Au
et al. 2006], to deform and merge the source mesh to the target
mesh.

Compared with existing Poisson mesh merging techniques, our sys-
tem supports much easier user interface: the user only needs to ca-
sually mark the region to be cut on the source mesh and the desir-
able region to be pasted on the target mesh. Without the user’s fine
tuning of the merging boundaries, the optimal boundary condition
leads to visually good merging results (Figure 1d).

2 Related Work

Poisson Image Editing. Poisson image editing is a powerful tool
for image composition [Pérez et al. 2003]. This technique seam-
lessly blends two images by solving the Poisson equations with

(a) (b) (c) (d)

Figure 1: The effectiveness of Poisson mesh merging is highly dependent on the choice of the boundary conditions. (a) Source mesh. (b)
Target mesh. (c) and (d) are the merging results with the user-specified (unoptimized) boundary condition (i.e. the boundary separating the
region in red and the region in blue) and the optimal one found by our algorithm (in blue), respectively.

guidance fields from the source image and a boundary condition
from the target image. However, the effectiveness of Poisson image
editing is dependent on how the user carefully specifies the bound-
ary condition. To make Poisson mesh editing easier to use, Jia et
al. [2006] propose to optimize the boundary condition within a re-
gion roughly marked by the user.

Differential Mesh Editing. The idea of Poisson image editing has
been successfully extended to 3D mesh editing domain [Yu et al.
2004; Sorkine et al. 2004]. Differential mesh editing techniques ei-
ther use gradient fields [Yu et al. 2004] (similar to the guidance
fields in image editing) or Laplacian coordinates [Lipman et al.
2004; Sorkine et al. 2004] to represent the original mesh. A de-
formed surface is reconstructed from these differential represen-
tations by solving a set of Poisson equations subject to the user-
specified boundary condition,

∆x = Tδ , x|∂ Ω = x0|∂ Ω, (1)

where x is an unknown scalar function representing x, y or z value of
vertices of the deformed surface, δ is the differential representation
of the undeformed surface, and x0 provides the desirable values
on the boundary ∂Ω. Unlike Poisson image editing, appropriate
transformation T is needed to transform δ before reconstruction, as
δ is not rotation-invariant [Lipman et al. 2004; Yu et al. 2004].

To obtain natural deformed results, the transformation T is required
to be as-rigid-as-possible, or as close to a similarity transformation
as possible if uniform scaling is needed. As 3D rotation transfor-
mations are nonlinearly dependent on vertex positions, differential
mesh editing is essentially nonlinear. In most of early solutions, for
fast computation, this transformation problem is approximately for-
mulated as linear least-squares minimization problems. According
to whether or not the formulation of T depends on the (unknown)
deformed surface, these linear techniques can be classified as im-
plicit [Sorkine et al. 2004; Fu et al. 2006] or explicit ones [Zayer
et al. 2005; Yu et al. 2004; Zhou et al. 2005; Shi et al. 2006]. How-
ever, all of them only partially solve the transformation problem;
they cannot handle either distortion caused by large angle rotation
or distortion from a pure translation of the boundary condition. To
completely address the problem, several nonlinear solutions have
been proposed recently [Huang et al. 2006; Botsch et al. 2006; Au
et al. 2006]. We use the dual Laplacian editing system [Au et al.
2006] to deform the source mesh after the boundary condition is
changed.

Mesh Merging and Surface Pasting. Cut-and-paste editing is
ubiquitous in text and image processing applications. It has been

extended to 3D mesh domain to compose new models from parts of
existing models.

Kanai et al. [1999] present a mesh merging technique based on local
3D metamorphosis. This method allows details from the source and
target meshes to be smoothly blended together in the final merging
result. Later, the idea of transferring details is extended to multires-
olution framework [Biermann et al. 2002] and differential frame-
work [Sorkine et al. 2004]. These methods need to build one-to-
one correspondence between the whole source and target regions of
interest, thus requiring their topologies the same. To remove this re-
quirement of topology, Fu et al. [2004] uses the base surfaces of the
source and target regions of interest for correspondence building.

Recently, merging techniques based on Poisson mesh editing have
been proved effective. Poisson mesh merging [Sorkine et al. 2004;
Yu et al. 2004] deforms the meshes while deforming the source and
target merging boundaries to be stitched together. As no surface
parameterization is involved for correspondence building, Poisson
mesh merging is applicable to regions with nonzero genus. How-
ever, if the merging boundary is not well chosen, the merging result
might still be bad. In this paper, we present an automatic algorithm
to find an optimal merging boundary within the merging regions
that are roughly specified by the user.

The merging results with most existing merging tech-
niques [Sorkine et al. 2004] largely depend on the well-adjusted
relative positions of source and target meshes. However, precisely
adjusting relative positions of models in 3D space is a difficult task,
even for experienced users. To ease user’s effort, Fu et al. [2006]
propose a configuration-independent merging that produces the
same merging result given the same boundary correspondence,
regardless of the relative positions of models. Sharf et al. [2006]
present another intuitive mesh merging technique, with which the
user only needs to roughly adjust the relative positions of models
until there is a significant overlap between them, then the source
mesh is automatically snapped and merged to the target mesh.
Hassner et al. [2005] introduce a part-in-whole model alignment
method to aid the user in positioning the models. After the model
alignment, they find a minimal cut on the graph respecting both
the source and target models to simultaneously cut and stitch the
models.

3 System Overview

We give a system overview in this section. Our goal is to find an op-
timal merging boundary on the target mesh to be used as the bound-
ary condition to deform the part of the source mesh containing the
features to be pasted onto the target mesh. The target mesh remains
undeformed. Our system contains the following main steps (Fig-
ure 2):

1. The user casually marks a region of interest Ω0 on the source
mesh. This region should be large enough to cover the fea-
tures Ω f eature (i.e. Ω f eature ⊂ Ω0) that the user really wants
to paste onto the target mesh. Intuitive cutting techniques,
e.g. easy mesh cutting [Ji et al. 2006], can be used to iden-
tify Ω f eature. To avoid having the optimal boundary ∂Ω cut-
ting into Ω f eature, we constrain ∂Ω to be within the region
Ω0 \Ω f eature. On the target mesh, the user roughly chooses a
region Ω1 onto which the features from the source mesh are
to be pasted. We assume that Ω1 does not contain complex
features; otherwise we simply remove the features before the
pasting so as to reduce distortion in the next parameterization
step.

2. For each vertex in Ω0 \Ω f eature, we find the corresponding
position on Ω1 (Figure 4). Unlike 2D image editing, there
is no explicit correspondence between the source and target
meshes in 3D. We use one of state-of-the-art surface parame-
terization methods, least squares conformal maps [Lévy et al.
2002], to build the correspondence.
Unfortunately, the band shape of Ω0 \ Ω f eature often leads
to large parameterization distortion, which might defeat the
gain from having an optimal boundary condition. To re-
duce parameterization distortion, we first fill the hole induced
by boundary ∂Ω f eature through an optimal triangulation that
minimizes the total triangle area [Barequet and Sharir 1995].
We then parameterize the surface (Ω0 \ Ω f eature)∪ Ω f illed ,
where Ω f illed is the region resulting from the boundary trian-
gulation. Replacing Ω f eature with Ω f illed for the purpose of
correspondence building has the following advantages. First,
additional distortion would not be introduced from parame-
terizing Ω f eature, which could be of complicated geometric
shape. Second, as Ω f eature is not used in surface parameter-
ization, this region can be of complex topology (e.g. with
nonzero genus).
To obtain a meaningful correspondence, the user needs to
manually translate, scale and rotate the parameterization of
Ω0 \Ω f eature with respect to the parameterization of Ω1. The
relative positions of the source and target models are roughly
fixed once the correspondence is determined. The subsequent
algorithm only fine tunes the final orientations and scalings.
Therefore, the user can anticipate the composition effect when
specifying the correspondence.

3. We search for a closed path ∂Ω within region Ω0 \Ω f eature as
the optimal boundary condition through an iterative optimiza-
tion algorithm (Section 4). To guarantee that ∂Ω encloses
Ω f eature, we cut across the ring-like region Ω0 \Ω f eature and
search for a boundary that begins and ends at this cut.

4. We move the vertices on ∂Ω to their corresponding target
positions on Ω1 and perform Poisson mesh merging to de-
form the region enclosed by ∂Ω (containing Ω f eature). We
choose to use the dual Laplacian editing framework [Au et al.
2006], as it completely solves the transformation problem of
differential-based deformation.

featureΩ

0Ω

∂Ω

C

Figure 2: An illustration of different types of boundaries and re-
gions on the source mesh. Ω0 is the region of interest (in red) casu-
ally marked by the user. Ω f eature contains the features to be merged
(in yellow). The optimal boundary ∂Ω (in blue) lies in the region
Ω0 \Ω f eature. Cut C (in green) breaks the ring of Ω0 \Ω f eature.

4 Optimal Boundary

Our boundary condition optimization for Poisson mesh merging is
inspired by [Jia et al. 2006]. However, extending the boundary con-
dition optimization algorithm from Poisson image pasting [Jia et al.
2006] to Poisson mesh merging is not straightforward.

First, the optimization problem in mesh merging becomes more
complicated, with more unknowns introduced. In 2D image edit-
ing [Jia et al. 2006], the resulting composite has the best quality
when the difference between the source and target boundary condi-
tions is a constant (i.e., corresponding to a pure translation of the
boundary condition in color spaces). In Poisson mesh merging, the
desirable scenario is when there exists a similarity transformation
(consisting of a rigid transformation and uniform scaling) between
the source and target merging boundaries, as there would be no
shearing or stretching distortion in the reconstructed meshes [Fu
et al. 2006]. However, such desirable transformation does not ex-
ist in most merging scenarios, thus we search for a least-squares
solution: the change of the boundary condition in the source mesh
during merging is minimal in terms of an unknown similarity trans-
formation.

Second, irregular sampling in meshes makes the objective function
in [Jia et al. 2006] inapplicable to Poisson mesh merging. For im-
ages, whether or not sampling factor is considered in the objective
function is insignificant due to the regular structure. However, sam-
pling consideration is crucial when designing the objective function
to optimize the boundary condition in 3D.

4.1 Boundary Energy Minimization

Following the above discussion, an optimal boundary for Poisson
mesh merging is a boundary ∂Ω in Ω0 \Ω f eature such that the trans-
formation between ∂Ω and its corresponding boundary ∂Ω∗ on Ω1

is as close as possible to an unknown similarity transformation T.
We formulate the objective function to be minimized as follows:

E(∂Ω,T) = ∑
e∈∂ Ω

‖Te−e∗‖ · length(e), ∂Ω ⊂ Ω0 \Ω f eature, (2)

where e is any edge on ∂Ω, i.e., a vector with its endpoint positions
as the starting and ending points, e∗ is the corresponding edge of e

(a)

(b)

(c) (d)

Figure 3: (a) Source. (b) Target. (c) and (d) are the merging re-
sults using the unoptimized and optimal boundary conditions, re-
spectively.

on Ω1, and ‖ · ‖ denotes L2 vector norm. As meshes often have ir-
regular sampling of geometry, we add the term length(e) to prevent
the optimal boundary from bypassing regions with dense sampling.
Another desirable effect of adding the weighting factor is that the
length of the optimal boundary will be as short as possible, pushing
it to approach ∂Ω f eature.

4.2 Iterative Optimization

Since the optimal boundary might contain all the vertices in Ω0 \
Ω f eature, minimizing E(∂Ω,T) to solve for the optimal merg-
ing boundary and the transformation simultaneously is intractable.
Similar to [Jia et al. 2006], we use an alternating method to solve
the minimization problem iteratively. Mainly, it contains the fol-
lowing steps:

1. Initialize ∂Ω as ∂Ω0.

2. Given the current boundary ∂Ω on the source mesh and its
corresponding boundary ∂Ω∗ in Ω1 on the target mesh, we
compute the optimal similarity transformation T. Specifically,
given the corresponding sets of points on ∂Ω and ∂Ω∗, we use
the algorithm in [Horn 1987] to compute a rigid motion. The
uniform scaling factor is defined as the ratio of the average
edge length of ∂Ω∗ to that of ∂Ω.

3. Given the current transformation T, we optimize the boundary
∂Ω.

4. Repeat steps 2 and 3 until the change of the energy E(∂Ω,T)
converges or it reaches a prescribed maximum number of it-
erations.

Given T, solving for ∂Ω by minimizing the boundary energy
E(∂Ω,T) is equivalent to finding a shortest path in Ω0 \Ω f eature.
However, we have an additional requirement here: ∂Ω should en-
close Ω f eature. The path found by a standard shortest path problem
(e.g. Dijkstra algorithm [Dijkstra 1959]) is very likely not the one
we need. To fulfill the requirement, we first break the ring-like
region Ω0 \Ω f eature by adding a cut C, as shown in Figure 2, and
then find a shortest path that starts and ends at C. After cutting, each
original vertex on the cut C is split into two vertices, on different
sides of C.

To achieve better performance, we want a cutting path C with mini-
mal number of vertices. A zigzag cut C may make the found short-
est path ∂Ω intersects C more than once, thus leading to a non-
optimal boundary condition [Jia et al. 2006]. Straightening the cut

Figure 4: Region Ω0 \Ω f eature on the source mesh and its corre-
sponding region on the target mesh.

can greatly reduce the possibility of multiple intersections. There-
fore we find the shortest path with a source vertex on ∂Ω0 and a
sink vertex on ∂Ω f eature as the cut C. The shortest path is com-
puted using Dijkstra algorithm [Dijkstra 1959] with edge lengths as
the weighting costs.

Given a cut C, we show how to compute a closest shortest path that
begins and ends at a vertex on C as the boundary ∂Ω. We associate
each edge e with cost ||Te− e∗|| · length(e). The accumulated cost
of a path is defined as the summation of the costs of all edges on
the path. For each vertex u on one side of the cut C, we use Dijkstra
algorithm to compute the shortest path path(u) with minimal cost
to the vertex v which is originally split from the same vertex as u.
The optimal boundary ∂Ω is set as the one with the minimum cost
from the set {path(u) | u ∈C}.

Like ours, the algorithm proposed by Hassner et al. [2005] finds
a merging boundary respecting both the source and target mod-
els. Their solution consists of two main steps: model alignment
(to find an appropriate transformation) followed by a minimal cut.
In a sense, their solution only corresponds to one iteration of ours
and thus is not optimal.

5 Examples and Discussion

In this section, we demonstrate that optimal boundary conditions
lead to merging results with less distortion (i.e., less shearing and
stretching) than those reconstructed using user-specified unopti-
mized boundary conditions Ω0. We do not compare the change of
the global shapes of the source features when using the two differ-
ent types of boundary conditions, as it is dependent on the scale fac-
tor. Instead, we compare the local distortions of the merged source
meshes. For the optimal or unoptimized boundary condition, we
use the ratio of the average length of the source and target merg-
ing boundaries to uniformly scale the Laplacian coordinates of the
source mesh to account for the difference in the sizes between the
source and target boundaries.

When the source and target merging boundaries are of very differ-
ent shapes, the deformed source mesh inevitably exhibits local dis-
tortion. The distortion is more noticeable near the merging bound-
ary, as the merging boundary serves as soft or hard constraint to
the deformation optimization. For the source and target models in
Figure 1, the region Ω0 \Ω f eature on the source mesh and its cor-
responding region on the target mesh are of very different shapes
(Figure 4). Using the user-specified boundary condition, the local
distortion, especially near the boundary (i.e. the waist region), is
large. In contrast, the optimal boundary condition leads to a much
better merging result. Better merging results are also demonstrated
by the examples in Figures 3, 5, 6 and 7, when optimal merging
boundaries are used.

(a)

(b) (c) (d)

Figure 5: (a) Source. (b) Target. (c) and (d) are the merging results using the unoptimized and optimal boundary conditions, respectively.

(a) (b) (c) (d)

Figure 6: (a) Source. (b) Target. (c) and (d) are the merging re-
sults using the unoptimized and optimal boundary conditions, re-
spectively.

We need a planar surface parameterization to build the correspon-
dence of Ω0 \Ω f eature between the source and target meshes. How-
ever, as Ω f eature itself is not involved in the parameterization step,
our system does not require the topology of Ω f eature to be homeo-
morphic to a disk. This is demonstrated by the example in Figure 8.

It is hard to theoretically prove the convergence of the proposed iter-
ative method. However, experiments show that the iterative process
has no convergence problem. Although the iterative process may
fall into a local minimum, the resulting boundaries always lead to
better merging results than those with unoptimized boundaries. As
the time complexity of the Dijkstra algorithm is O(N logN), for
each iteration, the overall computational complexity of finding an
optimal boundary is O(MN logN), where M and N are the number
of vertices on the cut C and in Ω0 \Ω f eature, respectively. For ex-
ample, given a region Ω0 \Ω f eature with about 10K vertices, it takes
about 1 minutes to compute the final optimal boundary condition.
Performing the Laplacian deformation is very efficient [Au et al.
2006].

6 Conclusion

We present an easy-to-use Poisson mesh merging tool without re-
quiring careful user-specified merging boundaries. Our algorithm

Figure 7: (a) Source. (b) Target. (c) and (d) are the merging re-
sults using the unoptimized and optimal boundary conditions, re-
spectively.

automatically finds an optimal boundary based on the information
casually provided by the user and produces visually better merging
results.

The distortion introduced in the correspondence building step using
surface parameterization definitely influences the final merging re-
sults. For models with complex shapes at Ω0\Ω f eature, the parame-
terization distortion might defeat the gain from the optimal bound-
ary. As a future work, we will explore other registration methods,
e.g. iterative closest point (ICP) algorithm [Besl and McKay 1992]
or its variants, instead of using direct surface parameterization tech-
niques.

The change of the local frames at each vertex of the boundary con-
dition before and after merging can be used to increase the smooth-
ness across the merging boundary [Yu et al. 2004]. We plan to
incorporate the local rotations or similarity transformations into
the boundary condition optimization formulation to find optimal

Figure 8: Our merging is applicable to a region of interest with
nonzero genus.

boundaries that will lead to better smoothness across the merging
boundary.

Currently, we search for the shortest paths on the graph of the orig-
inal mesh, which restricts the found optimal boundary to be com-
posed of the mesh edges. Getting rid of this constraint may further
improve the quality of merging results.

Acknowledgment

We thank the anonymous reviewers for the helpful comments. The
models are courtesy of Stanford University, 3D CAFE, Cyberware
and AIM@SHAPE Shape Repository. This work was supported by
a grant from the Research Grant Council of the Hong Kong Special
Administrative Region, China (Project No. HKUST6295/04E).

References

AU, O. K.-C., TAI, C.-L., LIU, L., AND FU, H. 2006. Dual
Laplacian editing. IEEE Transaction on Visualization and Com-
puter Graphics 12, 3, 386–395.

BAREQUET, G., AND SHARIR, M. 1995. Filling gaps in the bound-
ary of a polyhedron. Computer Aided Geometric Design 12, 2,
207–229.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registra-
tion of 3-D shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence 14, 2, 239–256.

BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D.
2002. Cut-and-paste editing of multiresolution surfaces. ACM
Transaction on Graphics 21, 3, 312–321.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
PriMo: coupled prisms for intuitive surface modeling. In Sym-
posium on Geometry Processing, 11–20.

DIJKSTRA, E. 1959. A note on two problems in connexion with
graphs. Numerische Mathematik 1, 1, 269–271.

FU, H., TAI, C.-L., AND ZHANG, H. 2004. Topology-free cut-
and-paste editing over meshes. In Geometric Modeling and
Processing 2004, 173–182.

FU, H., AU, O. K.-C., AND TAI, C.-L. 2006. Effective derivation
of similarity transformations for implicit Laplacian mesh editing.
Computer Graphics Forum. To appear.

HASSNER, T., ZELNIK-MANOR, L., LEIFMAN, G., AND BASRI,
R. 2005. Minimal-cut model composition. In SMI, 72–81.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America
4, 4, 629–642.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG, S.-
H., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph. 25, 3,
1126–1134.

JI, Z., LIU, L., CHEN, Z., AND WANG, G. 2006. Easy mesh
cutting. Computer Graphics Forum 25, 3, 283–291.

JIA, J., SUN, J., TANG, C.-K., AND SHUM, H.-Y. 2006. Drag-
and-drop pasting. ACM Trans. Graph. 25, 3, 631–637.

KANAI, T., SUZUKI, H., MITANI, J., AND KIMURA, F. 1999.
Interactive mesh fusion based on local 3D metamorphosis. In
Graphics interface ’99, 148–156.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. ACM Trans. Graph. 21, 3, 362–371.

LIPMAN, Y., SORKINE, O., COHEN-OR, D., LEVIN, D., RÖSSL,
C., AND SEIDEL, H.-P. 2004. Differential coordinates for in-
teractive mesh editing. In Proceedings of Shape Modeling Inter-
national, 181–190.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Transactions on Graphics 22, 3, 313–318.

SHARF, A., BLUMENKRANTS, M., SHAMIR, A., AND COHEN-
OR, D. 2006. SnapPaste: an interactive technique for easy mesh
composition. The Visual Computer 22, 9, 835–844.

SHI, L., YU, Y., BELL, N., AND FENG, W.-W. 2006. A fast
multigrid algorithm for mesh deformation. ACM Trans. Graph.
25, 3, 1108–1117.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Symposium on Geometry Processing, 179–188.

SORKINE, O. 2006. Differential representations for mesh process-
ing. Computer Graphics Forum 25, 4, 789–807.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND

SHUM, H.-Y. 2004. Mesh editing with Poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

ZAYER, R., RÖSSL, C., KARNI, Z., AND SEIDEL, H.-P. 2005.
Harmonic guidance for surface deformation. Computer Graph-
ics Forum 24, 3, 601–609.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO,
B., AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph Laplacian. ACM Trans. Graph. 24, 3, 496–503.

