
End-to-End Learning Local Multi-view Descriptors for 3D Point Clouds

Lei Li1* Siyu Zhu2 Hongbo Fu3† Ping Tan4 Chiew-Lan Tai1
1HKUST 2Alibaba A.I. Labs 3City University of Hong Kong 4Simon Fraser University

Abstract

In this work, we propose an end-to-end framework to
learn local multi-view descriptors for 3D point clouds. To
adopt a similar multi-view representation, existing studies
use hand-crafted viewpoints for rendering in a preprocess-
ing stage, which is detached from the subsequent descriptor
learning stage. In our framework, we integrate the multi-
view rendering into neural networks by using a differen-
tiable renderer, which allows the viewpoints to be optimiz-
able parameters for capturing more informative local con-
text of interest points. To obtain discriminative descriptors,
we also design a soft-view pooling module to attentively
fuse convolutional features across views. Extensive experi-
ments on existing 3D registration benchmarks show that our
method outperforms existing local descriptors both quanti-
tatively and qualitatively.

1. Introduction
Local descriptors for 3D geometry are widely recognized

as one of the cornerstones in many computer vision and
graphics tasks, such as correspondence establishment, reg-
istration, segmentation, retrieval, etc. Particularly, with the
prevalence of consumer-level RGB-D sensors, voluminous
scanned data requires robust local descriptors for scene
alignment and reconstruction [60, 4]. Such 3D data, how-
ever, is often noisy and incomplete, presenting challenges
to the design of local descriptors.

Existing hand-engineered local descriptors [20, 11, 46,
45, 53, 52, 48], proposed in the past few decades, are mostly
built upon histograms of low-level 3D geometric properties.
Recent trends with deep neural networks have motivated re-
searchers to develop learning-based local descriptors in a
data-driven manner [66, 8, 24, 19, 6, 57, 12]. Several types
of input representations for 3D local geometry have been
explored, such as raw point cloud patches [24, 6], voxel
grids [66, 12] and multi-view images [19, 67]. Currently,
on the geometric registration benchmark of 3DMatch [66],
most learning-based methods are built upon either Point-

*L. Li was an intern at Alibaba A.I. Labs.
†H. Fu is the corresponding author. E-mail: hongbofu@cityu.edu.hk

Net [41] with point cloud patches or 3D CNNs with voxel
grids, and 3DSmoothNet [12] achieves the state-of-the-art
performance with smoothed density value voxelization. De-
spite the impressive progress made by the voxel representa-
tion, literature on 3D shape recognition and retrieval [50,
42, 56] indicates superior performance of multi-view im-
ages than voxel grids, and some initial attempts [19, 67]
have been made to extend a similar idea to 3D local de-
scriptors. Meanwhile, a line of recent studies has advanced
2D CNNs in learning local descriptors from a single image
patch [15, 51, 34, 64, 23, 35, 32]. These motivate us to per-
form further investigation into a multi-view representation
for 3D points and their local geometry.

The main challenges of adopting the multi-view repre-
sentation in learning descriptors are as follows. First, to
obtain multi-view images, a set of viewpoints (virtual cam-
eras) are needed for 3D graphics rendering pipelines in a
preprocessing stage [50, 19]. In existing studies [50, 42, 19,
56, 9, 17], the viewpoints are either randomly sampled or
heuristically hand-picked. However, how to determine the
viewpoints in a data-driven manner to produce more infor-
mative renderings for neural networks still remains a ques-
tion. Second, an effective fusion operation is required to
integrate features from multiple views into a single com-
pact descriptor. Max-view pooling is a dominant fusion ap-
proach [50, 42, 19, 56], but this operation might overlook
subtle details [67, 56], leading to sub-optimal performance.

In this work, we propose a novel network architecture
that learns local multi-view descriptors for 3D point clouds
in an end-to-end manner, as illustrated in Fig. 1. Our net-
work consists of three main stages: (1) multi-view render-
ing for a 3D point of interest of a point cloud; (2) feature
extraction in each rendered view; and (3) feature fusion
across the views. Specifically, we first use an in-network
differentiable renderer [30] to project the 3D local geometry
of a specific point as multi-view patches. Viewpoints used
by the renderer are optimizable parameters during training.
The renderer can back-propagate supervision signals from
rendered pixels to the viewpoints, enabling joint optimiza-
tion of the rendering stage with the other two stages. Next,
to extract features in each rendered view, we leverage ex-
isting CNNs that are well matured in the task of learning

1

ar
X

iv
:2

00
3.

05
85

5v
1

 [
cs

.C
V

]
 1

2
M

ar
 2

02
0

single patch descriptors [51, 34]. Lastly, to fuse the fea-
tures across all the views, we examine the gradient flow
problem of max-view pooling [50] and then design a novel
soft-view pooling module. The former only considers the
strongest response across views for each position in fea-
ture maps, while in contrast, our design adaptively aggre-
gates all the responses with attentive weights estimated by
a sub-network. In the backward pass, our design allows
supervision signals to better flow into each input view for
optimization. The experiments conducted on the 3DMatch
benchmark [66] shows that our method outperforms ex-
isting hand-crafted and learned descriptors, and is robust
against rotation and point density as well.

Our contributions in this work are summarized as: (1)
we propose a novel end-to-end framework for learning local
multi-view descriptors of 3D point clouds, with the state-of-
the-art performance; (2) the viewpoints are optimizable via
in-network differentiable rendering; (3) a soft-view pooling
module fuses features across views attentively with a better
gradient flow. We will make our code publicly available.

2. Related Work
Hand-crafted 3D Local Descriptors. Over the past few

decades, a large body of literature has investigated descrip-
tors for encoding geometric information of local neighbor-
hoods of 3D points. A full review is beyond the scope of
this paper. Classic descriptors include, to name a few, Spin
Image [20], 3D Shape Contexts [11], PFH [46], FPFH [45],
SHOT [53], and Unique Shape Context [52]. These hand-
crafted descriptors are mostly constructed from histograms
of low-level geometric properties. Despite the progress
made by these descriptors, they may fail to handle well
the nuisances commonly observed in real scanned data, like
noise, incompleteness, and low resolution [13].

Learned 3D Local Descriptors. With the recent suc-
cess of deep neural networks [44], more attention has
been shifted to developing learning-based 3D local descrip-
tors [6, 24, 66, 12, 19]. In general, these methods fall into
three categories according to input representations, includ-
ing point cloud patches, voxel grids and multi-view images.

Point cloud patches are the most straightforward repre-
sentation for local neighborhoods of points. PointNet, a
seminal work done by Qi et al. [41], is specifically designed
to handle the unstructured nature of point clouds. Studies
like [6, 5, 62] build upon PointNet to learn descriptors for
point cloud patches. There also exist PointNet-based works
that learn local descriptors jointly with other tasks, such as
keypoint detection [63] and pose prediction [7].

Voxel grids, used in works like 3DMatch [66] and
3DSmoothNet [12], are a common structured represen-
tation for 3D point clouds [33, 59, 42]. To reduce
noise and boundary effects, Gojcic et al. [12] proposed to
use smoothed density value voxelization in 3DSmoothNet.

Their method achieves the state-of-the-art performance on
the 3DMatch benchmark [66], substantially outperforming
the aforementioned PointNet-based approaches [6, 5, 7].

Multi-view images have demonstrated better perfor-
mance than voxel grids in the task of 3D shape recogni-
tion and retrieval [50, 42, 43], owing to their ability of de-
livering rich information of 3D geometry. Motivated by
the success in global shape analysis, researchers have ex-
tended the multi-view representation to 3D local descrip-
tor learning [19, 67]. Huang et al. [19] re-purposed the
CNN architecture from [50, 26] to extract local descriptors
of 3D shapes (e.g., airplanes or chairs) from multi-view im-
ages, which are rendered offline with clustered viewpoints.
There exist studies like [8, 43] that use 2D filtering for in-
network image generation from point clouds. In contrast,
our work considers the viewpoints as optimizable parame-
ters and performs multi-view rendering with a differentiable
renderer [30] in neural networks.

To fuse view features into a single compact representa-
tion, max-view pooling is widely used owing to its compu-
tational efficiency and view-order invariance [50, 42, 56, 19,
43, 67], but it tends to overlook subtle details as discussed
in [56, 67, 34, 65, 37]. Zhou et al. [67] proposed Fusep-
tion, a residual-learning module for feature fusion, but their
module is not view-order invariant and its number of pa-
rameters grows with the number of input views. Alternative
approaches, such as feature aggregation with NetVLAD [2]
and RNN [16], have also been explored, but excessive com-
putation or view ordering is required. Differently, by ana-
lyzing the gradient flow of max-view pooling, we propose
soft-view pooling that adaptively aggregates features with
attentive weights in a view-order invariant manner.

Differentiable Rendering. The conventional 3D graph-
ics rendering pipeline involves rasterization and visibility
test, which are non-differentiable discretization operations
with respect to the projected point coordinates and view-
dependent depths [30]. Thus supervision signals cannot
flow from the 2D image space to the 3D shape space,
preventing the integration of this pipeline into neural net-
works for end-to-end learning. Recently researchers have
designed several differentiable rendering frameworks [31,
21, 29, 28, 39, 58, 3, 30] that incorporate approximated gra-
dient formulations for the discretization operations. Among
them, Soft Rasterizer (SoftRas), a state-of-the-art differen-
tiable renderer developed by Liu et al. [30], treats mesh
rendering as a process of probabilistic aggregation of tri-
angles. In this work, we modify SoftRas to extend its ap-
plication to point cloud rendering and adopt a hard-forward
soft-backward scheme.

3. Methodology
Given a 3D point cloud P , we aim at training a neural

network f that can extract a discriminative local descriptor

2

Figure 1: An end-to-end network that learns local multi-view descriptors for point clouds. The network takes point clouds
as input and performs in-network multi-view rendering with a differentiable renderer for points of interest. Feature maps are
extracted individually from each view and fused together via a soft-view pooling module to obtain the final descriptors.

for a point p ∈ P in an end-to-end manner. To this end, we
perform projective analysis on the local geometry of p by
using a multi-view representation. Compared to point cloud
patches or voxel grids, the multi-view representation can
capture different levels of local context more easily [19, 42].

Our network f is comprised of three stages as shown
in Fig. 1. First, the network f directly takes the point
cloud P and the point of interest p as inputs and em-
ploys SoftRas [30] to render the local neighborhood of
p as multi-view patches (Sec. 3.1). Second, we extract
convolutional feature maps from each rendered view patch
through a lightweight 2D CNN (Sec. 3.2). Lastly, all the
extracted view features are compactly fused together by a
novel soft-view pooling module to obtain the local descrip-
tor (Sec. 3.3). The three stages of f are jointly trained in an
end-to-end manner such that descriptors of corresponding
points that are geometrically and semantically similar are
close to each other, while descriptors of non-corresponding
points are distant to each other (Sec. 3.4).

3.1. Multi-view Rendering

Optimizable Viewpoints. Existing multi-view ap-
proaches select a set of rendering viewpoints according to
certain rules, e.g., by clustering [19] or circling around a
viewing center at a fixed step [50, 56, 9]. However, this view
selection process is detached from the subsequent multi-
view fusion stage, and thus might produce less representa-
tive inputs for the latter. SoftRas allows the viewpoints to be
optimizable parameters, which can be jointly trained with
other network parameters in later stages. To set up virtual
cameras in a look-at manner [1], we define the viewpoint
parameters as {ck = (θk, φk, ρk,u)}nk=1 using spherical
coordinates, where n is the number of viewpoints. Each
viewpoint ck is represented by two angles θk and φk, the
distance ρk from the local origin and a consistent upright
orientation u. Given the point of interest p as the origin,
the local reference frame (LRF) for {ck} is defined as fol-
lows (Fig. 2): the z-axis is collinear to the normal of p; the
x-axis is the cross product of u and the z-axis (a small per-

turbation to u if the normal is parallel to u); and the y-axis
is the cross product of the z-axis and x-axis. We constrain
{ck} to be within the hemisphere where the point normal
resides (Sec. 3.4). To augment rotation invariance in the
learned descriptors, we rotate each rendered view patch at
90-degree intervals [19] (i.e., 4 in-plane rotations) within
the network. Thus, a set of 4n view patches are obtained
through rendering as detailed next.

Figure 2: Local spherical coordinates (θk, φk, ρk) for a
viewpoint ck.

Differentiable Rendering. To address the non-
differentiable issue of the conventional 3D graphics render-
ing pipeline (Fig. 3-a), SoftRas treats mesh rendering as a
process of probabilistic aggregation of triangles in 2D. To
render the point cloud P as view patches with {ck}, one
approach is to firstly transform P to a mesh via surface
reconstruction [22], which, however, is challenging to in-
tegrate into our end-to-end framework and may not han-
dle noise well (e.g., in laser scans of outdoor scenes). In-
stead, we modify SoftRas to make it amenable to point
cloud rendering (Fig. 3-b). We consider each point qj ∈ P
as a sphere [19], whose radius can be a fixed value [19]
or derived from the average distance between qj and its
local neighbors. After perspective projection with a spe-
cific viewpoint ck, the point qj produces a probability map
Dj that describes the probability of each output pixel being
covered by qj [30]. The i-th pixel in the rendering output I
(of size 64 × 64) is defined as

Ii =
∑
j

w(Dij , zj)Cj + wbCb, (1)

3

where Cj is the rendered attribute (e.g., color or view-
dependent depth) of qj , Cb is a default background value,
and zj is the depth of qj . The weighting function w(·) de-
signed in [30] is biased to points that are closer to the cam-
era and the i-th pixel, and

∑
j w(·)+wb = 1. Such a linear

formulation in Eq. 1 approximates the rasterization and vis-
ibility test in the conventional rendering pipeline (Fig. 3),
and it is naturally differentiable. Since input point clouds
may lack color information, we use view-dependent depth
as Cj [8, 61], which is invariant to illumination changes. We
refer the interested reader to [30] for detailed implementa-
tions and discussions of Dj and w(·).

Figure 3: Rendering pipelines for point clouds: (a) Con-
ventional 3D graphics rendering; (b) Soft Rasterizer [30]
extended to 3D point cloud rendering.

Figure 4: Multi-view rendering samples (depth, size =
64×64) for a point p. Top: renderings of our hard-forward
soft-backward scheme (Fig. 3-a); Bottom: renderings of
Soft Rasterizer [30] (Fig. 3-b).

Although the differentiability of Eq. 1 makes it possi-
ble for in-network rendering, we observed artifacts, such as
blurry pixels at regions with large depth discontinuity, in
the rendering outputs (see Fig. 4). To mitigate the influence
of artifacts on the subsequent feature extraction, we instead
adopt a hard-forward soft-backward scheme for rendering
point clouds with SoftRas, sharing a similar idea to [21].
Specifically, in the forward pass, we perform rasterization
and visibility test to obtain rendering results in the same
way as the conventional rendering pipeline (Fig. 3-a). In
the backward pass, we compute approximated gradients for
the rendering using Eq. 1 of SoftRas. We found that this

approximation scheme works well in our experiments.

3.2. Feature Extraction

Let {Ik}4nk=1 be the set of multi-view patches produced
in the rendering stage for the point p. This 2D representa-
tion can naturally lend itself to existing patch analysis net-
works. We adopt a lightweight CNN backbone similar to
L2-Net [51, 34], a state-of-the-art network for learning lo-
cal image descriptors. Concretely, the network is composed
of six stacked convolutional layers, each followed by nor-
malization [54] and ReLU layers. We feed each patch Ik
to the network and obtain a corresponding feature map de-
noted as Fk, which is of size 8 × 8 with 128 channels.

3.3. Multi-view Fusion

Given the set of feature maps {Fk}4nk=1 as input, we per-
form feature fusion across views to obtain a more compact
multi-view representation. Let F̃ i denote the feature value
at location i of the fused output F̃ (the same size as Fk),
and i iterates over all spatial and channel-wise positions
(Fig. 5). Max-view pooling is a widely adopted fusion ap-
proach for its simple computation and invariance to view
ordering. However, this operation suffers from the follow-
ing gradient flow problem in back-propagation. Mathemat-
ically, max-view pooling can be expressed as

F̃ i =
∑
k

αikF ik, (2)

where
∑
k α

i
k = 1 and the weights {αik} are in a one-hot

form for selecting the maximum value. In the backward
pass, the gradient of Eq. 2 is

∂F̃ i

∂F ik
=

{
1 if F ik is the maximum value,
0 otherwise.

(3)

Thus, according to the chain rule, supervision signals from
loss functions cannot flow into certain locations in Fk if the
locations do not have the maximum feature values, which
may guide CNNs to overlook some details in feature extrac-
tion. An alternative approach is average-view pooling with
αik = 1

4n to alleviate the gradient flow problem. However,
as shown in existing studies [19], this approach performs
worse than max-view pooling, partially because treating
features equally across views may reduce the contribution
of useful features while increasing the effect of insignificant
features, leading to less discriminative descriptors.

Based on the above analysis, we propose soft-view pool-
ing that adaptively estimates attentive weights {αik} with a
sub-network. Specifically, the sub-network takes each Fk
as input and follows an encoder-decoder design to regress
the corresponding weights. The sub-network performs
downsampling and then upsampling by a factor of 2 for both
spatial size and channel depth, using a 3 × 3 convolutional

4

Figure 5: Multi-view fusion at location i that iterates over
all spatial and channel-wise positions (top: feature maps of
each view; bottom: fused feature maps).

layer and a 3 × 3 up-convolutional layer respectively, and a
ReLU layer in-between. The output weight map is denoted
as αk (the same size as Fk). Afterward, for each location
i as defined above, the softmax function is applied to {αik}
for normalization so that

∑
k α

i
k = 1 holds. Note that the

above computation is invariant to view orders.
At last, the network f embeds the fused feature F̃ to a

d-dimensional descriptor space with a fully-connected layer
and a subsequent l2 normalization layer.

3.4. Training

To train the network f , we sample matching point pairs
in the overlapped region of two point clouds (at least 30%
overlap). Given a batch of matching point pairs B =
{(pi,qi)}, we follow [12, 18] to adopt a batch-hard (BH)
triplet loss

LBH =
1

|B|

|B|∑
i=1

[
m+ ‖f(pi)− f(qi)‖2−

min
j=1···|B|
j 6=i

‖f(pi)− f(qj)‖2
]
+
,

(4)

where [·]+ = max(·, 0), and m is a margin and set to 1. For
a training triplet, qi is the positive sample of pi, and LBH
considers the hardest negative sample qj within the batch
B for pi. As mentioned in Sec. 3.1, we also impose range
constraints for the optimizable viewpoints as follows:

LOV =
1

n

n∑
k=1

∑
x∈{θk,φk,ρk}

[|x− xa + xb
2
| − xb − xa

2
]+, (5)

where xa = {0, 0, 0.3} and xb = {2π, π/2, 1} for θk,
φk and ρk respectively. Thus, the total loss is L = LBH +
λLOV , where λ is empirically set to 1.

We implemented the network with PyTorch [38]. We
set the viewpoint number n = 8 and the descriptor dimen-
sion d = 32 (Sec. 4.4). The viewpoint parameters θk, φk,
and ρk were initialized randomly within the range in Eq. 5,
and u was initialized to [0,−1, 0]>. We use Adam [25]
for stochastic gradient descent with |B| = 24 and an initial
learning rate of 0.001. The network is trained for 16 epochs,
and the learning rate is decayed by 0.1 every 4 epochs.

4. Experiments
4.1. 3DMatch Benchmark

Dataset. We evaluate the proposed method on the
widely adopted geometric registration benchmark from
3DMatch [66]. The benchmark consists of RGB-D scans
of 62 indoor scenes, an ensemble of several existing RGB-
D datasets [55, 49, 60, 27, 14]. The data is split into 54
scenes for training and validation, and 8 scenes for testing.
In each scene, point cloud fragments are obtained by fusing
50 consecutive depth frames. For each fragment in the test-
ing set, a set of 5,000 randomly sampled points is provided
as keypoints for descriptor extraction.

Metric. The recall metric is used for comparisons on the
testing set by averaging the number of matched point cloud
fragments [6, 5, 12]. Consider a set of point cloud fragment
pairs G = {(P,Q)}, where point clouds P and Q have at
least 30% overlap after alignment. For a specific descriptor
extraction method g(·), the set of putative matching points
between P and Q is computed in the descriptor space as
follows:

M = {(p ∈ P,q ∈ Q)|g(p) = nn(g(q), g(P))∧
g(q) = nn(g(p), g(Q))},

(6)

where p and q are keypoints and nn(·) is the nearest neigh-
bor search. The recall metricR is then defined as follows:

R =
1

|G|

|G|∑
i=1

[(1

|Mi|
∑

p,q∈Mi

[
‖p− Ti(q)‖2 < τ1

])
> τ2

]
,

(7)

where [·] is the Iverson bracket, and Ti(·) is the ground-
truth transformation for aligning the i-th fragment pair in
G. The distance threshold τ1 for matching points is set to
10 cm. The inlier ratio τ2 ranges from 0.05 to 0.2. To re-
liably find correct alignment parameters between two over-
lapping point clouds, the number of RANSAC [10] itera-
tions is 55,000 for τ2 = 0.05 and 860 for τ2 = 0.2 [6, 12].

4.2. Evaluation Results

Following [6, 5, 12], we compare our method (32-d) with
several existing 3D local descriptors on the benchmark. For
hand-crafted descriptors, FPFH [45] (33-d) and SHOT [53]
(352-d) are tested, and their implementations come from
PCL [47]. For learned descriptors, 3DMatch [66] (512-
d), CGF [24] (32-d), PPFNet [6] (64-d), PPF-FoldNet [5]
(512-d) and the current state-of-the-art 3DSmoothNet [12]
(32-d) are tested. Additionally, we also compare with
LMVCNN [19], a learned multi-view descriptor baseline
using viewpoint clustering for offline rendering and max-
view pooling for multi-view fusion. The original LMVCNN
uses AlexNet [26] as its CNN backbone and outputs 128-
d descriptors, but for fair comparisons, we reimplemented

5

FPFH SHOT 3DMatch CGF PPFNet PPF-FoldNet 3DSmoothNet LMVCNN Ours
τ2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

Kitchen 50.2 8.7 74.3 26.1 58.1 9.7 61.3 12.3 89.7 - 78.7 - 97.4 62.8 98.8 76.5 99.4 89.5
Home 1 70.5 23.1 80.1 48.7 72.4 17.3 72.4 23.7 55.8 - 76.3 - 96.2 76.9 97.4 78.8 98.7 85.9
Home 2 60.1 24.0 70.7 37.5 61.5 17.8 58.2 23.1 59.1 - 61.5 - 90.9 66.3 90.9 68.3 94.7 81.3
Hotel 1 71.2 6.2 77.4 26.5 54.4 0.9 62.8 8.8 58.0 - 68.1 - 96.5 78.8 99.6 91.6 99.6 95.1
Hotel 2 57.7 5.8 72.1 18.3 48.1 6.7 56.7 5.8 57.7 - 71.2 - 93.3 72.1 99.0 90.4 100.0 92.3
Hotel 3 75.9 11.1 85.2 31.5 61.1 1.9 83.3 18.5 61.1 - 94.4 - 98.1 88.9 100.0 90.7 100.0 94.4
Study 46.9 0.3 64.0 6.2 51.7 2.4 44.9 2.4 53.4 - 62.0 - 94.5 72.3 95.2 77.4 95.5 80.1
MIT Lab 44.2 1.3 62.3 20.8 50.6 5.2 45.5 3.9 63.6 - 62.3 - 93.5 64.9 90.9 74.0 92.2 76.6

Average 59.6 10.1 73.3 26.9 57.3 7.7 60.6 12.3 62.3 - 71.8 - 95.0 72.9 96.5 81.0 97.5 86.9

Table 1: Average recall (%) of different methods on the 3DMatch benchmark with τ1 = 10cm and τ2 = 0.05 or 0.2.

LMVCNN with the same CNN backbone and descriptor di-
mensionality (32-d) as our method. We use the implemen-
tations and trained weights from the authors for 3DMatch,
CGF and 3DSmoothNet. Since the implementations of
PPFNet and PPF-FoldNet are not publicly accessible, we
include their reported performance for completeness.

Table 1 shows the comparison results on the bench-
mark. For τ2 = 0.05, our method achieves an average
recall of 97.5%, outperforming all the competing descrip-
tors. Nevertheless, τ2 = 0.05 is a relatively loose thresh-
old on 3DMatch, since 3DSmoothNet (95.0%), LMVCNN
(96.5%) and our method all have achieved almost saturated
performance with relatively small difference. Even so, our
method obtains higher recalls in most testing scenes than
3DSmoothNet and LMVCNN. More notably, for a stricter
condition τ2 = 0.2, there is significant improvement of our
method over the other competitors. Specifically, our method
maintains a high average recall of 86.9%, while 3DSmooth-
Net and LMVCNN drop to 72.9% and 81.0%, respectively.
The performance of FPFH, SHOT, 3DMatch, and CGF falls
below 30%.

In Fig. 6, we plot the average recalls with respect to
a range of τ2, illustrating the consistency of improve-
ment brought by our method over the compared descrip-
tors under different inlier ratio conditions. Additionally,
Table 2 lists the average number of correct correspon-
dences found by each descriptor, which is computed as
1
|G|
∑|G|
i=1

∑
p,q∈Mi

[
‖p − Ti(q)‖2 < τ1

]
, using the same

notations as in Eq. 7. It is observed that our multi-view
descriptor is about 1.5× and 1.3× the average number of
correspondences of 3DSmoothNet and LMVCNN, respec-
tively. This clearly accounts for the dominant robustness of
our descriptor. Additionally, Fig. 7 visualizes some point
cloud registration results obtained by different descriptors
with RANSAC. Particularly, it is observed that our descrip-
tor is robust in the registration of fragments with large flat
regions (the second row).

Rotated 3DMatch Benchmark. To evaluate the ro-
bustness of the descriptors against rotations, we construct
a rotated 3DMatch benchmark [5, 12] by rotating the test-

0.00 0.04 0.08 0.12 0.16 0.20
τ2

0

20

40

60

80

100

R
ec

al
l

(%
)

FPFH

SHOT

3DMatch

CGF

3DSmoothNet

LMVCNN

Ours

Figure 6: Average recall (%) w.r.t inlier ratio τ2 on the
3DMatch benchmark.

FPFH SHOT 3DMatch CGF 3DSmoothNet LMVCNN Ours

Kitchen 104 154 104 131 274 276 380
Home 1 158 207 134 168 325 344 438
Home 2 132 183 125 159 318 314 395
Hotel 1 103 131 74 95 272 347 457
Hotel 2 105 124 64 101 239 286 407
Hotel 3 131 160 65 134 277 301 446
Study 65 84 66 58 172 239 299
MIT Lab 84 122 84 84 247 301 366

Average 110 146 89 116 266 301 398

Table 2: Average number of correct correspondences on the
3DMatch benchmark.

ing fragments with randomly sampled axes and angles in
[0, 2π]. The keypoint indices of each fragment are kept un-
changed. Table 3 gives the average recalls for each descrip-
tor in the Rotated column. Our method achieves average
recalls of 96.9% and 82.1% for τ2 = 0.05 and 0.2 respec-
tively, both surpassing the performance of 3DSmoothNet
(94.9% and 72.7%), LMVCNN (95.7% and 76.7%) as well
as the other descriptors. The evaluation results indicate that
our method can handle rotation well.

Sparse 3DMatch Benchmark. To evaluate the ro-

6

Figure 7: Geometric registration of point cloud 1 and point cloud 2 by different descriptors with RANSAC.

bustness of the descriptors against point density, we fol-
low [5, 12] to construct a sparse 3DMatch benchmark. Con-
cretely, for each testing fragment, the keypoints are firstly
retained and then 50% or 25% of the remaining points are
randomly selected. The evaluation results are shown in Ta-
ble 3 (the last two columns). It is found that owing to the
sphere-based rendering, our method is able to handle differ-
ent point densities, like LMVCNN and 3DSmoothNet, and
maintains the superior performance.

Rotated Sparse (0.5) Sparse (0.25)
τ2 0.05 0.2 0.05 0.2 0.05 0.2

FPFH 60.1 10.0 59.2 9.5 57.8 8.5
SHOT 73.3 26.9 72.3 25.5 70.7 23.1
3DMatch 11.6 1.4 73.1 15.8 73.3 15.9
CGF 60.7 12.5 52.6 7.8 41.7 3.8
PPFNet 0.3 - - - - -
PPF-FoldNet 73.1 - - - - -
3DSmoothNet 94.9 72.7 94.4 71.7 94.8 70.1
LMVCNN 95.7 76.7 96.2 81.3 95.9 81.5
Ours 96.9 82.1 97.2 87.2 97.3 86.1

Table 3: Average recall (%) on a rotated or sparse 3DMatch
benchmark with τ1 = 10cm and τ2 = 0.05 or 0.2.

Input prep. Inference Total

3DMatch 0.1 2.0 2.1
CGF 10.6 0.1 10.7
3DSmoothNet 39.4 0.2 39.6
Ours 7.2 1.5 8.7

Table 4: Average running time (ms) per point on the
3DMatch benchmark.

Running Time. Table 4 summarizes the running time
for the learned descriptors on the standard 3DMatch bench-
mark. All the experiments were performed on a PC with
an Intel Core i7 @ 3.6GHz, a 32GB RAM and an NVIDIA
GTX 1080Ti GPU. The input preparation in Table 4 refers
to voxelization with TDF [66] for 3DMatch, spherical his-
togram computation [24] for CGF, LRF computation and

SDV voxelization [12] for 3DSmoothNet, and multi-view
rendering (Sec. 3.1) for our method. The inference in Ta-
ble 4 refers to descriptor extraction from the prepared inputs
with neural networks. The results show that the input prepa-
ration stage dominates the running time of our method. Ad-
ditionally, for sphere-based rendering (Sec. 3.1), it takes
0.16ms to determine a point radius by neighborhood query
with FLANN [36] (used in our implementation), while al-
ternatively the computation can be eschewed by using a
fixed radius as in [19]. Nevertheless, our method still
demonstrates competitive running time performance.

4.3. Generalization to Outdoor Scenes

We further evaluate the generalization ability of the
descriptors on an outdoor-scene benchmark constructed
by Gojcic et al. [12] with point clouds from the ETH
dataset [40]. This benchmark consists of four scenes, in-
cluding Gazebo-Summer, Gazebo-Winter, Wood-Summer
and Wood-Autumn. The point clouds were obtained by a
laser scanner and mostly about outdoor vegetation. Thus,
the point clouds are in a large spatial range with a low reso-
lution and contain complex and noisy local geometry. Iden-
tical to the 3DMatch benchmark, 5,000 keypoints are ran-
domly sampled in each point cloud for descriptor extrac-
tion. The evaluation metric is the same as that in Sec. 4.1.
Following [12], no fine-tuning is performed for the descrip-
tors trained on the 3DMatch benchmark. To accommo-
date the low resolution and large spatial range of the point
clouds, the voxel grids for 3DMatch and 3DSmoothNet are
enlarged with longer edges (3× and 5× respectively) than
those in Sec. 4.2. The radius of spherical histogram in CGF
is 3.3× longer. For LMVCNN and our method, the distance
ρk in each viewpoint ck is multiplied by a factor of 3.

The average recall results are shown in Table 5.
Our method (79.9%) achieves comparable performance to
3DSmoothNet (79.0%). Meanwhile, our method signifi-
cantly outperforms LMVCNN (39.7%) and SHOT (61.1%),
and the other descriptors (including CGF, 3DMatch and
FPFH) fall below 25%. To account for the deteriorated

7

performance of LMVCNN, further experiments on its used
view selection and multi-view fusion strategies are per-
formed in Sec. 4.4. The above results show that our method
trained on the 3DMatch benchmark can generalize well to
outdoor scenes.

Gazebo Wood
Sum. Wint. Sum. Aut. Avg.

FPFH 40.2 15.2 24.0 14.8 23.6
SHOT 73.9 45.7 64.0 60.9 61.1
3DMatch 22.8 8.7 22.4 13.9 16.9
CGF 38.6 15.2 19.2 12.2 21.3
3DSmoothNet 91.3 84.1 72.8 67.8 79.0
LMVCNN 53.3 31.8 42.4 31.3 39.7
Ours 85.3 72.0 84.0 78.3 79.9

Table 5: Average recall (%) on the ETH benchmark with
τ1 = 10cm and τ2 = 0.05.

4.4. Ablation Study

Descriptor Dimension & Viewpoint Number. In Fig. 8
we plot the average recalls of our method with different de-
scriptor dimensions d and viewpoint numbers n (as defined
in Sec. 3.3 and Sec. 3.1). It is found that increased descrip-
tor dimensions (d ≥ 32) and viewpoint numbers (n ≥ 8)
lead to saturated performance. Thus we adopt d = 32 and
n = 8 for our method in the experiments.

Viewpoints. In Table 6 (top), we show the performance
of our network f trained with different viewpoint selection
rules in multi-view rendering. Concretely, the straightfor-
ward random sampling rule places the viewpoints randomly
within the range in Eq. 5. The viewpoint clustering rule
used in LMVCNN [19] selects three representative viewing
directions via K-medoids clustering. The orbited placement
rule sets the viewpoints with ρ = 0.3, φ = π/6, and θ at a
π/4 step (Sec. 3.1), similar to the strategy used in 3D shape
recognition works [50, 56, 9]. The performance of f with-
out rotation augmentation to the rendered view patches is
also provided. It is found that our optimizable viewpoints
produce better performance than these alternative view se-
lection rules, especially on the generalization ability to the
ETH outdoor dataset.

Multi-view Fusion. We perform experiments to com-
pare our soft-view pooling with several alternative multi-
view fusion approaches, including max-view pooling [19],
Fuseption [67], and NetVLAD [2]. We list the performance
of the network f trained with the above fusion approaches
in Table 6 (bottom). While on the 3DMatch dataset the
improvement of soft-view pooling is small compared with
max-view pooling, our method shows significantly better
generalization on the ETH outdoor dataset. This is partially
because the low-resolution scans of outdoor vegetation in
ETH would produce relatively noisy renderings, presenting
challenges to max-view pooling for selecting the strongest

feature response. Differently, the response is adaptively
gathered in our method with attention.

16 32 64 128

Descriptor Dimension d

60

65

70

75

80

85

90

95

100

A
ve

ra
ge

R
ec

al
l

1 2 4 8 16

Viewpoint Number n

τ2 = 0.05

τ2 = 0.2

Figure 8: Average recall (%) w.r.t descriptor dimension d
and viewpoint number n on the 3DMatch benchmark.

3DMatch ETH
τ2 0.05 0.2 0.05

Random sampling 97.0 84.1 64.8
Viewpoint clustering 96.7 83.5 53.3
Orbited placement 92.5 55.2 42.2
Ours w/o rotation augment. 96.9 85.6 54.9
Ours 97.5 86.9 79.9

Max-view pooling 96.9 85.4 66.8
Fuseption 97.1 85.1 55.9
NetVLAD 95.9 77.4 58.7
Ours 97.5 86.9 79.9

Table 6: Ablation study of viewpoint selection and multi-
view fusion on the 3DMatch and ETH benchmarks.

5. Conclusion
We have presented a novel end-to-end framework for

learning local multi-view descriptors of 3D point clouds.
Our framework performs in-network multi-view rendering
with optimizable viewpoints that can be jointly trained with
later stages, and integrates convolutional features across
views attentively via soft-view pooling. We demonstrate the
superior performance of our method and its generalization
to outdoor scenes through experiments. For future work,
it is worth investigating the acceleration of differentiable
multi-view rendering of point clouds and the extension of
our framework to other tasks such as 3D object detection
and recognition in point clouds.

Acknowledgements
This work was supported by grants from the Research

Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CityU 11212119, HKUST
16206819, HKUST 16213520), and the Centre for Applied
Computing and Interactive Media (ACIM) of School of
Creative Media, CityU.

8

References
[1] Edward Angel and Dave Shreiner. Interactive Com-

puter Graphics: A Top-Down Approach with Shader-Based
OpenGL. 6th edition, 2011. 3

[2] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-
jdla, and Josef Sivic. NetVLAD: CNN architecture for
weakly supervised place recognition. In Proc. IEEE CVPR,
June 2016. 2, 8, 11

[3] Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. CoRR, abs/1908.01210, 2019. 2

[4] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust
reconstruction of indoor scenes. In Proc. IEEE CVPR, 2015.
1

[5] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPF-
FoldNet: Unsupervised learning of rotation invariant 3d local
descriptors. In Proc. ECCV, 2018. 2, 5, 6, 7

[6] Haowen Deng, Tolga Birdal, and Slobodan Ilic. PPFNet:
Global context aware local features for robust 3d point
matching. In Proc. IEEE CVPR, 2018. 1, 2, 5

[7] Haowen Deng, Tolga Birdal, and Slobodan Ilic. 3D local fea-
tures for direct pairwise registration. CoRR, abs/1904.04281,
2019. 2

[8] G. Elbaz, T. Avraham, and A. Fischer. 3D point cloud reg-
istration for localization using a deep neural network auto-
encoder. In Proc. IEEE CVPR, pages 2472–2481, 2017. 1,
2, 4

[9] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and
Yue Gao. GVCNN: Group-view convolutional neural net-
works for 3d shape recognition. In Proc. IEEE CVPR, June
2018. 1, 3, 8

[10] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381395, June 1981. 5

[11] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow,
and Jitendra Malik. Recognizing objects in range data using
regional point descriptors. In Proc. ECCV, pages 224–237,
2004. 1, 2

[12] Zan Gojcic, Caifa Zhou, Jan D. Wegner, and Andreas Wieser.
The perfect match: 3d point cloud matching with smoothed
densities. In Proc. IEEE CVPR, 2019. 1, 2, 5, 6, 7, 12

[13] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min
Lu, Jianwei Wan, and Ngai Ming Kwok. A comprehensive
performance evaluation of 3d local feature descriptors. IJCV,
116(1):66–89, Jan 2016. 2

[14] Maciej Halber and Thomas A. Funkhouser. Structured global
registration of rgb-d scans in indoor environments. CoRR,
abs/1607.08539, 2016. 5

[15] Xufeng Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.
MatchNet: Unifying feature and metric learning for patch-
based matching. In Proc. IEEE CVPR, pages 3279–3286,
2015. 1

[16] Z. Han, M. Shang, Z. Liu, C. Vong, Y. Liu, M. Zwicker, J.
Han, and C. L. P. Chen. SeqViews2SeqLabels: Learning 3d

global features via aggregating sequential views by rnn with
attention. IEEE TIP, 28(2):658–672, Feb 2019. 2

[17] Xinwei He, Tengteng Huang, Song Bai, and Xiang Bai. View
n-gram network for 3d object retrieval. In Proc. IEEE ICCV,
2019. 1

[18] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. CoRR,
abs/1703.07737, 2017. 5

[19] Haibin Huang, Evangelos Kalogerakis, Siddhartha Chaud-
huri, Duygu Ceylan, Vladimir G. Kim, and Ersin Yumer.
Learning local shape descriptors from part correspon-
dences with multiview convolutional networks. ACM TOG,
37(1):6:1–6:14, Nov. 2017. 1, 2, 3, 4, 5, 7, 8, 11

[20] A. E. Johnson and M. Hebert. Using spin images for effi-
cient object recognition in cluttered 3d scenes. IEEE TPAMI,
21(5):433–449, May 1999. 1, 2

[21] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. In Proc. IEEE CVPR, 2018. 2, 4

[22] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proc. SGP, pages 61–70,
2006. 3

[23] Michel Keller, Zetao Chen, Fabiola Maffra, Patrik Schmuck,
and Margarita Chli. Learning deep descriptors with scale-
aware triplet networks. In Proc. IEEE CVPR, 2018. 1

[24] Marc Khoury, Qian-Yi Zhou, and Vladlen Koltun. Learning
compact geometric features. In Proc. IEEE ICCV, 2017. 1,
2, 5, 7

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. ICLR, 2015. 5

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, pages 1097–1105. 2012. 2, 6

[27] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning for
3d scene labeling. In Proc. ICRA, pages 3050–3057, May
2014. 5

[28] Lei Li, Changqing Zou, Youyi Zheng, Qingkun Su, Hongbo
Fu, and Chiew-Lan Tai. Sketch-R2CNN: An attentive net-
work for vector sketch recognition. CoRR, abs/1811.08170,
2018. 2

[29] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Pa-
parazzi: Surface editing by way of multi-view image pro-
cessing. ACM TOG, 37(6):221:1–221:11, Dec. 2018. 2

[30] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft Ras-
terizer: A differentiable renderer for image-based 3d reason-
ing. CoRR, abs/1904.01786, 2019. 1, 2, 3, 4

[31] Matthew M. Loper and Michael J. Black. OpenDR: An ap-
proximate differentiable renderer. In Proc. ECCV, 2014. 2

[32] Zixin Luo, Tianwei Shen, Lei Zhou, Siyu Zhu, Runze Zhang,
Yao Yao, Tian Fang, and Long Quan. GeoDesc: Learning lo-
cal descriptors by integrating geometry constraints. In Proc.
ECCV, September 2018. 1

[33] D. Maturana and S. Scherer. VoxNet: A 3d convolutional
neural network for real-time object recognition. In Proc.
IROS, pages 922–928, Sep. 2015. 2

[34] Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovic,
and Jiri Matas. Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss. In NIPS, pages 4826–
4837. Curran Associates, Inc., 2017. 1, 2, 4

9

[35] Dmytro Mishkin, Filip Radenovic, and Jiri Matas. Repeata-
bility is not enough: Learning affine regions via discrim-
inability. In Proc. ECCV, 2018. 1

[36] Marius Muja and David G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In VIS-
APP, 2009. 7

[37] Naila Murray and Florent Perronnin. Generalized max pool-
ing. In Proc. IEEE CVPR, 2014. 2

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala. PyTorch: An imperative style, high-performance
deep learning library. In NIPS, pages 8026–8037. 2019. 5

[39] Felix Petersen, Amit H. Bermano, Oliver Deussen, and
Daniel Cohen-Or. Pix2Vex: Image-to-geometry recon-
struction using a smooth differentiable renderer. CoRR,
abs/1903.11149, 2019. 2

[40] François Pomerleau, M. Liu, Francis Colas, and Roland
Siegwart. Challenging data sets for point cloud registration
algorithms. The International Journal of Robotics Research,
31(14):1705–1711, Dec. 2012. 7

[41] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep learning on point sets for 3d classification
and segmentation. In Proc. IEEE CVPR, 2017. 1, 2

[42] Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai,
Mengyuan Yan, and Leonidas J. Guibas. Volumetric and
multi-view cnns for object classification on 3d data. In Proc.
IEEE CVPR, 2016. 1, 2, 3, 11

[43] Riccardo Roveri, Lukas Rahmann, Cengiz Oztireli, and
Markus Gross. A network architecture for point cloud clas-
sification via automatic depth images generation. In Proc.
IEEE CVPR, 2018. 2

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet large scale visual recognition chal-
lenge. IJCV, 115(3):211–252, Dec 2015. 2

[45] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3d registration. In Proc. ICRA, pages
3212–3217, May 2009. 1, 2, 5

[46] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Align-
ing point cloud views using persistent feature histograms. In
Proc. IROS, pages 3384–3391, 2008. 1, 2

[47] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library
(PCL). In Proc. ICRA, pages 1–4, May 2011. 5

[48] Samuele Salti, Federico Tombari, and Luigi di Stefano.
SHOT: Unique signatures of histograms for surface and tex-
ture description. CVIU, 125:251–264, 2014. 1

[49] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and
A. Fitzgibbon. Scene coordinate regression forests for cam-
era relocalization in rgb-d images. In Proc. IEEE CVPR,
pages 2930–2937, June 2013. 5

[50] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proc. IEEE ICCV, 2015. 1, 2, 3,
8, 11

[51] Y. Tian, B. Fan, and F. Wu. L2-Net: Deep learning of dis-
criminative patch descriptor in euclidean space. In Proc.
IEEE CVPR, pages 6128–6136, 2017. 1, 2, 4, 11

[52] Federico Tombari, Samuele Salti, and Luigi Di Stefano.
Unique shape context for 3d data description. In Proc.
3DOR, pages 57–62, 2010. 1, 2

[53] Federico Tombari, Samuele Salti, and Luigi Di Stefano.
Unique signatures of histograms for local surface descrip-
tion. In Proc. ECCV, pages 356–369, 2010. 1, 2, 5

[54] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance Normalization: The missing ingredient for fast styl-
ization. CoRR, abs/1607.08022, 2016. 4

[55] Julien P. C. Valentin, Angela Dai, Matthias Nießner, Push-
meet Kohli, Philip H. S. Torr, Shahram Izadi, and Cem Ke-
skin. Learning to navigate the energy landscape. CoRR,
abs/1603.05772, 2016. 5

[56] Chu Wang, Marcello Pelillo, and Kaleem Siddiqi. Dominant
set clustering and pooling for multi-view 3d object recogni-
tion. In Proc. BMVC, 2017. 1, 2, 3, 8

[57] Hanyu Wang, Jianwei Guo, Dong-Ming Yan, Weize Quan,
and Xiaopeng Zhang. Learning 3d keypoint descriptors for
non-rigid shape matching. In Proc. ECCV, 2018. 1

[58] Yifan Wang, Felice Serena, Shihao Wu, Cengiz Öztireli, and
Olga Sorkine-Hornung. Differentiable surface splatting for
point-based geometry processing. CoRR, abs/1906.04173,
2019. 2

[59] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and J. Xiao. 3D ShapeNets: A deep
representation for volumetric shapes. In Proc. IEEE CVPR,
pages 1912–1920, 2015. 2

[60] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.
SUN3D: A database of big spaces reconstructed using sfm
and object labels. In Proc. IEEE ICCV, 2013. 1, 5

[61] Zhige Xie, Kai Xu, Wen Shan, Ligang Liu, Yueshan Xiong,
and Hui Huang. Projective feature learning for 3d shapes
with multi-view depth images. CGF, 34(7):1–11, 2015. 4

[62] X. Xing, Y. Cai, T. Lu, S. Cai, Y. Yang, and D. Wen. 3DTNet:
Learning local features using 2d and 3d cues. In Proc. 3DV,
pages 435–443, Sep. 2018. 2

[63] Zi Jian Yew and Gim Hee Lee. 3DFeat-Net: Weakly super-
vised local 3d features for point cloud registration. In Proc.
ECCV, 2018. 2

[64] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal
Fua. LIFT: Learned invariant feature transform. In Proc.
ECCV, pages 467–483, 2016. 1

[65] Matthew D. Zeiler and Rob Fergus. Stochastic pooling for
regularization of deep convolutional neural networks. In
Proc. ICLR, 2013. 2

[66] Andy Zeng, Shuran Song, Matthias Niessner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3DMatch:
Learning local geometric descriptors from rgb-d reconstruc-
tions. In Proc. IEEE CVPR, 2017. 1, 2, 5, 7

[67] Lei Zhou, Siyu Zhu, Zixin Luo, Tianwei Shen, Runze Zhang,
Mingmin Zhen, Tian Fang, and Long Quan. Learning and
matching multi-view descriptors for registration of point
clouds. In Proc. ECCV, 2018. 1, 2, 8, 11

10

6. Supplementary Material

6.1. CNN

In Sec. 3.2 of the main text, we adopt a CNN architecture
similar to L2-Net [51] to extract feature maps for each view
patch. The detailed configuration of the network is listed in
Table 7. Note that the network input is of size 64×64 with
a single depth channel, and the final output is of size 8×8
with 128 feature channels.

Layer Kernel Stride Padding

1 Conv - Norm - ReLU 3×3×32 2 1

2 Conv - Norm - ReLU 3×3×32 1 1

3 Conv - Norm - ReLU 3×3×64 2 1

4 Conv - Norm - ReLU 3×3×64 1 1

5 Conv - Norm - ReLU 3×3×128 2 1

6 Conv - Norm - ReLU 3×3×128 1 1

Table 7: CNN backbone for feature extraction of each view
patch. In the Kernel column, the first two numbers represent
the kernel size, and the third number is the number of output
feature channels.

6.2. Multi-view Rendering

In Fig. 9, we visualize the optimizable viewpoints af-
ter training. We also show the viewpoints obtained by a
clustering scheme similar to the one in [19]. Specifically,
150 spherical coordinates (θ, φ) are randomly sampled on
the hemisphere where point normals reside, and then the k-
medoids clustering algorithm is applied to select three view-
ing directions. For each viewing direction, a virtual camera
is placed at distances of 0.3m, 0.6m, 0.9m to the points of
interest, and each rendered view patch is augmented with
four in-plane rotations.

As shown in Fig. 9, there are mainly two differences
between the hand-crafted rule and our method. First, the
hand-crafted rule places some viewpoints far from points
of interest, while the learnt viewpoints have more concen-
trated distance range, indicating the relatively low impor-
tance of broader global context. Second, the hand-crafted
rule selects some dominant viewing directions through clus-
tering, whereas the learnt viewpoints have more distributed
viewing directions around the points of interests, which can
help to capture more local geometry variance. In sum, the
learnt viewpoints effectively balance the extent of context-
awareness and local details in extracted descriptors, chal-
lenging the design wisdom of hand-crafted rules.

Figure 9: Visualization of viewpoints obtained by a clus-
tering scheme and our method. The red spheres denote the
points of interest, and the pyramids represent virtual cam-
eras.

6.3. Multi-view Fusion

In Sec. 4.4 of the main text, we compared the proposed
soft-view pooling with alternative fusion approaches in-
cluding max-view pooling [19, 50, 42], Fuseption [67], and
NetVLAD [2]. Fuseption has two branches: in the first
branch, the feature maps of all the views are first chan-
nelwise concatenated together in a specific order and then
fed into a convolutional block; in the second branch, max-
pooling is applied to the inputs and the results are added to
the output of the first branch, serving as a shortcut connec-
tion. NetVLAD is a descriptor pooling method that sum-
marizes the residuals of each input w.r.t. several learnable
cluster centers. The number of cluster centers is a hyper
parameter, which is set to eight in our experiments. The
network f is trained with the alternative fusion approaches,
while the other stages are kept unchanged. The descrip-
tor dimension d is set to 32, and the optimizable viewpoint
number n is set to 8.

In Fig. 10, we visualize the rendered multi-view inputs
to CNNs, extracted feature maps for each view, and fused
feature maps across views. It is observed that the CNN is
influenced by multi-view fusion for feature extraction. Be-
fore fusion, for soft-view pooling and NetVLAD, the fea-
ture maps of each view extracted by the CNN tend to have
more response, compared to max-view pooling and Fusep-
tion. After fusion, the feature maps produced by max-view
pooling and NetVLAD tend to have more high response
than soft-view pooling and Fuseption. Note that for each
location in the fused feature maps, max-view pooling only
selects the strongest input response across views and dis-
cards the rest, while our soft-view pooling collectively con-
siders all the inputs in an attentive manner for integration.

11

6.4. Comparisons with 3DSmoothNet

In Fig. 11, we visualize the color-coded local descrip-
tors for all the points in the point clouds. Specifically, we
project the high dimensional descriptors with PCA and keep
the first three components, which are color-coded. It is ob-
served that the descriptors of 3DSmoothNet and our method
are both geometry-aware. Particularly, our method is able
to capture more geometric changes in the point clouds (see
the highlighted wall, pillow and floor regions of the point
clouds in Fig. 11). In Fig. 12, we show additional geomet-
ric registration results of point cloud pairs, which further
demonstrate the above advantage of our method.

For the running time of 3DSmoothNet in Sec. 4.2 of the
main text, we observed some gap between our experiment
results (input prep: 39.4ms; inference: 0.2ms) and the per-
formance reported by the authors (input prep: 4.2ms; infer-
ence: 0.3ms). We used the source code1 of 3DSmoothNet
released by the authors, and the running time gap of input
preparation is likely due to the difference of hardware con-
figurations. In [12], they used a PC with an Intel Xeon E5-
1650, a 32GB RAM and an NVIDIA GeForce GTX 1080
GPU, while we used a PC with an Intel Core i7 @ 3.6GHz,
a 32GB RAM and an NVIDIA GTX 1080Ti GPU. Their in-
put preparation stage involving LRF computation and SDV
voxelization runs on CPU, which may be accelerated with
GPU for further improvement.

1https://github.com/zgojcic/3DSmoothNet

12

https://github.com/zgojcic/3DSmoothNet

Figure 10: Visualizations for multi-view fusion by different methods. The top part is for the red keypoint while the bottom
part is for the green keypoint. In each block, we visualize the view patches (depth) rendered with eight optimizable viewpoints
on the left. On the right are the corresponding convolutional feature maps (with channel indices {1, 2, 4, 8, 16, 32, 64, 128})
before fusion, and each row is for a specific view. Fused feature maps across views are placed on the bottom.

13

Figure 11: Visualization of local descriptors for 3DSmoothNet and our method. The high dimensional descriptors are
projected with PCA to 3D space and color-coded. The highlighted regions show that our method can better capture geometric
changes in the point clouds.

14

Figure 12: More geometric registration results with RANSAC for 3DSmoothNet and our method.

15

