
SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Model-Guided 3D Sketching
Pengfei Xu Hongbo Fu∗ Youyi Zheng Karan Singh Hui Huang Chiew-Lan Tai

Abstract—We present a novel 3D model-guided interface for in-situ sketching on 3D planes. Our work is motivated by evolutionary
design, where existing 3D objects form the basis for conceptual re-design or further design exploration. We contribute a novel workflow
that exploits the geometry of an underlying 3D model to infer 3D planes on which 2D strokes drawn that are on and around the 3D
model should be meaningfully projected. This provides users with the nearly modeless fluidity of a sketching interface, and is
particularly useful for 3D sketching over planes that are not easily accessible or do not preexist. We also provide an additional set of
tools, including sketching with explicit plane selection and model-aware canvas manipulation. Our system is evaluated with a user study,
showing that our technique is easy to learn and effective for rapid sketching of product design variations around existing 3D models.

Index Terms—3D sketching, conceptual design, interface, canvas

F

1 INTRODUCTION

S KETCHING is a quintessential mode of visual communi-
cation that designers use extensively throughout prod-

uct design life-cycles, particularly in early stages of con-
ceptual design. While 2D drawing of 3D curves from one
or more view-points is a mature traditional art-form, the
computational problem of lifting these sketched 2D strokes
into 3D curves continues to be a grand challenge due to the
infinitum of 3D curves that could project to any given 2D
stroke. The large body of existing sketch-based modeling
systems reduces this search space to a small set of plausible
3D curves by an explicit drawing workflow [1], [2], [3],
[4], establishing drawing systems, scaffolds and geometric
priors [5], [6], [7], enforcing inter-stroke regularities [8], or
narrowing the sketching domain [9]. Prior art has largely
used a 3D model, if at all, strictly as a visual reference [4],
a projection surface [10] or as an inner layer for shell-like
modeling [9]. We observe that man-made objects have a
plurality of geometric features that can provide a strong
suggestive prior to automatically infer 3D sketch planes
onto which sketched 2D strokes can be projected. It is also
shown in the recent literature that, for early concept design,
curves sketched in planes are not overly restrictive, but
rather desirable for man-made objects [1], [6].

We thus develop a novel model-guided 3D sketching
system (Figure 1). The initial 3D model for a design iteration

∗: corresponding author.

• P. Xu is with the College of Computer Science & Software Engineering,
Shenzhen University.
E-mail: xupengfei.cg@gmail.com

• H. Fu is with the School of Creative Media, the City University of Hong
Kong.
E-mail: hongbofu@cityu.edu.hk

• Y. Zheng is with the College of Computer Science, Zhejiang University.
E-mail: zyy@cad.zju.edu.cn

• K. Singh is with the Department of Computer Science, the University of
Toronto.
E-mail: karan@dgp.toronto.edu

• H. Huang is with the College of Computer Science & Software Engineer-
ing, Shenzhen University.
E-mail: hhzhiyan@gmail.com

• C. Tai is with the Department of Computer Science & Engineering, the
Hong Kong University of Science & Technology.
E-mail: taicl@cs.ust.hk

can come from scanning an existing 3D object [11], or
from template examples retrieved from a shape repository
(e.g., via a sketching interface [12]). As described in an
exploratory study [4], explicit 3D plane selection and control
disrupts the sketching process and often requires frequent
changes of viewpoint, since good views from which to
manipulate the plane and good views from which to sketch
on the plane, tend to be near orthogonal to each other. Our
contribution is a novel sketching workflow: users can draw
strokes without explicit 3D plane specification. To achieve this
we first process the 3D model to determine salient geometric
features such as planar regions and straight lines, which
provide strong cues for candidate 3D sketch planes. Plane
prediction is further made tractable by the observation that
most man-made conceptual design objects have a signifi-
cantly reduced design space of potential planar surfaces
for sketching. We then perform a co-analysis of multiple
2D strokes, which we expect to lie on a single 3D plane.
Once a group of 2D strokes constrained on a single plane is
drawn, our system automatically infers a 3D plane through
selecting subsets of these strokes as construction lines and
examining their correlations with the salient geometric fea-
tures of the 3D model. The 2D strokes are then projected
onto the inferred 3D plane.

Our novel sketching workflow provides users with the
nearly modeless fluidity of a sketching interface. It enables
3D sketching over planes that are not directly selectable
from a reference 3D model or do not preexist (e.g., for
designing shelf dividers in Figure 1(a)). Since our technique
employs the geometric constraints from a 3D model, it is
able to handle imprecisely drawn strokes reasonably well.
We also provide the traditional workflow of sketching with
explicit selection of 3D planes when they are easily ac-
cessible, and 3D plane manipulation tools. By using these
two sketching workflows and creating 3D sketches plane
by plane, users are able to produce 3D concept (re-)design
around 3D models with ease. Our tool has been tested by
artists drawing on various man-made models (see Figures 1
and 14). Our user study shows that even novice users are
able to quickly learn how to use our system, reproduce
target 3D sketches, and create interesting new 3D sketches.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(b)(a)

Fig. 1. Our model-guided 3D sketching system allows users to create interesting sketch-based redesign of existing 3D models with ease. The right
in each example is the physical realization of 3D sketches around 3D-printed models.

2 RELATED WORK

3D sketching via 2D input devices has been widely studied.
This problem is essentially ill-posed and requires additional
information to fix input 2D strokes in 3D. A common
approach is to first specify a 3D sketch surface or canvas,
on which 2D strokes can then be anchored one by one.
Various types of 3D sketch surface (e.g., planes, extruded
surfaces [2], [13], freeform surfaces [14], [15], [16], inflation
surfaces [17]) have been explored for interactive 3D sketch-
ing. Among them 2D planes embedded in 3D (e.g., camera
plane [4], [16], [18], parallel planes [1], co-axial planes [1],
orthographic planes [2], [6], [13], [19]) are the most popular.
However, such systems like Mental Canvas [1] often rely on
pre-configured planes, and require explicit mode switching,
frequent plane selection and manipulation, thus disrupt-
ing the sketching process [4]. We show that explicit plane
selection is unnecessary, providing a smoother experience
when the desired 3D planes can be derived from a given 3D
model. Our work is complementary to these existing works,
just like the two complementary sketching workflows in
our system. The sketching workflow with explicit plane
selection can be enhanced by integrating existing tools like
tick-based plane selection from EverybodyLovesSketch [3].

Most of the existing 3D sketching systems focus on the
creation of 3D sketches from scratch; only very few works
explicitly discuss their use in the context of existing 3D mod-
els. SketchingWithHands [7] focuses on 3D sketching around
a 3D virtual hand model to facilitate designing handheld
products. Bourguignon et al. [18] determine the depth of a
canvas plane parallel to the camera plane by examining the
attachment of a stroke to a general 3D model. The OverCoat
technique [20] enables 3D painting by introducing isosur-
faces of a proxy model as canvas. SecondSkin [9] uses a 3D
model as an inner layer for shell-like modeling. In contrast,
our technique explores a different design space and does
not require the resulting curves to be in close proximity to
the surface of existing models (Figure 14). Schmidt et al. [5]
proposed to first incrementally construct a linear 3D scaffold
and then infer 3D curves with a higher degree of freedom
from the scaffold. While they did not attempt to exploit the
information of a 3D model for sketch interpretation, it is
possible to extend their system for model-driven sketching
by extracting and using sharp edges of the model as existing
scaffold curves. However, it is unclear how to incorporate
on-canvas sketching (e.g., for hatching effects in Figure 5) or
attachment of 3D sketches to existing model faces (similar

anchoring strokes
attaching strokes

Fig. 2. SmartCanvas in action when using the rendered models as
input reference images. Our system needs much less user intervention
(without drawing the strokes in pink) to achieve the same results.

to the example in Figure 6(b)) other than model edges. In
addition, their system requires every curve to be accurate
and cannot handle rough sketches. Recently, Krs. et al. [21]
introduce a sketching interface for producing 3D curves
that wrap around given 3D object(s). However, the design
space of their 3D curves are largely constrained to the offset
surfaces of the existing geometry. The recent work of [22]
allows the design of detailed 3D objects in situ by combining
2D and 3D sketching, which however requires modern AR
hardware.

3D sketching has also been studied in the context of
single or multiple images. Existing approaches mainly use
images as references for 2D sketching, and employ existing
sketch interpretation techniques or their variations to fix 2D
strokes in 3D (e.g., sketch planes adopted in [13], [23], [24],
modified Lipson optimization in [25]). Very recently, Zheng
et al. [6] proposed SmartCanvas, which takes an image as
reference and formulates the sketch interpretation as a selec-
tion problem from a set of context-induced canvas planes.
Since their incremental sketching process requires strokes to
be attached to previously drawn strokes, their system often
leverages additional strokes (pink ones in Figure 2, which
are not needed in our system) to anchor or host a newly
sketched stroke. While their system is rather powerful, it
requires excessive user intervention for camera calibration,
relation annotation (e.g., to explicitly annotate the inclining
face of the roof in Figure 2 (right)), stroke grouping, etc.

Face planarity is one of the fundamental geometric
constraints used in automated interpretation of a complete
sketch (e.g., [26], [27], [28], [29]). Many existing works aim at
reconstruction of 3D polyhedra (with planar faces). Recently,
Xu et al. [8] present a mathematical framework to infer

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Input window

Preview window

Con�rm

Select candidate

Camera manipulation

Canvas transformation

Sketching

Erasing

Copy

Paste

Undo

Redo

Delete

Candidate sketch

Fig. 3. Main interface of our system.

piecewise-smooth curve networks from 2D drawings. Such
curve networks can be finally surfaced to create 3D surface
models [30]. Since 2D sketched strokes need to be ultimately
mapped to 3D models to be reconstructed, these works
all require relatively clean input drawings. In contrast, our
technique accepts more casually sketched strokes as input
and aims for rapid concept redesign of a given model.

Due to the simplicity and intuitiveness, many sketch-
based interfaces have been proposed for 3D modeling and
editing (see an insightful survey in [31]). A large category of
existing techniques for sketch-based modeling from scratch
are reconstruction-based (e.g., [15], [32], [33], [34], [35]). They
require accurate drawing, since the input strokes are some-
how mapped directly to the output model. Recently Li et
al. [36] present an in-context sketch-based modeling tool
for quickly modeling swept surfaces on top of an RGBD
image, which provides structural information to infer the
3D position of a pair of user strokes (for defining a swept
surface). Sketching has also been demonstrated powerful
for editing existing shapes (e.g., [37], [38], [39], [40], [41]).
These approaches often use the existing models as sketch
surfaces and aim at generating shape variations. Our goal
is in a sense more similar to the retrieval-based approaches
(e.g., [42], [43], [44], [45]), which intend to add new parts
(models) into an existing model (scene) by retrieving the
most similar parts (models) from a shape repository with
respect to an input sketch as query. Although the sketches
of these retrieval approaches are often more expressive,
inferring 3D positions of the strokes is not their objective.

3 USER INTERFACE

Our interactive system allows a user to create 3D sketches
on and around an existing model. We adopt planar canvases
to anchor 2D input strokes in 3D. To reduce potential
ambiguities, we use an incremental strategy and require the
user to input strokes plane by plane. Our system supports
the following two sketching workflows: 1) first 3D plane
selection (if such a plane exists and is easily accessible)
and then further in-plane sketching (Figure 6(a)); 2) first
sketching (without plane selection) and then 3D plane con-
firmation, followed by an optional step of in-plane sketching
(see Figure 5 and the accompanying video). Our discussion
below mainly focuses on the latter scenario, where our main
contribution lies.

Sharp edge

Straight segments

Plane normal

Attachment point

Fig. 4. Left: the detected linear features. Right: User-drawn strokes are
broken into straight segments (in green). They are parallel with the
detected linear features (in red) or the normals (in blue) of dominant
planes. These features are transparent to the user.

3.1 Basic Operations

As shown in Figure 3, our main user interface is composed
of two windows: an input window for sketching and a
preview window. The user starts with loading a 3D model.
We focus on man-made models, which typically have a
rich set of regular structures. The model is displayed in
the input window with orthographic projection so that
3D parallelism is retained in the screen space. The user
may rotate the camera view of the input window via an
Arcball-like interface [46]. To facilitate sketching at different
scales, we also provide the pan and zoom tools in the input
window. A set of auxiliary features such as copy-and-paste,
erasing, undo/redo, deletion are also included.

3.2 Sketching without Explicit Plane Selection

Sketching without explicit plane selection allows the user
to easily create 3D sketches even when the underlying 3D
planes cannot be easily derived from the 3D model without
additional operations for camera manipulation or plane
manipulation (Figure 5(a)).

In the sketching mode, if the user starts to draw without
explicitly selecting any plane, the system automatically de-
termines that the user wants a plane (we call it a planar
canvas hereafter) to be inferred from the drawn strokes,
which later needs to be confirmed by the user. Each time
the user draws a set of strokes that will lie on some planar
canvas. Our system makes use of a subset of strokes as
image-space construction lines to construct a 3D planar can-
vas. Specifically, any stroke is a potential construction line if
it roughly shares a collinearity or parallelism relation with
a linear feature (Figure 4) of the 3D model, or is attached to
the 3D model in the image space. Figure 7 shows various
combinations of model-stroke relations which can lead to
the construction of a 3D plane. The user may also rely
on the confirmed 3D sketches to construct a subsequent
planar canvas, similar to using the 3D model as guidance
(Figure 6(e)) and the idea of an evolving scaffold [5].

Note that the user neither needs to draw the strokes
with a required manner (Figure 6(c)), nor labels which input
strokes should be construction lines, since the system will
automatically identify them by checking their geometric
relations with the model features. This allows a smoother
sketching process, especially when such construction lines
are intended to be part of the final sketches. When the

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

(a) (b) (c) (d) (e)

Fig. 5. Inference-enabled sketching workflow: first sketching (a) and then 3D plane confirmation (b), followed by in-plane sketching (c). These steps
are repeated to add sketches plane by plane (d), leading to the final result (e).

(a)

(b)

(e)

(d)

(c)

(f)

Fig. 6. (a) A sketching workflow with explicit plane selection. (b) Erasing.
(c) Supporting various drawing habits (left: single stroke; right: over-
sketched multiple strokes). (d) Line-by-line sketching. (e) Sketching over
previously confirmed sketches. (f) Model-aware canvas transformation.

construction lines are input solely for the construction of
a 3D planar canvas and are not intended to appear in the

Two C.

One C.
 +
One P.

One C.
 +
One A.

One P.
 +
Two A.

Two P.
 +
One A.

Three A.

Yield valid canvases Do not yield valid canvases

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. Illustration of possible combinations of model-stroke relations
yielding or not yielding valid canvases. Recall that collinearity involves
a corresponding sharp model edge while parallelism involves a corre-
sponding linear model feature (sharp edge or plane normal). Lines of
the same colors exhibit a collinearity or parallel relation. For simplicity,
only parallelism with sharp model edges is illustrated here; parallelism
with plane normals is similar.

final sketches, the user can easily erase them using our
erasing tool (Figure 6(b)). While it is not required, the user is
recommended to input the construction lines prior to other
lines so that a desired planar canvas is inferred soonest
possible for confirmation. This effectively helps reduce the
degree of ambiguities which generally increases with the
number of strokes.

In addition, when the user draws one straight stroke, our
system also tries to infer its 3D position (Figure 6(d)). Since
a 3D line cannot determine a 3D plane, no planar canvas is
associated with the inferred 3D line. If the user continues
to draw new strokes, all the strokes are used for canvas
inference as described before.

3.3 Feedback

When the user draws strokes in the input window, the sys-
tem automatically finds a default planar canvas and lifts the

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

drawn strokes into 3D. We display the resulting 3D sketches
of the current set of strokes from a different view angle
in the preview window (see Figure 3). To better examine
the current interpretation results, the user may interactively
change the view angle in the preview window using the
same Arcball interface (see the accompanying video).

In addition, due to the inherent ambiguities of user’s
strokes, the desired planar canvas may not be inferred
correctly occasionally. Thus, our algorithm proposes a set of
candidate planar canvases and displays the corresponding
sketch interpretation results in the preview window (Fig-
ure 3). This interface is inspired by previous suggestive in-
terfaces (e.g., [6], [13], [47]). Strokes are color-coded to show
different interpretations. Since the current set of strokes
might have been built upon previous sets of planar sketches,
instead of displaying candidate sketches only, for complete-
ness we display all the sketches in the preview window and
render the previous sketches semi-transparently in gray to
reduce visual clutter (Figure 3).

3.4 Plane Confirmation

If the user is satisfied with the default 3D interpretation
(shown in blue in the preview window) and the corre-
sponding 3D planar canvas, s/he may confirm it by simply
clicking one of the four corners of the default 3D plane
(Figure 3). The system will then display the confirmed 3D
plane in a semi-transparent color in the input window. The
user may continue adding new strokes onto this planar
canvas, which will not be inferred again. It is suggested that
the user makes plane confirmation as early as possible, since
more strokes might lead to more interpretation candidates.

When a desired interpretation result is a candidate ap-
pearing in the preview window but is not the default one,
the user may either continue drawing more strokes to refine
the canvas inference or enter a candidate selection mode
by clicking a floating button (Figure 3). In the candidate
selection mode, by default, the view angle in the input
window is set to be the same as that in the preview window,
and all the candidate sketches are displayed in the input
window. The user may select a candidate plane by single-
clicking on the corresponding candidate sketch. Without
mode switching, the camera view can be changed freely to
facilitate easy selection. After selecting the desired planar
canvas, the user may confirm by clicking the tick-symbol
button. This ends the candidate selection mode and switches
back to the sketching mode, with the last sketching view
restored and the confirmed plane displayed. The user may
continue sketching on the confirmed canvas.

The user can reuse or transform the existing canvases
(Figure 6(f)). Since the final 3D sketches are created with
respect to the 3D reference model, we design model-aware
canvas transformation tools. First, the translation axes are
always defined as the principal axes of the 3D model (by
Principal Component Analysis) and are not influenced by
the rotation tools. Second, snapping with respect to the 3D
model is enabled during canvas translation or rotation. By
using two different widgets, the user may rotate a canvas
with respect to the canvas center or one of its bounding box
edges. The latter is convenient for achieving hinge-like con-
figurations between the 3D canvas and model (Figure 6(f)).

4 MODEL-GUIDED PLANAR CANVAS INFERENCE

The main challenge of our system is to infer a 3D planar can-
vas from a set of 2D strokes lying on it, with the help of a 3D
guidance model being sketched over. Our solution is based
on a key observation: when people sketch over an existing
model to depict a new content, some of the input strokes
will typically act as the structural guidelines complying
with the structure of the underlying model and they usually
share certain geometric relations with the model. We refer
to such strokes as potential construction lines, and exploit the
structural relations between the construction lines and the
model for 3D planar canvas inference.

4.1 Model-Stroke Coupling
In order to bridge between the 3D model and the 2D drawn
strokes, we first exploit some dominant features of the
model, which will later be coupled with strokes according
to structural relations to assist in their 3D positioning. Liter-
ature has shown that our human visual system is extremely
sensitive to sharp features and corners [48]. We thus extract
these discriminative features from the model. Since we focus
on the inference of 3D planes from the model, we are
particularly interested in the basic 3D elements that can
contribute to the construction of a 3D plane, which could
also be associated with user drawn strokes. To this end, we
extract the following two types of shape features: sharp edges
and dominant plane normals. The two basic features naturally
enable us to exploit the linearity association between the
model and the user strokes, thus facilitating plane inference.
We treat these two types of features as basic blocks of
constructing elements for 3D plane estimation. We term
them as linear features.

The sharp model edges are extracted using a similar
method as in [49]: we first extract the closed-region shape
feature curves and break them into straight line segments
as sharp edges via polygonal approximation of curves [50].
The dominant normals are the normals of dominant planes,
which are obtained by clustering the face normals of the
model with Mean-Shift [51] (using the bandwidth of 0.3,
which corresponds to the angle of π

10) to detect coplanar
faces. Too short model edges (shorter than 50 pixels in our
implementation) and too small dominant planes (smaller
than 2,500 square pixels) are filtered out, since they do not
clearly indicate any structural information. Note that these
thresholds are not affected by the camera settings, since they
are used in the screen space. Their values depend on the
specification of a monitor. In our experiments, we adopted
a 13.3-inch Wacom Cintiq Companion 2 tablet with the
display resolution of 2560 × 1440. Other threshold values
with a unit of pixel in this paper also depend on this
device. Figure 4 shows the two types of linear features. As
our system assumes that groups of strokes lie on planar
canvases, it is hence a natural idea to extract such linear fea-
tures for subsequent analysis. Only linear features that are
visible in the current view are used for further processing
as users typically do not use invisible features for sketching
guidance.

We next exploit the linearity of the user-drawn strokes.
Specifically, we detect straight segments in a given stroke.
A straight segment is a contiguous part of a stroke which

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

is nearly straight (Figure 4). Such straight segments can
be found by approximating a stroke as a polyline [50] and
filtering out short segments (with length < 50 pixels in our
implementation). For example, the circular stroke and the
plus-sign strokes therein in Figure 4 are finally filtered out.

We detect the collinearity and parallelism relations be-
tween the obtained straight segments of all strokes and the
linear features of the model (Figure 7). Note that collinearity
is a special case of parallelism, however we consider them
separately, since collinearity provides more informative cues
than parallelism. The collinearity relation is detected be-
tween a stroke straight segment and a sharp model edge
while the parallelism relation is detected between a stroke
straight segment and a linear model feature (i.e., a sharp
model edge or a plane normal). The relations are detected
in the screen space. A straight segment and a linear feature
are considered parallel if |d · d′| > 0.95, where d and d′

are the unit directions of these two segments. Two parallel
segments are considered to be collinear if the distances
between their endpoints and the fitted straight line are
smaller than 50 pixels. An endpoint of a stroke is considered
to have the Attachment relation with the model if it is on
or near the model in the screen space. For more content-
awareness, attachment has the following three levels, with
decreasing priority: corners, sharp model edges, and the
surface of the model. In each level, the attachment distance
threshold is set as 50 pixels.

We detect the above relations in screen space by match-
ing between the projected 3D features onto screen space and
the drawn strokes. This is due to the following observation:
when the user draws 2D strokes, although s/he perceives
the model and the drawn strokes in 3D, s/he mainly uses
their 2D information as reference. To a certain extent, this
alleviates problems due to weak drawing skill or inherent
perceptual biases in the estimates of foreshortened shapes
and dimensions [52].

4.2 3D Planar Canvas Inference
Matching between the extracted model features and the
(stroke segments) determines how to infer a 3D planar
canvas for back-projecting 2D strokes to 3D. However, due
to ambiguities in the input, some detected relations might
actually be unwanted. Therefore, it might not be feasible to
find a canvas that meets all the detected relations. Never-
theless, we observe that, despite input ambiguities, if the
correct canvas is found, in most situations the user’s in-
tended relations are satisfied. Motivated by this observation,
we propose a two-step approach to estimate the canvas.

First, we construct a set of candidate canvases that can
be obtained from some combination of the relations. We
list the combinations that are able to yield valid canvases,
which are illustrated in Figure 7 along with the examples of
combinations that do not yield valid canvases. These valid
combinations (Figure 7 (a)-(f) middle) provide the normal
and position information for estimating a canvas, while
the invalid ones fail to provide sufficient information. We
examine all the possible combinations and check whether
they are able to form candidate canvases according to the
valid conditions listed below. Please see the appendix in the
supplemental material for the details of canvas computa-
tion.

Two collinearity. (Figure 7(a))
The corresponding two sharp model edges span
a 3D plane, no matter if they are parallel or not.

One collinearity + one parallelism. (Figure 7(b))
The corresponding sharp edge and linear feature
are not parallel.

One collinearity + one attachment. (Figure 7(c))
The attached 3D point is not on the correspond-
ing sharp edge (or its extension).

One parallelism + two attachments. (Figure 7(d))
The two attached 3D points are not at the same
position, and the line connecting them is not
parallel with the corresponding shape linear fea-
ture.

Two parallelism + one attachment. (Figure 7(e))
The corresponding two shape linear features are
not parallel.

Three attachments. (Figure 7(f))
The three attached 3D points are not collinear.

Since each stroke straight segment might have collinear-
ity (resp., parallelism) relations with multiple model sharp
edges (resp., linear features), there are often multiple can-
didate canvases, whose number typically increases with the
number of strokes. Next we rank the candidate canvases
according to how well they preserve the detected relations.
Given a canvas, the 2D strokes can be converted into 3D
by a simple back-projection to the canvas. We then check
whether the resulting 3D straight segments still preserve
the previously detected relations in 2D. We check the paral-
lelism and collinearity relations using the same approach for
detection, but in 3D. The distance threshold for collinearity
is computed by projecting a segment of 50-pixel length
to a canvas orthogonal to the eye direction. Further, the
attachment relation can also be validated in 3D. Its threshold
is computed in the same way. For each canvas and the cor-
responding resulting 3D sketch, we compute the following
scores to measure how well the 3D sketch complies with the
detected relations:

E = wcEc + wpEp + waEa, with

Ec =

∑
si∈S′

c
L(si)∑

si∈Sc L(si)
, Ep =

∑
si∈S′

p
L(si)∑

si∈Sp L(si)
,

Ea =
αv|A′v|+ αe|A′e|+ αf |A′f |+ αs|A′s|
αv|Av|+ αe|Ae|+ αf |Af |+ αs|As|

,

(1)

where Ec, Ep, and Ea are the relation preservation scores of
collinearity, parallelism, and attachment, respectively. These
three terms measure the percentage of strokes which share
relations with the model. A higher value indicates a higher
possibility that the 3D sketch is the desired one. w∗ are
the weights used to control the relative contributions of
the different types of relations. In our system we use a
fixed set of weights: wc = 2.0, wp = 1.0, and wa = 2.0,
emphasizing collinearity and attachment relations, since
they contain the positional information, which is more
reliable. When computing Ec and Ep, Sc and Sp are the
sets of 2D straight segments, each of which, denoted as
si, shares a collinearity/parallelism relation, respectively,
with a 3D linear feature. S ′c and S ′p are the sets in which
each segment si retains a collinearity/parallelism relation

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(with the corresponding model linear feature) after back
projection to 3D. L(·) denotes the length of a stroke straight
segment, which serves as a weighting scheme to emphasize
long strokes. If more strokes retain collinearity (parallelism)
relations after back projection, Ec (Ep) will be closer to 1.
A∗ are the sets of attachment points with the subscripts
{v, e, f, s} indicating whether the attachment is to a corner,
edge, model face, or established 3D sketch. Similarly, A′∗
denotes the attachment points sets containing points that
remain attached to the corresponding 3D position after back
projection. The weights α∗ are used to control the relative
contribution of different attachment types, and are set as
αv = 1.0, αe = 0.6, αf = 0.3, and αs = 0.6, according
to their reliability. The reliability is based on the difficulty
to form the attachment relation. For example, corner attach-
ment has a stricter criteria, and thus it is more likely to be
the user’s intention if detected.

Besides detecting the relations between 2D strokes and
the model, we also detect relations between the 2D strokes
and previously established 3D sketches (e.g., the attachment
relations considered in Equation 1). After a new set of
strokes are converted into 3D, we only store the normal
of their canvas plane for further detection of parallelism
relation and do not consider the new 3D edges introduced
by these strokes as linear features for detecting relations.
This is because the directions of those reliable new 3D
edges are usually the same as existing model sharp edges.
When the input shape contains many geometry details,
the number of detected linear features could be very large
(see Figure 8), possibly making our algorithm sensitive to
the number of input strokes. To alleviate this problem, we
cluster the detected lines according to their orientations
using Mean-Shift with the bandwidth of 0.3 and only keep
the dominant (top 10 in our experiments) groups.

An important assumption of our canvas inference algo-
rithm is that the input strokes depict a planar shape, which
can be determined by a combination of detected collinear-
ity, parallelism and attachment relations. This assumption,
however, does not always hold in practice. For example,
the user may draw a stroke that depicts a linear shape
(e.g., a horizontal support between two legs of a chair) or
decorative strokes (on an existing canvas) from which no
reliable relation can be detected. We extend our algorithm
to handle such cases. For linear shapes, we use the detected
relation to determine the 3D line on which the stroke is
drawn. For decorative strokes, we simply project them onto
the shape’s dominant planes and the previously established
sketch canvases that are underneath or nearby. The canvas
with the smallest depth is chosen for back projection.

5 RESULTS AND DISCUSSIONS

To show the effectiveness of our tool for 3D concept re-
design, we invited three art students to extensively use
our system. All of them had good 2D drawing skills but
zero experience in 3D sketching and little knowledge in 3D
modeling. They were briefed on how to use our system in
a one-hour training session and then went home to do the
3D sketching without any further support from the authors.
Each of them was given 9 models and returned us about 8
3D sketches around the models within 1 or 2 days. Figures 1

(a) (b) (c)

(d) (e) (f)

Fig. 8. Our algorithm filters out noisy linear features by keeping the
dominant oriented groups of linear features when the model complexity
increases. (a) to (d): 10%, 30%, 50%, 70% features were discarded,
respectively. (e) and (f) shows a possible 3D sketching result shown in
different views) around this model.

(a) (b) (c) (d)

Fig. 9. Pretest examples used in our pilot study (Task I).

and 14 show the models given to them and the selected
artworks of theirs. We were told they spent on average about
one hour creating each sketch, including coming up with
idea, testing, and real sketching. When they were asked to
reproduce some of the sketches (e.g., Figure 1(b)), it took
less than 10 minutes.

The artists commented that although they had no prior
3D sketching experience, all of them were interested in using
our tool for quick 3D concepts and idea presentation in the
future. One artist said “although it needs time to understand the
logic of the software, it usually gives me my expectation after I am
familiar with it”. This was echoed by another artist, saying
that “the interaction with this system is fluent, and the results
are overall reasonable. Although it takes more time to create new
planes, I got more experienced with it after a few practices”. They
also suggested new features, for example, making the copy-
and-paste feature available for a group of canvases, instead
of only individual ones in our current implementation.

5.1 Pilot Study
We conducted a pilot study. We would like to see if novice
users are able to reproduce given 3D sketches and create
their own designs using our tool. We did not evaluate
the quality of the generated sketches since they are more
dependent on the drawing skills of the users.

Participants. We recruited eight participants to help with
our study. Among them, two participants were familiar
with 3D modeling software like Maya, while others had no
relevant experience. Three participants had reasonable good
2D drawing skill. Since the performance of 3D browsing
is not of our interest, at the beginning of the study we
asked the participants to practice until they got familiar with
camera control.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

0

5

10

15

20

25

s1 s2 s3 s4

Sketching Time

0

10

20

30

40

s1 s2 s3 s4

#Auxiliary
Opera�ons

0

0.5

1

s1 s2 s3 s4

#Candidate
Selec�on

0

1

2

3

s1 s2 s3 s4

#Redraw Sketch

0

10

20

30

s1 s2 s3 s4

Manipula�on Time

0

5

10

15

20

s1 s2 s3 s4

#Strokes

Fig. 10. Statistics of Task I. s1-4 refers to the target sketches (a-d)
in Figure 9. The auxiliary operations include undo, erasing, deletion,
single-click, and plane confirmation. The error bars are the standard
errors of the mean.

Apparatus. The study was conducted on a 13.3-inch
Wacom Cintiq companion 2 tablet with an i5 1.7Ghz pro-
cessor. This device supports both finger and pen input. We
recommended pen input, since it led to a more natural
pencil-and-paper sketching experience.

Task I. The first task was to evaluate how fast the
participants can learn the basic workflow of our system.
We asked the participants, after a short introduction, to
reproduce the simple 3D sketches shown in Figure 9 using
first sketching and then plane confirmation, without explicit
plane selection or transformation.

Each participant was first briefed on how a 3D plane can
be mathematically determined and then shown a live demo
illustrating different cases in Figure 7. The plane-by-plane
sketching workflow without pre-selection of canvas as well
as various auxiliary operations (e.g., undo, erasing, deletion,
line-by-line sketching) were also demonstrated. This tutorial
session lasted approximately 15 mins. Then each participant
was given a 15-min practice session, in which they first tried
our tool freely and then were asked to reproduce a target 3D
sketch (different from those used in the pretest and posttest),
with our help if needed.

Next each participant was asked to perform a pretest of
reproducing four simple 3D sketches on his or her own,
which were carefully designed to involve the core basic
features of our tool. The target sketches (Figure 9) were
given on a laptop such that the user could preview the
sketches in 3D. In the first sketch, the participants were
asked to sketch on a plane that could be directly derived
from the model but invisible in the current view. The second
sketch trained the basic skills of plane-by-plane sketching
without explicit plane selection. The third sketch involved
the creation of strokes on a hinge plane that did not exist in
the model but required an indirect anchoring (i.e., by first
creating the side plane). In the last sketch, the participants
were expected to create a floating plane which required
three single strokes to create three attachments for anchoring
the plane.

Statistics. We recorded the following information during
the tests: the total reproduction time of each sketch, the
time spent on sketching and other operations, the number

(a) (b)

Fig. 11. Posttest examples used in our user study (Task II).

of strokes, and the number of various kinds of operations.
Since our tool is not aimed for precise 3D drawing, it is
difficult for the users to produce target sketches exactly.
We manually checked whether the target sketches were
reproduced reasonably well. In case the participants could
not achieve certain intended effects after several trials, they
could approach us for hints.

For each of the above tested cases, most of the partic-
ipants finished the first three tasks in an average time of
less than 2 mins per task. We observe that our tool needs
some basic 3D modeling knowledge to get familiar with.
For instance, in the last case, some of the participants took
a longer time (3 ∼ 7 mins) as they misunderstood the refer-
ence image and tried to draw the detail sketches on top of a
non-existing plane (they created two side planes instead of
constructing the top floating plane using three attachments).
Not surprisingly, the two participants with previous 3D
modeling experience were able to generally learn and use
our tool much faster. Nevertheless, all participants learned
our tool fairly quickly in this task. Figure 10 shows the
average numbers of strokes and auxiliary operations, and
the averaged timings (in seconds) for sketching and camera
control. All the participants performed consistently well.

Task II. In this task, we required each participant to re-
produce two target 3D sketches (Figure 11) with increasing
complexity than those in the pretest.

Since our core technique is the automatic plane inference,
in this task, we compared our system to a basic version of
manual plane selection as used in the Mental Canvas system
[1]. Mental Canvas is a sketch-based system for conceptual
design. It has several interfaces to facilitate the sketch cre-
ation process, e.g., the automatic best view selection. Their
interface that is most relevant to our work is its manual
mode. In the manual mode of the Mental Canvas system,
three sets of equally-spaced axis-aligned (i.e., the x, y, and
z) 3D planes, 6 planes per direction, were exposed to the
user. The user could switch between the three sets of planes
by clicking a button. Once a plane was selected, the user
could rotate or translate it and its associated 3D sketches,
but with no snapping or inference. The original 3D model
was also exposed to the user for visual reference. The user
can choose to hide the 3D model if necessary.

The participants were asked to draw the sketches in
Figure 11 using each of the two modes, the inference
mode and the manual mode, whose presentation order was
counterbalanced. We collected the same statistics as in Task
I. Figure 12 shows the results. From Figure 12, it is not
unexpected to see that the sketching timings in both modes
were similar, and the manual mode even got slightly less

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

0

20

40

60

80

s1 s1-m s2 s2-m

#Strokes

0

50

100

150

s1 s1-m s2 s2-m

Manipula�on Time

0

50

100

150

s1 s1-m s2 s2-m

#Auxiliary
Opera�ons

0

1

2

3

s1 s2

#Candidate
Selec�on

0

1

2

3

4

s1 s2

#Redraw Sketch

0

20

40

60

80

s1 s1-m s2 s2-m

Skething Time

Fig. 12. Statistics of Task II. s1 and s2 refer to the target sketches (a-b)
in Figure 11, and “-m” means results obtained using the manual plane
selection and manipulation mode. The auxiliary operations include undo,
erasing, deletion, single-click, and plane confirmation. The error bars are
the standard errors of the mean.

sketching time as the sketching was direct once the canvas
was fixed. However, when using the manual mode, the
participants spent a lot of more time in translating and
rotating the canvases to put them at desired locations. The
t-test showed a statistically significant difference in canvas
manipulation time (Figure 12) for both target sketches in
Task II (s1 : p < 0.009; s2 : p < 0.012). For auxiliary
operations, there was a significant difference when creating
sketch 2 (p < 0.009). These statistics indicate that our
interface can greatly reduce the user interaction for canvas
manipulation compared with the traditional interface. While
these statistics show the superiority of our system, the
manual plane manipulation could be a complementary tool
for our system to help users express themselves more freely.
We also noticed that the exposure of the 3D model was
largely helpful in determining the position and scales of the
drawn sketches in the manual mode.

An important finding is the robustness of our canvas
inference algorithm. Our system infers and dynamically up-
dates the canvas during the drawing procedure. The follow-
ing two statistics can reveal the correctness of the inference
algorithm, i.e., the number of candidate selection and the
number of sketch redrawing (Figure 10 and Figure 12). It
can be easily seen from these figures that very seldom did
a participant need to enter the candidate selection mode
to select a correct canvas, or redraw a sketch to get a
better inference. Here sketch redrawing is recognized by a
sequence of undo operations, or sketch deletion operation
in the sketching mode. This criteria actually is quite loose
and therefore the actual number of sketch redrawing might
be even lower.

The most time consuming part of our system, as ob-
served from Task II, is the same as in Task I, i.e., most of
the participants did not have a good sense of perspective
drawing, and thus often drew strokes without paying suf-
ficient attention to the model features. Another fact is that
when the participants wanted to draw floating planes or
planes that form certain angles with existing planes, they
sometimes ignored the mathematical aspects about unique
determination of a 3D plane and directly drew a floating

total time (s) / #plane selection / #plane infer

1038s/2/3 558s/12/2 122s/2/4

199s/0/6699s/1/4125s/2/3

5893s/9/22 217s/1/9 559s/1/6

Fig. 13. Sketches created by individual users for Task III. Not all the
examples are shown.

plane such as the example shown in case 3 of Figure 7 (d)
right. Again, the statistics showed that our tool is suitable
for novice users. Augmented with a short period of training,
all participants learned to draw well. The quality of the cre-
ated sketches vary with different users, but there seems no
significant difference between the proposed and compared
tools.

Task III. As the last part of our pilot study, the partici-
pants were asked to freely design renovations of 3D models.
For completeness, they were also introduced to the other
sketching workflow (plane selection followed by in-plane
sketching) and canvas transformation, and allowed to use a
mixture of these workflows to redesign. In total we include 9
3D models, including cube, shelf, child, swing, house, work-
bench, architecture, and table (Figure 13). Each participant
was given three of the 9 models so that each model was
sketched over multiple times. To provide inspiration, each
model came with one possible sketch, which the participants
did not need to follow. Figure 13 shows a gallery of sketches
created by the participants. The participants typically took
several minutes to a dozen minutes to create such redesigns
of 3D models. The numbers of inferred planes and explicitly
selected planes indicate that inference-enabled sketching
was always preferred by our participants. We observed that
the sketches created by our participants were interesting but
not very complex. We confirmed with them that they were
mainly limited by their creativity instead of the expressive-
ness of our tool.

We conducted a usability test to further evaluate our
system. At the end of the study, each participant was asked
to complete a questionnaire, which included a standard
system usability scale (SUS) with 10 questions [53]. 6 of the
participants found our system easy to use and felt confident
using the system. Most of the participants found that the
technical tutorial was necessary before using the system
but the tutorial was easy to follow and intuitive. Also,
7 of the participants found that various functions in our
system were well integrated. On the other hand, a majority

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 14. Gallery of 3D sketches generated by our system.

of the users pointed out that although having 3D models
can largely help the creation and anchoring of new contents,
the planar assumption somehow restricted the expressive
power as a general 3D sketching tool. Moreover, in some
circumstances, novice user will not and even do not want
to understand and learn the fundamental concepts behind
how the canvases are created. In such cases, a deterministic
3D sketching tool such as mental canvas might be easier to

learn.
Our algorithm involves adjustable parameters (e.g., for

detecting collinearity, parallelism, attachment relations),
however, all the results were achieved using the default
fixed set of parameter values. While the existing 3D sketch-
ing systems (e.g., [1], [5]) might be able to generate visually
similar results, they mostly require a significantly larger
amount of user intervention (c.f. Task II), which is greatly re-

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a)

(b)

Fig. 15. Our system does not handle well (a) freeform shapes containing
rich nonlinear/non-planar features or (b) complex models with excessive
features. The images on the left show the input sketches, highlighted
in red. The middle and right images show the candidate 3D sketches,
differentiated by the colors. The default ones are with navy blue.

duced with the help of the rich geometric information from
the 3D guidance models. As sketching is inherently noisy,
errors due to either the input devices (e.g., difficult to use
a mouse for precise drawing) or perceptual foreshortening
biases are unavoidable. In such circumstances, our method
resorts the user to the candidate selection phase to anchor
the correct planes. Nevertheless, throughout experiments,
we found our tool is able to tolerate such errors well. We
record the number of candidate selection operations in all
the three tasks, as can be seen from Figures 10 and 12. The
average number in Task III was also kept at a low rate (< 3
per example, see also in the accompanying video).

Limitations. Our tool allows users to express themselves
quickly, but at the cost of imprecise drawings. The resulting
sketches might not be well connected anywhere and their
regularity can be improved. Such effects might be achieved
by using snapping-like geometric constraints [54] for incre-
mental or global sketch beautification. Our current sketches
are always embedded in 3D planes, since our canvases are
planes. For creating non-planar curves, we might adopt an
approach similar to [5], [9], [21] and use our current sketches
as a scaffold. We have tested our tool on relatively simple
models only. When a 3D model is complex (Figure 15 (b)), it
might provide excessive features, which might confuse our
algorithm. A possible solution is to provide an interactive
tool so that users can first select model parts or features
of interests for inference guidance. In addition, since our
system mainly uses linear and planar features of 3D models,
it is not suitable for freeform or organic shapes with rich
nonlinear or non-planar features (e.g., mug, as shown in
Figure 15 (a)). Lastly, since our current implementation
requires clean models as input, it is not robust against the
noise in input models and thus cannot be directly applicable
to models represented as noisy 3D point clouds.

6 CONCLUSION AND FUTURE WORK

We have presented a model-guided 3D sketching system.
Our tool is particularly useful for quick concept redesign
of existing 3D models by sketching renovations. We adopt
an incremental plane-by-plane sketching interface. A key
feature of our system is that users are able to sketch the
renovations of a 3D model without explicit canvas selection,
leaving our system to automatically infer a desired planar
canvas by correlating a group of sketched strokes with the
model. A more traditional sketching workflow involving

Fig. 16. Physical realization of 3D sketches around 3D-printed models.

explicit plane selection is naturally integrated into a single
system. A pilot study confirmed that our tool is simple and
easy to use, and allows quick sketch-based redesign of var-
ious man-made objects. It would be promising to integrate
our tool into the 3D modeling software, e.g., SketchUp, for
early stage design, or 3D animation software, e.g., Autodesk
Maya, for roughly illustrating the key frames.

We have focused on the implementation of the core
sketching operations for the current prototype. Our tool
will be more efficient if more auxiliary features are in-
cluded such as more powerful canvas organization tools like
those in Mental Canvas [1], automatic best-view selection for
previewing canvas candidates, and those suggested by the
artists who tested our system. Our rendering of 3D sketches
may be improved by considering stroke visibility, possibly
with the help of user-specified visibility masks. Our plane
inference algorithm might be easily extended to exploit the
similarity between user drawn strokes and feature curves
on a 3D model [8], [9]. The plane evaluation could also
be improved by considering existing sketches and using an
optimization approach to find the best plane which fits the
existing content. As discussed earlier, we are interested in
achieving non-planar 3D curves and more precise drawings,
without sacrificing too much the ease of use. How to turn
our 3D sketches into 3D surface models is also an interesting
but challenging problem to explore in the future, since our
sketches are relatively rough and need to be refined before
plugging them into existing techniques for surfacing curve
networks [30]. Finally, we are very interested in achieving
physical realization of the created 3D sketches so that they
can be integrated with real-world objects. Figures 1 and 16
show our proof of concept, where 3D models are 3D-printed
and 3D sketches are 2D-printed onto transparency sheets
plane by plane.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

ACKNOWLEDGMENTS

We would like to thank Jiyuan Zhang for the initial
exploration of this project, the reviewers for their
constructive comments, and the user study participants for
their time. This work was partially supported by grants
from NSFC (61502306, 61602310, 61522213, 61761146002,
61861130365), Guangdong Science and Technology
Program (2015A030312015), Shenzhen Innovation Program
(JCYJ20170302154106666, KQJSCX20170727101233642,
JCYJ20151015151249564), the Research Grants Council of
HKSAR (CityU11300615, CityU11204014, HKUST16201315,
HKUST16210718), NSERC, ACIM-SCM, and the
Open Project Program of State Key Lab. of Virtual
Reality Technology and Systems, Beihang University
(VRLAB2018C11).

REFERENCES

[1] J. Dorsey, S. Xu, G. Smedresman, H. Rushmeier, and L. McMillan,
“The mental canvas: A tool for conceptual architectural design and
analysis,” in PG ’07, 2007, pp. 201–210.

[2] S.-H. Bae, R. Balakrishnan, and K. Singh, “Ilovesketch: as-natural-
as-possible sketching system for creating 3d curve models,” in
UIST ’08, 2008, pp. 151–160.

[3] ——, “Everybodylovessketch: 3d sketching for a broader audi-
ence,” in Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, 2009, pp. 59–68.

[4] J. McCrae, N. Umetani, and K. Singh, “Flatfitfab: Interactive mod-
eling with planar sections,” in Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’14.
New York, NY, USA: ACM, 2014, pp. 13–22.

[5] R. Schmidt, A. Khan, K. Singh, and G. Kurtenbach, “Analytic
drawing of 3d scaffolds,” in ACM Transactions on Graphics, vol. 28,
no. 5, 2009, p. 149.

[6] Y. Zheng, H. Liu, J. Dorsey, and N. J. Mitra, “Smartcanvas:
Context-inferred interpretation of sketches for preparatory design
studies,” Computer Graphics Forum (Proceedings of Eurographics
2016), 2016.

[7] Y. Kim and S.-H. Bae, “Sketchingwithhands: 3d sketching hand-
held products with first-person hand posture,” in Proceedings of
the 29th Annual Symposium on User Interface Software and Technology.
ACM, 2016, pp. 797–808.

[8] B. Xu, W. Chang, A. Sheffer, A. Bousseau, J. Mccrae, and K. Singh,
“True2form: 3d curve networks from 2d sketches via selective
regularization,” ACM Transactions on Graphics, vol. 33, no. 4, 2014.

[9] C. De Paoli and K. Singh, “Secondskin: Sketch-based construction
of layered 3d models,” ACM Trans. Graph., vol. 34, no. 4, pp. 126:1–
126:10, Jul. 2015.

[10] L. B. Kara and K. Shimada, “Sketch-based 3d-shape creation for
industrial styling design,” IEEE Comput. Graph. Appl., vol. 27, no. 1,
pp. 60–71, 2007.

[11] X. A. Chen, S. Coros, J. Mankoff, and S. E. Hudson, “Encore:
3d printed augmentation of everyday objects with printed-over,
affixed and interlocked attachments,” in UIST ’15, 2015, pp. 73–82.

[12] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa,
“Sketch-based shape retrieval,” ACM Trans. Graph. (Proc. SIG-
GRAPH), vol. 31, no. 4, pp. 31:1–31:10, 2012.

[13] S. Tsang, R. Balakrishnan, K. Singh, and A. Ranjan, “A suggestive
interface for image guided 3d sketching,” in CHI ’04, 2004, pp.
591–598.

[14] L. B. Kara and K. Shimada, “Construction and modification of 3d
geometry using a sketch-based interface,” in SBIM ’06, 2006, pp.
59–66.

[15] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Fibermesh:
designing freeform surfaces with 3d curves,” in ACM Transactions
on Graphics (TOG), vol. 26, no. 3. ACM, 2007, p. 41.

[16] J. Leung and D. M. Lara, “Grease pencil: Integrating animated
freehand drawings into 3d production environments,” in SIG-
GRAPH Asia 2015 Technical Briefs, 2015, pp. 16:1–16:4.

[17] C. Grimm and P. Joshi, “Just drawit: a 3d sketching system,” in
SBIM ’12, 2012, pp. 121–130.

[18] D. Bourguignon, M.-P. Cani, and G. Drettakis, “Drawing for illus-
tration and annotation in 3d,” in Computer Graphics Forum, vol. 20,
no. 3, 2001, pp. 114–123.

[19] T. Grossman, R. Balakrishnan, G. Kurtenbach, G. Fitzmaurice,
A. Khan, and B. Buxton, “Creating principal 3d curves with digital
tape drawing,” in CHI ’02, 2002, pp. 121–128.

[20] J. Schmid, M. S. Senn, M. Gross, and R. W. Sumner,
“Overcoat: an implicit canvas for 3d painting,” ACM Trans.
Graph., vol. 30, pp. 28:1–28:10, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2010324.1964923

[21] V. Krs, E. Yumer, N. Carr, B. Benes, and R. Mech, “Skippy: Single
view 3d curve interactive modeling,” in ACM Transactions on
Graphics (SIGGRAPH 2017), 2017, p. to appear.

[22] R. Arora, R. H. Kazi, T. Grossman, G. Fitzmaurice, and K. Singh,
“Symbiosissketch: Combining 2d & 3d sketching for desigining
detailed 3d objects in situ,” in CHI 2018, 2018.

[23] M. Xin, E. Sharlin, and M. C. Sousa, “Napkin sketch: handheld
mixed reality 3d sketching,” in Proceedings of the 2008 ACM sym-
posium on Virtual reality software and technology. ACM, 2008, pp.
223–226.

[24] P. Paczkowski, M. H. Kim, Y. Morvan, J. Dorsey, H. Rushmeier, and
C. O’Sullivan, “Insitu: Sketching architectural designs in context,”
ACM Trans. Graph., vol. 30, no. 6, pp. 182:1–182:10, 2011.

[25] M. Lau, G. Saul, J. Mitani, and T. Igarashi, “Modeling-in-context:
User design of complementary objects with a single photo,” in
SBIM ’10, 2010.

[26] H. Lipson and M. Shpitalni, “Optimization-based reconstruction
of a 3d object from a single freehand line drawing,” Computer-
Aided Design, vol. 28, no. 8, pp. 651–663, 1996.

[27] X. Chen, S. Kang, Y. Xu, J. Dorsey, and H. Shum, “Sketching reality:
Realistic interpretation of architectural designs,” ACM Transactions
on Graphics (TOG), vol. 27, no. 2, p. 11, 2008.

[28] C. Zou, S. Chen, H. Fu, and J. Liu, “Progressive 3d reconstruction
of planar-faced manifold objects with drf-based line drawing
decomposition,” IEEE Transactions on Visualization and Computer
Graphics, vol. 21, no. 2, pp. 252–263, 2015.

[29] L. Li, Z. Huang, C. Zou, C.-L. Tai, R. W. Lau, H. Zhang, P. Tan,
and H. Fu, “Model-driven sketch reconstruction with structure-
oriented retrieval,” in SIGGRAPH Asia 2016 Technical Briefs, 2016.

[30] H. Pan, Y. Liu, A. Sheffer, N. Vining, C.-J. Li, and W. Wang, “Flow
aligned surfacing of curve networks,” ACM Trans. Graph., vol. 34,
no. 4, pp. 127:1–127:10, 2015.

[31] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-
based modeling: A survey,” Computers & Graphics, vol. 33, no. 1,
pp. 85–103, 2009.

[32] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “SKETCH:
An interface for sketching 3D scenes,” in Proceedings of ACM
SIGGRAPH, 1996, pp. 163–170.

[33] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching
interface for 3D freeform design,” in SIGGRAPH ’99, 1999, pp.
409–416.

[34] O. A. Karpenko and J. F. Hughes, “Smoothsketch: 3d free-form
shapes from complex sketches,” ACM Trans. Graph., vol. 25, no. 3,
pp. 589–598, 2006.

[35] Y. Gingold, T. Igarashi, and D. Zorin, “Structured annotations for
2D-to-3D modeling,” ACM Transactions on Graphics, vol. 28, no. 5,
p. 148, 2009.

[36] Y. Li, X. Luo, Y. Zheng, P. Xu, and H. Fu, “Sweepcanvas: Sketch-
based 3d prototyping on an rgb-d image,” in UIST ’17, 2017.

[37] K. Singh and E. Fiume, “Wires: a geometric deformation tech-
nique,” in Proceedings of the 25th annual conference on Computer
graphics and interactive techniques. ACM, 1998, pp. 405–414.

[38] J. Jorge, N. Silva, and T. Cardoso, “Gides++,” Proceedings of 12th
Encontro Português de Computação Gráfica, vol. 2, no. 9, 2003.

[39] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-
based interface for detail-preserving mesh editing,” ACM Trans.
Graph., vol. 24, no. 3, pp. 1142–1147, 2005.

[40] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-based
mesh augmentation,” in SBIM ’05, 2005.

[41] L. B. Kara, C. M. D’Eramo, and K. Shimada, “Pen-based styling
design of 3d geometry using concept sketches and template mod-
els,” in SPM ’06, 2006, pp. 149–160.

[42] H. Shin and T. Igarashi, “Magic canvas: interactive design of a 3-d
scene prototype from freehand sketches,” in Proceedings of Graphics
Interface 2007, 2007, pp. 63–70.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[43] J. Lee and T. Funkhouser, “Sketch-based search and composition
of 3D models,” in EUROGRAPHICS Workshop on Sketch-Based
Interfaces and Modeling, Jun. 2008.

[44] K. Xu, K. Chen, H. Fu, W.-L. Sun, and S.-M. Hu, “Sketch2scene:
Sketch-based co-retrieval and co-placement of 3d models,” ACM
Transactions on Graphics, vol. 32, no. 4, p. Article No. 123, 2013.

[45] L. Fan, R. Wang, L. Xu, J. Deng, and L. Liu, “Modeling by drawing
with shadow guidance,” in Computer Graphics Forum, vol. 32, no. 7,
2013, pp. 157–166.

[46] K. Shoemake, “Arcball: a user interface for specifying three-
dimensional orientation using a mouse,” in Graphics Interface,
vol. 92, 1992, pp. 151–156.

[47] T. Igarashi and J. F. Hughes, “A suggestive interface for 3D
drawing,” in UIST ’01, 2001, pp. 173–181.

[48] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detec-
tors: A survey,” Found. Trends. Comput. Graph. Vis., vol. 3, no. 3, pp.
177–280, 2008.

[49] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or, “iwires: an
analyze-and-edit approach to shape manipulation,” in ACM Trans-
actions on Graphics (TOG), vol. 28, no. 3. ACM, 2009, p. 33.

[50] P. Rosin, “Techniques for assessing polygonal approximations of
curves,” IEEE TPAMI, vol. 19, no. 6, pp. 659–666, 2002.

[51] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 5, pp. 603–619, 2002.

[52] R. Schmidt, A. Khan, G. Kurtenbach, and K. Singh, “On expert
performance in 3d curve-drawing tasks,” in SBIM ’09, 2009, pp.
133–140.

[53] J. Brooke, “Sus-a quick and dirty usability scale,” Usability evalua-
tion in industry, vol. 189, no. 194, pp. 4–7, 1996.

[54] E. A. Bier, “Snap-dragging in three dimensions,” in ACM SIG-
GRAPH Computer Graphics, vol. 24, no. 2. ACM, 1990, pp. 193–
204.

Pengfei Xu is an Assistant Professor of College
of Computer Science and Software Engineering
at Shenzhen University. He received his BS de-
gree in Math from Zhejiang University, China,
in 2009 and his Ph.D. degree in Computer Sci-
ence from Hong Kong University of Science and
Technology in 2015. His primary research lies
in Human Computer Interaction and Computer
Graphics.

Hongbo Fu received a BS degree in information
sciences from Peking University, China, in 2002
and a PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2007. He is an Associate Professor at
the School of Creative Media, City University of
Hong Kong. His primary research interests fall
in the fields of computer graphics and human
computer interaction. He has served as an Asso-
ciate Editor of The Visual Computer, Computers
& Graphics, and Computer Graphics Forum.

Youyi Zheng is a Researcher (PI) at the State
Key Lab of CAD&CG, College of Computer Sci-
ence, Zhejiang University. He obtained his PhD
from the Department of Computer Science and
Engineering at Hong Kong University of Science
& Technology, and his M.Sc. and B.Sc. degrees
from the Department of Mathematics, Zhejiang
University. His research interests include geo-
metric modeling, imaging, and human-computer
interaction.

Karan Singh is a Professor of Computer Sci-
ence at the University of Toronto. He co-directs
the graphics and HCI lab, DGP, has over 100
peer-reviewed publications, and has supervised
over 40 MS/PhD theses. His research interests
lie in interactive graphics, spanning art and vi-
sual perception, geometric design and fabrica-
tion, character animation and anatomy, and in-
teraction techniques for mobile, Augmented and
Virtual Reality (AR/VR). He has been a technical
lead for the Oscar award winning software Maya

and was the R&D Director for the 2004 Oscar winning animated short
Ryan. He has co-founded multiple companies in the interactive graphics
space including Arcestra (architectural design), Conceptualiz (surgical
planning), and JanusVR (AR/VR).

Hui Huang is a Distinguished Professor of Shen-
zhen University, where she directs the Visual
Computing Research Center in College of Com-
puter Science and Software Engineering. She
received her PhD in Applied Math from The Uni-
versity of British Columbia in 2008 and another
PhD in Computational Math from Wuhan Univer-
sity in 2006. She is the recipient of NSFC Excel-
lent Young Researcher program and Guangdong
Technology Innovation Leading Talent award in
2015. Her research interests are in computer

graphics and scientific computing, focusing on point-based modeling,
geometric analysis, 3D acquisition and creation.

Chiew-Lan Tai is a Professor of Computer Sci-
ence at the Hong Kong University of Science
and Technology. She received the BSc degree in
mathematics from the University of Malaya, MSc
in computer & information sciences from the
National University of Singapore, and DSc de-
gree in information science from the University of
Tokyo. Her research interests include geometry
processing, computer graphics, and interaction
techniques.

