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Figure 1. We present Live Sketch, an interactive system for users with no or little animation skills to create vivid dynamic deformation of a sketch (a)
by first extracting object motion from a video sequence (bottom), and then transferring the motion to the sketch (top). Please see the animation in the
accompanying video. Video credit: Albert Ziganshin.

ABSTRACT
Creating sketch animations using traditional tools requires
special artistic skills, and is tedious even for trained profes-
sionals. To lower the barrier for creating sketch animations,
we propose a new system, Live Sketch, which allows novice
users to interactively bring static drawings to life by applying
deformation-based animation effects that are extracted from
video examples. Dynamic deformation is first extracted as
a sparse set of moving control points from videos and then
transferred to a static drawing. Our system addresses a few
major technical challenges, such as motion extraction from
video, video-to-sketch alignment, and many-to-one motion-
driven sketch animation. While each of the sub-problems
could be difficult to solve fully automatically, we present re-
liable solutions by combining new computational algorithms
with intuitive user interactions. Our pilot study shows that our
system allows both users with or without animation skills to
easily add dynamic deformation to static drawings.
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INTRODUCTION
In recent years, there has been a new wave of research on de-
veloping intelligent user interfaces to help novice users create
artistically expressive sketches and drawings. Representative
examples include ShadowDraw [31], EZ-Sketch [42], ColorS-
ketch [32], and the repetition autocompletion system [49]. By
combining intelligent computational algorithms with intuitive
UI controls, these systems enable novice users with little or no
formal artistic training to create static drawings of high quality
with minimal user effort, which otherwise cannot be achieved
using traditional tools.

Despite the fact that creating static drawings has been made
easier by these tools, creating high-quality 2D animations
remains both difficult and time-consuming. Traditional an-
imation tools, such as Adobe Flash and Toon Boom soft-
ware, require accurate motion keyframing, which is a tedious
and labor-intensive process even for experienced artists. To
avoid this, new interactive tools have been proposed to allow
artists to specify motion in more creative ways, such as spatio-
temporal sketching [20], or using specially-designed cursive
gestures [44]. Still, using these tools requires not only inten-
sive training, but also animation skills that novice users do not
possess. It is very hard for novice users to mentally map a
desired continuous object motion to static keyframe drawings
that are discrete and sparse.

On the other hand, there exist many videos with rich motion
information, which can be potentially extracted and used for
animating 2D sketches. Proper video examples should con-
tain mainly 2D motion that can be semantically mapped to



sketches. An ideal video-driven sketch animation workflow
would be: 1) given an arbitrary sketch, search for proper video
examples from a large dataset of videos; 2) extract and transfer
the motion of the retrieved relevant videos to the sketch. While
both the subproblems are interesting, we aim to address the
second subproblem and focus on how to effectively reuse the
motion of a given video example for animating sketches which
might have different shapes from the video objects. Our work
thus shares the same objective as Bregler et al. [10] in produc-
ing video-driven animation. However, their technique requires
a series of user-prepared target key-shapes corresponding to
the source key-shapes from a video, and transfers interpola-
tion weights to achieve keyframe-based animation, while ours
needs only a single sketch.

In this paper, we present Live Sketch, a new intelligent in-
terface to assist non-professional users in animating a single
sketch through expressive dynamic deformation using corre-
sponding video example(s), as illustrated in Fig. 1. Our main
idea is to extract the desired motion from an existing video as a
sparse set of moving control points (Fig. 1 (d)), which are then
used to drive the deformation of the mesh on which the sketch
is embedded (Fig. 1 (b)). We propose new computational al-
gorithms and combine them with intuitive user controls for
robust and controllable motion extraction and transfer so that
our system is friendly even for users with no or little animation
skills.

In the motion extraction stage, we propose a new semi-
automatic video tracking approach, which is able to track
complex non-rigid object motion and is robust against occlu-
sion and ambiguity. Our approach extends the existing tech-
niques [2, 11] by introducing an additional component that
allows our tracking method to handle the drifting problem due
to ambiguity and topology changes. It takes a minimal set of
user-specified, semantically-meaningful control points on the
first frame, and automatically tracks their positions throughout
the video. This approach can also incorporate sparse user edits
as hard constraints to refine the tracking results in difficult
cases.

In the motion transfer stage, we animate an input sketch
by mesh-based deformation guided by the tracking results
(Fig. 1(b)), while providing users a set of tools to fine-tune
the deformation effects such as local rigidity of the motion.
We further show how to interactively decompose a sketch into
multiple layers to handle complex object motion patterns, such
as self-occlusion and topology change.

We have conducted a pilot user study to evaluate the usability
and expressiveness of our system, demonstrating very positive
results. Our work presents the following main contributions:

• The first efficient and user-friendly 2D animation tool that
animates a single drawing by reusing the motion informa-
tion of a video example.

• A new sparse point tracking method that is robust against
occlusion and ambiguity, and allows easy user control.

• A new stroke-preserving mesh deformation method for ani-
mating sketches, with constraints for better preserving the
shape of user-specified strokes.

RELATED WORK
Digital sketching. There has been extensive research on how
to assist artists or novice users in creating sketches. Some
methods refine or guide users’ sketching by analyzing a crowd-
sourced set of images [31], low-quality drawings [19], or even
a single image being traced over [42]. Xing et al. [49] present a
painting system that auto-completes tedious repetitions. These
methods have focused on assisting users in producing indi-
vidual static drawings. Animations, on the other hand, rely
heavily on users’ sense of both space and time [41, 9]. Our
system aims to relieve users from the tedious control required
of motion authoring by making use of video examples.

Sketch-based animation. Several animation tools with intu-
itive interaction techniques have been proposed in recent years.
A common objective is to develop tools that aid interactive
specification of motion trajectories. Willett et al. [48] and
Thorne et al. [44] present a set of transition motions or cursive
gestures for sketching a significant variety of motions for 2D
characters. Guay et al. [20] introduce a space-time sketching
concept that enables animators to create a movement, includ-
ing shape deformation over time, by sketching only a single
stroke. Other techniques use predefined motion effects (par-
ticle, waves, smoke, etc.) to animate 2D static drawings [27,
50]. These methods focus on specific animation effects or
a small number of animation styles. Other methods aim at
interactively predicting what users might sketch next using
temporal coherence [46, 1, 51]. But they still require many
manual sketching operations for each keyframe. Unlike these
methods, our Live Sketch is able to generate complex non-rigid
deformation for a static sketch by retargeting motions from
videos with a small amount of user assistance.

Animation tools using video. There have been existing tools
that also utilize videos for animation creation, as videos pro-
vide abundant motion. One way is to interactively produce
cutout-style animations [6, 22] by processing color or RGB-
D videos. Another category is non-photorealistic rendering
(NPR) techniques, which transform images or videos into artis-
tically stylized renderings. For example, Ben-Zvi et al. [8] de-
velop a data-driven method that automatically converts videos
and CG animations to stylized animated line drawings. Please
refer to [30] for an insightful survey on this topic. These meth-
ods focus on changing the rendering styles of input videos
instead of extracting the underlying motion for animating new
line drawings. Santosa et al. [38] provide a user interface to
animate a sketch painted over the video using optical flow,
and thus their system can animate only drawings of similar
structure as input videos.

Animations can also be created by tracking a contour of an
object in the video and using its temporally coherent informa-
tion. For instance, Bregler et al. [10] track the motion from
traditionally animated cartoons and retarget it onto 3D models
or 2D drawings. It takes a keyframe-based approach and re-
quires a series of corresponding input and output key shapes
for deformation interpolation, leading to more expressive re-
sults than ours but at the cost of significantly additional user
inputs. In contrast, we take a non-keyframe-based approach
to transfer dynamic movement of control points to a single



static drawing, thus requiring significantly less user’s input
and lowering the barrier for novices. Their method further re-
quires a sub-part decomposition procedure, which is relatively
easy for cartoon characters but is hard for real video objects.
Agarwala et al. [1] present a rotoscoping approach that uses
computer vision techniques to reduce user interaction in the
contour-tracking process. The extracted contours from this
system can be used to drive user sketches for video stylization.
Our system uses sparse control points as motion representa-
tion, which are much easier to track accurately than contours,
and thus requires much less computation and user intervention
in the tracking process.

Face and body driven animation. Our system is closely
related to automated human-performance-driven animation.
MoCap [29] is the industry standard for capturing 3D human
pose for animation. It requires complex hardware setup that
is not easily accessible to normal users. Fitting 3D face or
body models to images and videos to extract human motion
has been extensively studied [13, 15, 47, 17, 35, 43]. It has
enabled new real-time face- or body-driven animation systems
such as Adobe Character Animator. Park et al. [34] directly
synthesize human motion in video by analyzing exemplars.
However, these systems are limited to facial expression or body
motion only. In contrast, our system focuses on extracting and
transferring 2D dynamic deformation for a wide range of
objects. Furthermore, it uses a regular video as motion source,
which is relatively easy to capture and vastly available online.

Cross-modality motion retargeting. Many systems have
been proposed to transfer motion across different modalities.
For example, Yamane et al. [52] generate animations of non-
humanoid characters from human motion capture data. Hor-
nung et al. [23] transfer 3D motion data to 2D image objects,
while Diener et al. [18] retarget 2D motion fields for the an-
imation of 3D plant models. Zhou et al. [55] propose to use
the volumetric graph Laplacian for large 3D mesh deforma-
tion, allowing motion to be transferred from exaggerated 2D
animations to 3D meshes. Bernhard et al. [36] focus on the
animation of 3D articulated creatures using video examples.
Our system is a pure 2D system, and thus is applicable even
when 3D models are not available.

Video tracking. Previous single object tracking methods [33,
5, 14, 12] often utilize weak local features of sampled patches
to track a single object at the bounding box level. The box
position is determined from all patches through a voting or sta-
tistical aggregation method. Our application however requires
more than a bounding box: it requires tracking a sparse set of
control points to capture major structural deformation.

Sparse feature tracking is a fundamental component for video
analysis that has been extensively studied in the computer
vision literature. Our tracking method is built upon well-
known tracking techniques such as good-feature-to-track [40]
and Struck [21]. However, most previous tracking methods
track each feature point individually without considering their
geometrical relationships. This is valid for most computer
vision tasks where hundreds of features are being tracked
on each frame, and tracking errors are eliminated by outlier
removal methods such as RANSAC. However, since we only

track a few semantically-meaningful control points, tracking
failure of a single point would result in large distortion. This
problem is alleviated by our joint-optimization over multiple
points.

OUR SYSTEM

System Overview
Inputs. As illustrated in Fig. 1, our system takes as input a
static sketch drawing represented as a vector graphics, and a
video example that contains the desired motion of a moving
object for animating the sketch. The moving object should
be entirely visible throughout the video. The source motion
should be approximately 2D and within the image plane, since
deforming a 2D sketch in 3D can easily lead to (e.g., twist-
ing) artifacts. Furthermore, since what we care about is the
motion of the foreground objects, we assume that the camera
of the input video is static. Existing camera motion prediction
methods such as [54, 3] may help to remove camera motion.

Motion Representation. A key question for our motion trans-
fer task is the representation of object motion. Given the
complexity of natural object motion, it is difficult to describe
it in parametric forms, as similarly done in [10]. For non-
parametric representation, we could choose either dense or
sparse motion flow. The former can be extracted by optical
flow methods, while the latter be computed by using sparse
feature tracking. We have experimented with both representa-
tions, and concluded that sparse feature point trajectories are
more suitable for our task. The reason is that dense flow often
contains tracking errors that could distort the sketch during
animation, and these errors are hard to correct via a user in-
terface, given that motion is defined on every pixel. On the
contrary, sparse trajectories allow us to enforce strong spatial
and temporal smoothness in motion, resulting in more stable
animation. It further allows quick user editing by interactively
moving the positions of these points. The downside of us-
ing sparse representation is that motion with finer granularity
cannot be captured and transferred. This problem, however,
can be partially alleviated by adjusting the spatial distribu-
tion of control points, as described in Section "Control Point
Extraction".

User Interface
Our system uses a two-stage workflow to animate user’s 2D
static sketch: (1) motion extraction from the input video; and
(2) motion transfer to the sketch. We first introduce the user
interfaces for these two stages, as shown in Fig. 2.

Motion Extraction
We provide an intuitive user interface to extract the desired
motion from the video. The user first defines a set of struc-
tural control points inside the object, which are automatically
tracked through the entire video. The details about control
point extraction are described in Section "Control Point Extrac-
tion" and our tracking method is described in Section "Motion
Extraction". The trajectories of these control points represent
the object motion, and will be applied to the corresponding
control points on the sketch for animation. Given that auto-
matic tracking is not always perfect, our interface also provides
manual tools for fine-tuning the extracted motion by adding,



removing or repositioning the control points. The motion tra-
jectories are updated in real time and visualized to the user
during the editing process (see Fig. 2(left)).

Figure 2. Our user interfaces. Left: motion extraction UI, where control
points are defined and tracked in the input video. Right: motion transfer
UI, where the position and motion of the control points are used to drive
the sketch. The corresponding control points on the video and sketch
are shown with the same numbers. Video credit: Albert Ziganshin.

Motion Transfer
The system automatically maps the control point trajecto-
ries to the user’s sketch (Section "Control Point Transfer").
These mapped control points are used as constraints in a mesh
deformation process to drive the animation, as detailed in Sec-
tion "Motion Transfer". The user can immediately review the
animation result without any additional manual operation.

Figure 3. Interactive tools for motion transfer. Left: the user can label se-
lected strokes as decoration strokes (i.e., no motion), or add strong shape
rigidity constraints to strokes. Right: the user can group several strokes
as a new layer to animate them independently from other strokes, or
add/move automatically initiated joints in the layer intersection regions.

Our interface provides interactive tools for fine-tuning the
automatically-generated sketch animation, as shown in Fig. 3.
First, it allows the user to adjust the spatial positions of the
control points on the sketch, whose initial positions are auto-
matically inferred from the control points on the video object.
Another useful tool is "Rigidity Stroke", which can be used to
alleviate local shape distortion during the animation. The user
can also use a "Decoration Stroke" tool to mark sketch compo-
nents that are to remain stationary, like those for background
decoration or a "Pin Point" tool to add stationary control points
to the sketch (black points with no IDs in Fig. 10(a)).

One important feature of our system is its ability to decom-
pose a sketch and animate it in multiple layers (see Fig. 3,
Right). This is particularly useful for handling self-occlusions,
which are common for video objects with complex motion.
To create such layers, the user can use a "Layer Brush" to
paint over strokes that should be grouped together, based on
the semantics of the object and its motion. We also provide
an interface for users to refine the automatically generated

joints between layers to fine-tune the animation. Please refer
to Section "Multi-layer Animation" for more details.

Control Point Extraction
In our system, object motion is represented by a set of sparse
control points which are tracked throughout the video, and
used as constraints for deforming the sketch for animation.
We have done extensive studies on automatically computing
these points. We have tried to use image features such as
SIFT or SURF to find good points to track, and also explored
determining the points based on the initial object shape. In the
end we conclude that although these automatic approaches do
work well in some cases, they cannot handle a wide variety of
examples well. This is due to the following requirements on
these control points:

R1. They should be sparsely distributed across the entire ob-
ject shape to cover the animated region.

R2. Their distribution should reflect the degree of freedom of
the underlying motion. For example, one control point
could be enough for a flying baseball; however, more are
needed for a fly bird to capture its wing motion.

R3. They should be easy to track in the video, such as image
corners, which have large appearance dissimilarity from
their neighborhood.

R4. The number of control points should be minimal for easy
user adjustment.

R5. They should obey the semantics of the object, e.g., re-
specting semantic symmetry (such as the tentacles of the
running virus in Fig. 1).

R1 suggests having a sufficient number of control points to
capture the underlying motion of the object. On the other
hand, R4 aims to minimize the number of control points. This
suggests distributing the control points adaptively with respect
to the underlying motion (R2), while making sure each control
point is semantics-aware (R5) and located in regions with
salient image features (R3). While the individual requirements
might be satisfied using local image feature space, motion
analysis and shape analysis, satisfying all the requirements in
a balanced manner is more difficult and requires deep semantic
understanding of the object and its motion. On the other hand,
it is relatively easy for the user to preview the video and
determine the semantics of the object and its motion. We thus
resort to a manual procedure for specifying control points. We
employ a robust tracking algorithm that jointly optimizes all
tracking points, as detailed in the next section.

Discussion. The distribution of the control points determines
the granularity of the motion we extract; fewer control points
results in coarser motion, and vice versa. However, having
too many control points could be problematic as the tracking
failure might increase, and the motion field becomes less stable
due to tracking errors. Given that we will enforce temporally-
smooth motion fields for animation stability, we have found
that a smaller set of control points (one or two dozens) is
usually sufficient for a wide variety of examples.



Motion Extraction
After specifying the control points, we track their positions
throughout the video. A naïve approach would be to track each
control point individually using standard point tracking meth-
ods, e.g., KLT point tracker [53]. However, these methods may
fail for some points that are hard to track, e.g., points specified
in textureless regions, resulting in drifting. Used as hard con-
straints, these drifted points will later distort the sketch shape
in the final animation. Given that automatic tracking failure
may always occur no matter how robust the underlying algo-
rithm is, we employ an interactive tracking procedure. We first
adopt a dynamic-programming-based trajectory optimization
framework [2, 11] to track individual points. When tracking
drifting occurs for one point, the user only needs to modify
the tracking position of the failed point in a particular frame,
which is incorporated as a hard constraint to globally refine the
whole trajectory of the failed point. Therefore, the user can
quickly refine the tracking results by only editing a few frames.
This interactive tracking method is quite efficient and is able to
address drifting due to occlusion. To handle the second source
of drifting due to ambiguity, we jointly optimize over multiple
tracking trajectories.

Specifically, the tracking algorithm optimizes the following
energy for each control point trajectory:

Etr(x)=∑
t

(
λdd(xt ,xt+1)+λuu(pt , pt+1)+min

k
(a(pt ,ck))

)
,

(1)
where xt represents the position of a control point x in frame t,
and pt denotes the feature descriptor (SIFT in our implementa-
tion) of the image patch (we use 9×9 patches) centered at xt .
The energy consists of three parts. The velocity term d(·) =
‖xt −xt+1‖2

2 and update penalty term u(·) = ‖pt − pt+1‖2
2 mea-

sure the respective motion intensity and appearance variation
between two consecutive frames, to achieve a smooth mo-
tion and appearance transition. a(·) = ‖pt −qk‖2

2 in the third
term is a measure of the appearance deviation from the user-
specified control point locations {ck}, where qk is the patch
feature descriptor of ck. The user may manually specify two
or more control point positions at different frames. We mea-
sure the appearance energy of points at other frames using
mink(a(pt ,ck)), so that they should match at least one of these
user-specified control points.

We minimize the energy function in Eq. 1, by finding the
shortest path of a graph (Fig. 4). First, the user specifies the
locations, {ck}, of the tracking point at some frames (black
circles). Then, for each remaining frame, we find a set of
trajectory candidate positions (green circles), which have small
appearance deviation from user-specified positions. Then we
build a graph that takes these candidate points and the user-
specified points as its nodes. We connect the points of each
frame t with those of the next frame t + 1 as the edges of
the graph (gray lines). The weight of each node pt is its
appearance deviation a(pt ,ck). The weight of each edge is
computed by

we(pt , pt+1) = λdd(xt ,xt+1)+λuu(pt , pt+1).

source sink

user-specified position candidate position

1 2 3 4 5frame

Figure 4. Illustration of our interactive motion extraction algorithm
for each tracked point. The user first specifies the position of the asso-
ciated control point (black circles) at some frames (1&4). For each of
the remaining frames (2,3&5), our system then finds a set of candidate
positions (green circles) of the tracking trajectory, builds a graph using
these points and searches for the shortest path as the optimal tracking
trajectory. By adding edges (dot lines) that skip frames when occlusion
happens, this method can handle the occlusion problem. For example,
the black trajectory is a possible solution when occlusion happens in
frame 3.

Therefore, the total cost of the shortest path is the minimum
value of Etr(x).

To handle the occlusion problem, we also fully connect the
points of each frame with those of its next m frames (dot
lines in Fig. 4, we set m = 10). The weight of the extra edge
between two respective nodes pt and pt ′ of frame t and t ′
(t +1 < t ′ ≤ t +m) is

we(pt , pt ′) = λo +λdd(xt ,xt ′)+(t ′ − t)λuu(pt , pt ′).

The parameter values and more details of this method can be
found in [2, 11].

Ambiguity Handling
Besides the occlusion problem, another source of drifting is
ambiguity, i.e., when two or more tracking points with similar
appearance get close to each other. An example is shown in
Fig. 6(top). When the two legs of the tiger cross, the two
control points become too close to each other, and they end up
tracking the same image feature going forward, resulting in a
collision.

To solve this problem, we propose a new energy minimization
method to jointly optimize the tracking trajectories of multiple
points (Fig 5). The main idea is to first generate a set of
trajectories for each control point as candidate trajectories
(Fig. 5(top)) and then employ a global optimization approach
to select the best one for each point by jointly considering
multiple points together.

Candidate Trajectories. Given all control points on a
keyframe, we first compute the appearance similarity between
any two points based on u(·) in Eq. 1. We then group points
into several sets, each containing points that have similar ap-
pearance. Denote one such set as S = {x1, ...,xn}. For each
point xi, we apply the method proposed in [16] to compute
a set of candidate tracking trajectories. This method has two
major parameters: (1) the maximum overlap between any two
candidate trajectories, which we set as T/4, where T is the
total number of frames; and (2) a tracking cost threshold (set
to 4.0 times of the shortest path’s cost).
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Figure 5. Ambiguity handling. We first generate a set of trajectories
for each control point as candidates (top). The tracking cost Etr of each
candidate trajectory is shown. A global optimization approach is then
applied to find the best combination (bottom) with the minimum sum
of tracking energy (Etr) and overlapping energy (Eo), i.e., E = Etr(xA)+
Etr(xB)+βEo(xA,xB).

Trajectory Optimization. We jointly optimize over multi-
ple tracking points to find the best trajectory for each point.
This can be formulated as the following energy minimization
problem:

argmin∑
i

Etr(xi)+β ∑
i� j

Eo(xi,x j), (2)

where the tracking energy Etr(xi) is measured by Eq. 1.
Eo(xi,x j) is defined as the normalized duration of the overlap-
ping portion of the two trajectories. β is the weight parameter
and set to 0.25 in our implementation. Intuitively, this term pre-
vents two similar control points to collapse into a single one,
in which case the overlapping portion of the two trajectories
will be large.

We use a greedy algorithm to minimize this energy. We first
initialize the solution by choosing the trajectory that has the
minimal tracking energy for each point (according to Eq. 1).
Starting from the point that has the largest total energy accord-
ing to Eq. 2, we assign to it another candidate trajectory that
best minimizes this energy. We repeat this process until the
total energy cannot be further reduced.

Note that we do not make any assumption on the background
of a video. One tracking result of a video with complex back-
ground is shown in Fig. 6 (bottom). In addition, our motion
extraction method is a general feature tracking method, and
thus is able to track objects involving 3D motion (Fig. 6(bot-
tom) and Fig. 15(right)), though it might require additional
user assistance. Such video examples are more useful for other
applications, e.g., driving the motion of a 3D model instead of
animating a 2D static drawing.

Control Point Transfer
To transfer the extracted motion to the input sketch, we first
need to map the control points specified on the video object to
the sketch. Because of possibly dissimilar appearance between
the sketch content and the video object, existing methods [4,
39] based on local features of the content are not suitable for

Frame 0 Frame 17 Frame 39

Frame 0 Frame 74 Frame 108Frame 30

Figure 6. Top: automatically solving tracking ambiguity using multi-
track optimization. 1st row: four control points defined on the four legs
collide when the legs cross, due to appearance ambiguity; 2nd row: our
new tracking method can effectively prevent such ambiguities. Bottom:
tracking result for video with 3D motion and complex background with
a small amount of user intervention. Video credits: AlphaNature; zon-
tinela.

our scenario. We propose a semi-automatic mapping method
based on their contours.

The contour of the sketch can be extracted using the Active
Contour models [26]. The contour of the video object can be
extracted by automatic GrabCut segmentation [37] with the
bounding box enclosing all the tracking points as input. Note
that thanks to the requirement R1, the bounding box of the
tracking points can typically well cover the video object. This
contour-extraction method works well when the background is
clean. Otherwise, the user can quickly draw the correct outline
using a pen tool (e.g., the example in Fig. 6(bottom)). Then we
apply the Shape Context method [7] to build correspondence
between the two contours. Next, for a control point inside the
video object, we represent its location using the barycentric
coordinate of a set of evenly sampled contour points, and
compute its location using the same barycentric coordinate
on the sketch image. We also provide an intuitive user
interface to assist fine-tuning the mapping results (Section
User Interface) when the object contour of sketched and video
objects is very dissimilar like the example in Fig. 10(b).

Motion Transfer
We use the sparse control point trajectories to drive the final
sketch animation. For this purpose, we first embed the sketch
into a mesh and then use a mesh deformation method to warp
the mesh for animation. The mesh is generated by triangu-
lating an expanded region of the sketch (see Fig. 1). Our
expectation for the deformation is twofold: (1) the deformed
mesh should closely follow the guidance of the control points
to preserve the extracted motion, thus requiring the resolution
of the mesh to be high enough to afford the detailed motion;
and (2) the original sketch strokes should not be distorted too
much to avoid unnatural deformation artifacts.

Traditional controlled mesh deformation methods, such as the
as-rigid-as-possible (ARAP) mesh deformation [24, 25], are
designed to keep only the rigidity of the mesh triangles (see
Fig.8), not necessarily preserving the shape of the embedded



strokes, especially those crossing multiple triangles. Moreover,
it is desirable to have parts of the sketch being more rigid,
while other parts being flexible to capture large motion. Fig. 7
shows such an example. With the original ARAP deformation,
the body of the bird is undesirably distorted by the large motion
of its wings. The user can apply a stronger rigidity constraint
on the bird’s body while applying a weaker rigidity to its wings
to better capture the intensive flapping motion.

Frame 1 Frame 8 Frame 17

Figure 7. Sketch deformation results with (bottom) and without (top)
applying our stroke-preserving ARAP mesh deformation method. The
stroke in green is set to be more rigid.

We develop a stroke-preserving ARAP to attain user-specified
local rigidity on the input strokes, Our method adds new mesh
triangles derived from the input strokes to the original mesh.
Denote the original mesh as M0 = (V0,T0), as shown in gray
in Fig. 8. We uniformly sample points from each user-specified
input stroke, and construct a sketch triangle set Ms = (Vs,Ts)
(purple triangles in Fig. 8) by connecting every three consec-
utive points on each stroke, excluding degenerate triangles
on line segments. We then construct a link triangle set Tl
by connecting each vertex in Vs with the three vertices of the
triangle in V0 on which it falls.

original mesh

link trianglesstroke sketch triangles

Figure 8. The modified mesh used for stroke-preserving mesh deforma-
tion.

Given the augmented mesh structure M = (V0∪Vs,T0∪Ts∪
Tl), we formulate the stroke-preserving ARAP deformation
as the following energy minimization problem:

min
M

E0 + γlElink + γsEsketch, (3)

where E0, Elink and Esketch are the deformation energy terms
of the three mesh triangles set T0, Tl and Ts, respectively.
Each energy term is defined as:

E(T ) = ∑
t∈T

∑
vi,v j∈t

‖−→v′iv
′
j −H−→viv j‖2, (4)

which is based on [24]. It can also be formulated by other
ARAP optimization methods, like [25]. H is a rigid and scale-
irrelevant ARAP transformation matrix, which is achieved by

a two-step optimization algorithm. The first step finds an ap-
propriate rotation for each triangle and the second step adjusts
its scale. Please refer to [24] for more details. Minimizing
Esketch keeps the shape of the strokes while minimizing Elink
transfers the deformation of the original mesh to the strokes.
In our system, we set the weight γl to a small value 0.01, al-
lowing the triangles in the link triangle set to be distorted to
balance between mesh deformation and stroke shape preserv-
ing. We set γs = 1.0 by default in order to better preserve the
stroke shape. For all the strokes that need to be more rigid,
the user can increase the corresponding γs value by a factor
greater than 1.0 by moving a slider.

Multiple-Layer Animation
As discussed earlier, single layer, mesh-deformation-based
animation cannot handle topology change, which is common
for dynamic objects (see Fig. 9a). To handle such cases, our
system allows the user to create animations with multiple lay-
ers. Using this tool, the user first divides the sketch strokes
into several groups, each representing a layer (Fig. 9b). To
avoid detaching different layers from each other during anima-
tion, our system then automatically detects the intersections
of these layers, and adds one joint point at the center of each
intersection region (Fig. 9c, blue circles) so that these layers
are connected. Therefore, all layers can be deformed together
during the motion transfer stage, as shown in Fig. 9d-e.

RESULTS
We have implemented our system in C++, and tested it on a
wide variety of input sketch drawings and videos. For draw-
ing aesthetics, we asked artists to create the sketches (all the
examples in this paper except Fig. 13). Our main contribution
is producing vivid animation of these static sketches. Live
Sketch can handle complex non-rigid motions well, e.g., elas-
tic motion (Fig. 10a), articulated motion (Fig. 10c) etc. By
applying layered-animation, it can also produce high quality
animation that involves self-occlusion (Fig. 10c). The motion
extracted from one video example can be easily reused to drive
different input sketches with different styles (Fig. 1; Fig. 10b;
Fig. 11). Similarly, a single complex drawing can be animated
by applying multiple motion examples to its different parts,
as shown in Fig. 10d, where the final animation combines the
extracted motion from the virus and kite videos. Please refer
to the accompanying video for the resulting animations.

EVALUATIONS AND DISCUSSIONS
We conducted a pilot study to evaluate the efficiency and
effectiveness of our system. Ideally we would like to compare
our tool with existing animation tools. However, there is no
existing tool that takes the same input as ours. As discussed
previously, the closest work by Bregler et al. [10] requires a
sequence of key shapes for interpolation, instead of a single
sketch. Our tool would be faster as it does not need sketching
additional key shapes. On the other hand, existing tools such
as Adobe Flash and Toon Boom, which take more user inputs,
might generate more detailed, expressive results, beyond the
motion source. Thus such comparative experiments might not
produce useful insights.



(a)
(b) (c) (d) (e)

Figure 9. Multiple layer animation to handle self-occlusion and topology changes. When the two legs of the macaw cross, they introduce severe occlusion
and topology change that cannot be handled by a single mesh layer. Our system allows the user to decompose the mesh into multiple layers (shown in
different colors) to properly handle it. (a) Input video. (b) Grouping strokes into layers, visualized in different colors. (c) Control points and layer joints
(blue circles). (d-e) Deformed sketch and new point layout in another frame. Video credit: Eric Isselee.

(a)

(b)

(c)

(d)

Figure 10. Some results produced using our system by artists. Column 1: the first frame of the video. Column 2: the extracted motion trajectories.
Column 3: the corresponding animation control points on the sketches, with rigidity strokes in green and layer joints in blue. Other columns: several
frames of the final animation. Video credits: Kjpargeter; Albert Ziganshin; brave rabbit; Jim Nicholls.

Instead of comparing with these existing tools, we were in-
terested more in exploring whether our system can be used
effectively by non-professional users. We also included users
with adequate animation skills to see whether the performance
of our tool depends on the complexity of the motion but not an-
imation skills. In addition, we want to know if our system can
fully support users’ creativity to animate sketches by different
users.

Participants and Apparatus. 12 university students (a1 to
a12) were invited to participate in this study, including 6 male
and 6 female. Half of the subjects (a1-a6) had good to pro-
fessional drawing skills and 2D animation skills, while the
other half (n1-n6) had no or very little animation experience.
All subjects were enthusiastic about the idea of creating their
own 2D animations. A touch-screen notebook (Surface Pro 4
with Intel(R) Core(TM) i5-6300U @2.40GHz 2.5GHz 8GB
RAM) running Windows 10 was used as the testing device.
Our system ran smoothly at an interactive rate on this device.

Design and Procedure. Each participant was first given a
20-minute training on how to use our system to draw sketches,

Bird Virus Fish Heart Kite

Figure 11. The trials used in our user study. Row 1: the input videos;
Rows 2&3: the two sketches to be animated. Video credits: Sjoerd van
der Wal; Albert Ziganshin; Artilopa ph; Kjpargeter; Jim Nicholls.

extract motion from a video and transfer motion to sketches,
instructed by one of the authors. Our system provides only
a basic sketching interface, since how to create good static
drawings is not our focus. In this tutorial, one video was given
for training and it was not used in the formal study.



The subjects were then given 10 minutes to practice using
the same example. After the subjects were able to create
animations for the sketches they drew and felt comfortable
moving forward, they were asked to finish two tasks for each
of 5 different video examples (namely, bird, virus, fish, heart,
and kite, see Fig. 11 row 1): Task 1: animate two given
sketches pre-drawn by artists (Fig. 11 row 2 and 3) and Task
2: draw two new sketches and animate them.

We used Task 1 to evaluate the usability of motion extraction
and transfer, and Task 2 to evaluate the expressiveness of
our tool. No time limit was set for these tasks, and one of
the authors was always available to answer any questions the
subjects might have. The subjects were asked to complete a
questionnaire at the end of the study.

Figure 12. Selected sketches from Task 2, with each row corresponding
to one artist (a1-a6). The columns correspond to the tasks in Fig. 11.

Figure 13. Selected sketches from Task 2, with each row corresponding
to one novice (n1-n6). The columns correspond to the tasks in Fig. 11.
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Figure 14. Finishing time of Task 1, for novice (left) and artist (right)
users. Tracking: motion extraction time; Sketch1 and sketch2: motion
transfer times for sketch1 and sketch2. There was no significant differ-
ence between novice and artist users.

Results. Our system recorded the timings of each subject, in-
cluding the start and finish times of the sketching, the motion
extraction and transfer steps. We also recorded all the user
interactions: adding and adjusting tracking points; sketching;
labeling decoration lines; applying local rigidity brushes, and
adjusting motion scale and rotation, etc. The averaged com-
pletion time of Task 1 for novice and artist users is plotted
in Fig. 14. The figure for the averaged number of manual
operations is similar and thus not included in the paper. More
detailed statistics can be found in Table 1. Some results of
Task 2 are shown in Fig 12 and 13. Some of the animation
results can be found in the supplementary video.

The results of Task 1 show that there was no significant differ-
ence between novice and artist users on the user time of motion
extraction and transfer, when producing similar animation re-
sults. More specifically, on average, novice users and artists
respectively spent 3.066 and 3.107 seconds per frame. Both
groups of subjects spent the most time on the heart example,
mainly because the specification of control points for motion
extraction is less obvious for elastic motion of a single part.
Artists applied slightly more manual operations (on average
0.655 operations per frame for artists and 0.510 operations per
frame for novices). This is possibly because they preferred to
have a finer control on the tracking and motion results to pro-
duce higher quality animation. Interestingly, their animation
experience helped them operate faster, which is perhaps the
reason why their finishing times were comparable to those of
the novices.

Through the questionnaire, the participants indicated their
satisfaction with our system. They commented that Live Sketch
was easy to use, intuitive and efficient. More specifically,

n5: "Honestly, I have no experience in 2D sketch anima-
tion creation; this system provides a very intuitive method to
transfer the realistic motion to the 2D sketch."

a2: "With this system, as we can just track an existing anima-
tion and apply it to other sketches, a simple animation can be
easily created. With existing tools, we would need to create a
whole new animation from scratch by ourselves."

Eleven out of twelve participants mentioned that the motion
extraction tool was easy to learn and use. There were also
ten users who liked the fact that they did not need to control
the animation frame-by-frame. In addition, our statistics for
Task 2 shows that the motion extraction and transfer parts
took very short time compared with the sketching time. The
respective average times for sketching, motion extraction and
motion transfer were 306.80s, 149.86s, 108.62s for novice



Table 1. Statistics of Task1. "tracking", "sketch1", "sketch2" refer to the average tracking time and animation time for each input sketch in seconds,
respectively. "#ctrl pts" and "#adjust." refer to the respective numbers of control points and the manual adjustments in tracking each video.

Novices Artists
video #frame #ctrl pts #adjust. tracking(s) sketch1(s) sketch2(s) #ctrl pts #adjust. tracking (s) sketch1(s) sketch2(s)
bird 45 4.2 9.05 169.60 59.19 52.06 4.7 18.1 198.65 62.11 69.89
virus 18 8.3 8.03 115.08 65.71 114.15 9.5 7.5 100.13 92.02 121.39
fish 118 6.7 4.13 118.76 94.94 69.52 8 4.33 103.32 101.29 121.17

heart 31 10 12 217.58 291.90 91.66 8 9.67 168.80 229.32 122.10
kite 129 5 9.33 128.27 99.90 61.72 4.8 14.53 150.23 77.24 71.85

users and 450.36s, 144.23s and 95.90s for artists. This means
once motion is prepared, both artists and novices can animate
a sketch quickly.

Motion extraction. The user interface of motion extraction
impressed some users. They commented they could extract sat-
isfactory motion with a small amount of user intervention. The
frequency of tracking refinement operation is very low, more
specifically, on average one operation for every 34 frames per
control point.

n2: "I like the idea of transferring the motion from a tracked
object to the drawn sketch, which makes the animation quite
efficient. . . . Though the tracking results are not stable some-
time, users can choose tools to manually update the control
points, which for sure is a nice add-on."

a5: "I like the feature of motion capture which can save
the time of animators. For 2D-hand drawing animators, they
have to draw frame by frame (12-24 frames per second) in
order to create a smooth animation. However, by using this
system, animators just need to draw one sketch to create a
short animation."

Motion transfer. Artists a1, a2, and a5 and the novices n1,
and n3-5 also gave positive feedback on the motion transfer
part. The stroke-preserving constraint and motion adjustment
tool simplify the whole animation process, as confirmed by
the participants.

n3: "The system also provides some useful tools that allow
adding anchors, fixing background and adding constraints.
. . . With them I can further improve the quality and customize
my animations with several interactions."

Limitations. Some artists mentioned that the transferred ani-
mation lacks fine details of the video. This is mainly because
the animation is driven by sparsely distributed control points.
One possible solution is using dense tracking methods to ex-
tract the motion. However, existing dense tracking methods
usually do not provide a good scheme to correct tracking er-
rors. We will explore interactive dense tracking correction
and precise dense points mapping methods in the future to
achieve results with richer details (Fig. 15 (left)). Furthermore,
because our system requires only a single sketch as input, it
is difficult to introduce 3D animation by simply deforming a
single sketch in 3D, though our motion extraction method can
capture 3D motion (Fig. 15 (right)).

CONCLUSION AND FUTURE WORK
We have presented a new interactive system for animating
sketch drawings using video examples. The key idea is to
extract object motion presented in the video using sparse point
tracking, and transfer it to the sketch image using controlled

Tracking Mapping Deformation Tracking Mapping Deformation

Figure 15. Failure cases of our system. Left: fine motion details of
the tail are missing because of our sparse point tracking method; right:
large sketch distortion after transferring 3D motion. Video credits: Jim
Nicholls; Rick Ray.

mesh deformation. For motion extraction, we propose a new
tracking method that is robust against occlusion and ambiguity,
and further combines it with easy user controls for reliable
tracking. For motion transfer, our system allows the user to
fine control the animation using a set of interactive tools. We
conducted a pilot study to show that given static sketches
and the corresponding videos, non-professional users can turn
them into vivid animations using the amount of time and
efforts similar to that regard by the professional users.

We believe our current work has only scratched the surface
of an exciting opportunity. As pointed out earlier, our system
still has problems in handling smooth image regions such as
deforming clouds, or stochastic motions such as ocean waves,
whose motion is hard to extract using automatic or interactive
ways. Expanding the system to handle more types of motions
is desirable. The system currently can only transfer the raw
motion extracted from videos, it would be interesting to use
existing motion stylization or exaggeration approaches, such
as the Animation Filter [45], to produce more lively motion
trajectories by applying a simple filter. More stylizing ani-
mations may also be made by interactively applying Motion
Amplifiers [28], Elemental Dynamics [50] to our animation
results. In the future we would like to address the first sub-
problem as discussed in the Introduction section by building a
large set of videos with different motion properties and devel-
oping a retrieval method to find proper video examples given
an arbitrary sketch as input.

ACKNOWLEDGMENTS
We thank Lei Li for video making, Yilan Chen for preparing
some of the examples, the reviewers for their constructive
comments, the user study participants for their time and the
ShutterStock users for providing their videos. This work was
partially supported by grants from ACIM-SCM and the Re-
search Grants Council of the Hong Kong Special Administra-
tive Region, China (Project No. HKUST 16201315, CityU
11237116 and CityU 11204014).



REFERENCES
1. Aseem Agarwala, Aaron Hertzmann, David H. Salesin,

and Steven M. Seitz. 2004. Keyframe-based Tracking for
Rotoscoping and Animation. ACM Trans. Graph. 23, 3
(2004), 584–591.

2. B. Amberg and T. Vetter. 2011. GraphTrack: Fast and
globally optimal tracking in videos. In CVPR 2011.
1209–1216.

3. M. Arie-Nachimson, S. Z. Kovalsky, I.
Kemelmacher-Shlizerman, A. Singer, and R. Basri. 2012.
Global Motion Estimation from Point Matches. In
3DIMPVT ’12. 81–88.

4. Rahul Arora, Darolia Ishan, Vany P. Namboodiri, Karan
Singh, and Adrien Bousseau. 2017. SketchSoup:
Exploratory Ideation using Design Sketches. Computer
Graphics Forum (2017).

5. Nicole M. Artner, Adrian Ion, and Walter G. Kropatsch.
2011. Multi-scale 2D tracking of articulated objects using
hierarchical spring systems. Pattern Recognition 44, 9
(2011), 1969 – 1979.

6. Connelly Barnes, David E. Jacobs, Jason Sanders, Dan B
Goldman, Szymon Rusinkiewicz, Adam Finkelstein, and
Maneesh Agrawala. 2008. Video Puppetry: A
Performative Interface for Cutout Animation. In
SIGGRAPH Asia ’08. ACM, Article 124, 9 pages.

7. Serge Belongie, Jitendra Malik, and Jan Puzicha. 2000.
Shape context: A new descriptor for shape matching and
object recognition. In Nips, Vol. 2.

8. Nir Ben-Zvi, Jose Bento, Moshe Mahler, Jessica Hodgins,
and Ariel Shamir. 2015. Line-Drawing Video Stylization.
In Computer Graphics Forum, Vol. 35. 18–32.

9. Pierre Bénard, Forrester Cole, Michael Kass, Igor
Mordatch, James Hegarty, Martin Sebastian Senn, Kurt
Fleischer, Davide Pesare, and Katherine Breeden. 2013.
Stylizing Animation by Example. ACM Trans. Graph. 32,
4, Article 119 (2013), 12 pages.

10. Christoph Bregler, Lorie Loeb, Erika Chuang, and Hrishi
Deshpande. 2002. Turning to the Masters: Motion
Capturing Cartoons. In SIGGRAPH ’02. 399–407.

11. A. Buchanan and A. Fitzgibbon. 2006. Interactive
Feature Tracking using K-D Trees and Dynamic
Programming. In CVPR’06, Vol. 1. 626–633.

12. Z. Cai, L. Wen, Z. Lei, N. Vasconcelos, and S. Z. Li.
2014. Robust Deformable and Occluded Object Tracking
With Dynamic Graph. IEEE Transactions on Image
Processing 23, 12 (2014), 5497–5509.

13. Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou.
2013. 3D Shape Regression for Real-time Facial
Animation. ACM Trans. Graph. 32, 4, Article 41 (2013),
10 pages.

14. L. Cehovin, M. Kristan, and A. Leonardis. 2013. Robust
Visual Tracking Using an Adaptive Coupled-Layer Visual
Model. TPAMI 35, 4 (2013), 941–953.

15. Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon.

2012. KinÊTre: Animating the World with the Human
Body. In UIST ’12. ACM, 435–444.

16. Theodoros Chondrogiannis, Panagiotis Bouros, Johann
Gamper, and Ulf Leser. 2015. Alternative routing:
k-shortest paths with limited overlap. In SIGSPATIAL
GIS ’15. ACM, 68.

17. James Davis, Maneesh Agrawala, Erika Chuang, Zoran
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