
VECTORIZING LINE DRAWINGS WITH NEAR-CONSTANT LINE WIDTH

Bin Bao Hongbo Fu
School of Creative Media, City University of Hong Kong

ABSTRACT
Many line drawing images are composed of lines with near-constant
width. Such line width information has seldom been used in the vec-
torization process. In this work, we show that by enforcing the near-
constant line width constraint, we are able to produce visually more
pleasing vectorization results. To this end, we develop a tracing-
based approach, allowing dynamic validation of the line width con-
straint. The key here is to derive correct tracing directions, which
are determined based on an automatically estimated orientation field,
shape smoothness and the near-constant line width assumption. We
have examined our algorithm on a variety of line drawing images
with different shape and topology complexity. We show that our
solution outperforms the state-of-the-art vectorization software sys-
tems including WinTopo and Adobe Illustrator, especially at regions
where multiple lines meet and thus are difficult to locally distinguish
from each other.

Index Terms— line drawings, vectorization

1. INTRODUCTION
The vectorization of line drawings serves as an important pre-

processing step for many applications like animated construction of
line drawings [1]. Although many solutions have been proposed,
this problem has not been fully addressed. The existing solutions
can be roughly categorized into two groups: skeletonization based
and tracking based. The former typically starts with skeleton ex-
traction, followed by the recognization of graphic primitives and the
recovery of junctions. Although there exist various skeletonization
methods [2, 3], thinning-based approaches are still the most popular
due to their simplicity and efficiency [4]. However, such skeletoniza-
tion approaches often suffer from serious artifacts at regions where
multiple lines meet with each other. This problem deteriorates due
to anti-aliasing, making individual lines even more difficult to dis-
tinguish at the pixel level. Figure 2 (middle right) shows a typical
result by WinTopo, a state-of-the-art vectorization software based on
a variant of the thinning algorithm proposed by Zhang and Suen [4].

Without first extracting the underlying skeleton of a line drawing
image, the tracking-based approaches directly track along the black
pixel areas and recover the junctions between tracked entities on the
fly. The existing tracking-based methods are mostly designed for en-
gineering drawings only and use the unique characteristics of such
drawings. For example, the sparse pixel vectorization approach pro-
posed by Dori and Liu [5] performs tracking solely in the horizontal
and vertical directions. The line net global vectorization approach
proposed by Song et al. [6, 7] improves previous methods by using
a direction guided tracking, but considers simple shapes of lines and
arcs only. Therefore, those methods are not suitable for vectorizing
general line drawings with arbitrary and complex shapes (e.g., the
input in Figure 2). The Live Trace tool in Adobe Illustrator is able to
produce more promising tracking results. However, it tends to over-
simplify the shape and often fails to capture fine details exhibited in

the input image (see a representative result by Illustrator in Figure 2
(right)).

To address the above limitations, we propose a new vectoriza-
tion algorithm for general lines drawings based on the key observa-
tion that the lines in many drawings are of near-constant width, since
they are mainly drawn using pencil-like tools. We take a tracing-
based approach, motivated by the recent approach for 3D shape re-
covery proposed by Li et al. [8], which uses a vector field to guide an
iterative snake growing process. However, unlike their input in [8],
where the interaction of individual snakes is rather simple, individ-
ual lines in our input are probably more ambiguous especially due to
the anti-aliasing effect (e.g., see the horse’s hoof in Figure 2). The
key to address the ambiguous problem is to have correct tracing di-
rections, which are determined based on an automatically estimated
orientation field, shape smoothness and the near-constant line width
constraint. We have tested our algorithm on a variety of line drawing
images with different shape and topology complexity, and show that
our solution produces visually more pleasing vectorization results
than WinTopo and Illustrator, especially at those ambiguous regions
(Figure 2).

Seed
Segment

Regular
Grow

Meet
Grow

Joint
Grow

Go Out

Intersect
Stop

Converge
Stop

Parallel
Stop

Tail
Connect

T-
Junction

Y-Shape
(tail)

Y-shape
(middle)

Stop Connect

Fig. 1: System overview.

2. METHODOLOGY
Figure 1 shows an overview of our algorithm. As a preprocess,

we first estimate an orientation field (Section 2.1), whose individual
orientations approximate the (tangent) line directions at each pixel
in an input line drawing image. Starting from a seed segment whose
corresponding pixels have not been treated (Section 2.3), we grow
a line basically following the orientation field but its growing direc-
tion is also influenced by the line smoothness and width constraints
(Section 2.4). The latter is especially important when the current line
meets the already grown lines, for which we design different strate-
gies to faithfully recover the underlying line configurations. The
current line stops growing when certain stopping conditions are sat-
isfied (Section 2.5) and it is finally connected to the existing lines
for a more complete representation (Section 2.6). The above process
is repeated to extract the lines one by one until all the line pixels
(whose gray values are above a certain threshold) are treated.

Our result Adobe IllustratorWinTopoInput image

Fig. 2: Our algorithm produces visually more pleasing vectorization results than WinTopo and Adobe Illustrator. It is highly recommended
to examine the details in a PDF reader with 400% zoom level.

2.1. ORIENTATION FIELD
Since we want to distinguish individual lines even in the ambigu-

ous regions, having a robustly estimated orientation field is crucial to
the success of our algorithm. We adopt the filtering approach, which
is originally developed to compute a dense orientation map for cap-
tured hair images [9, 10]. We use a Canny-like edge detection filter
and apply it at different angles of each pixel. The orientation of a
pixel is determined by the angle at which the filter gives the high-
est response. Please refer to [9, 10] for more algorithm details. Let
dof (p) denote the resulting orientation field, whose individual ori-
entations are represented as unit vectors. Figure 3 shows an example
where we overlay the orientation field on top of the input image.
Note that how well the orientation field aligns with the underlying
lines.

Fig. 3: (Left) Orientation field. (Right) Tracing lines and corre-
sponding marked pixels. The line being traced is in blue.

2.2. TRACING LINES AND CROSS SECTIONS
In this subsection we introduce important geometry structures

and notations that we will use in our tracing (growing) algorithm.
Tracing line. A tracing line is a polyline denoted as L = {ni},
which is either an evolving line during its growing process or an
already stopped line. Each node is associated with a triple of prop-
erties, denoted as ni = (pi, di, wi), where pi, di, wi are the node
position, tracing direction and line width respectively. For each trac-
ing line, we mark the pixels that are covered by it (Figure 3 (right)).
Cross section. A cross section of a tracing line is a line segment at
pi, whose direction is perpendicular to di and whose endpoints touch
at the boundary of the tracing line (Figure 4). Such line segment
might initially cross multiple underlying lines which either meet at
the pixel level due to the anti-aliasing (Figure 4 (a)) or indeed in-
tersect/overlap with each other (Figure 4 (b) and (c)). To get the

(a) anti-alising
area

(c) joint area

(b) overlap
area

Fig. 4: Cross sections (in orange) at different points (in red).

desired cross section, we first construct and analyze the density es-
timate along the line segment (see the diagrams in Figure 4). For
lines that meet due to the anti-aliasing effect, we can identify their
cross sections of individual lines by locating the valleys in the den-
sity estimate (Figure 4 (a)). If there is no such valley and the width of
the cross line segment is below a threshold (we use 1.2 wavg , where
wavg is the average width of lines in the input image), we consider
that there is only a single line crossed, which is the simplest case.
Otherwise, pi is in an ambiguous region, where multiple lines in-
tersect or meet (Figure 4 (b) and (c)). In this case, we rely on the
near-constant width assumption to identify the desired cross section
of the current tracing line, which is part of the line segment (in or-
ange) with width as wavg and starts from the nearer endpoint of the
line segment to pi. Let pcrossi and wcross

i denote the mid-point and
width of the cross section at pi.

2.3. SEED SEGMENT
To get a seed segment, we first randomly pick an unmarked

pixel (i.e., not covered by any existing tracing line), denoted as ps
with direction as ds = dof (ps). Then we establish a short segment
starting from ps. For brevity, we explain with a three-pixel segment
Ls = {n0, n1, n2}, with {n0 = ps − ds, n1 = ps, n2 = ps + ds}.
Ls is a valid seed segment only if none of n0, n1, n2 is in an am-
biguous region, and the ratio of the already marked pixels in Ls is
below a user-specified threshold, denoted as γseed, whose value will
be given in Section 3.

Yellow: regular grow
Blue: meet grow
Red: joint grow

Red points:
forward pixel set

Fig. 5: Illustration for growing statuses.

2.4. TRACING BY LINE GROWING
Let nk = {pk, dk, wk} be the currently traced node (front node)

of a tracing line. Below we show how to proceed to a new node
nk+1.

Growth direction. As the orientation field is not always reli-
able, we estimate the growing direction dgrow for nk+1 by using
both the current tail direction dfront and dof (pk). dfront is esti-
mated as the ending tangent direction of a cubic Bezier curve fitted
to a few previously traced nodes at the front. If the angular differ-
ence between dfront and dof (pk) is below a given threshold, de-
noted as α (αregular for regular grow and αmeet for meet grow and
joint grow; αmeet ≡ PI/4 in our case), we set dgrow = dof (pk).
Otherwise dgrow = dfront.

Insert new node. We first compute an evolving position as
pextend = pk + 1.0 × dgrow. However, we cannot simply use
pextend as the new position for nk+1, as it might deviate from the
underlying line in the image. Therefore, we compute a cross sec-
tion at pextend along dgrow to get a possibly adjusted position as
pcross as well as the associated line width wcross (Section 2.2). To
ensure shape smoothness of the tracing line, we then check the an-
gular difference between pcross−pk and dfront. If the difference is
below a threshold β, nk+1 = {pcross, dgrow, wcross}. Otherwise,
nk+1 =

{
pextend, dgrow, wcross

}
.

Geometry optimization. To further enhance the smooth-
ness of the tracing line, we perform a simple geometry opti-
mization, which locally refine the tracing line near its evolving
front. The optimization is formulated as a minimization problem:
{qi} = argminqi

∑
i(qi − pi)

2 + (
qi+1+qi−1

2
− qi)2.

Growing statuses. The above discussion is mainly for regular
grow. We need special processing when the currently tracing line
meets an existing traced line. To identify if such meeting happens,
we maintain a set of pixels within a small neighborhood at the front
node, we call forward pixel set (Figure 5). Let rmark denote the ratio
of marked pixels in the current forward set. If rmark > γregular
(= 0.5 in our experiments), the status is changed from regular grow
to meet grow (Figure 1).

The status of meet grow is useful for guiding the tracing line to
pass through the ambiguous regions (e.g., the long blue line in Fig-
ure 5). When the evolving front leaves such ambiguous regions, we
change the status back to regular grow if rmarked < γregular . If
rmarked is above another user-specified threshold, denoted as γmeet

(typically γmeet > γregular), the status is switched to joint grow,
which will gradually stop growing for the current tracing line (Fig-
ure 1).

2.5. STOPPING STATUSES AND JOINT TYPES
The regular grow stops when pk+1 does not belong to any line

pixels, which is the simplest stopping status (i.e., go out). We have
three stopping statuses for joint grow (Figure 6). Let L and Lmeet

denote the current tracing line and the met line, respectively. Since
the two lines are still spatially disconnected, we use joint grow to
further extend L as long as possible, until they are close enough to
determine the joint types between them.

Intersect stop. We compute a line segment which extends
from the current front pk to pk + 3.0 × dk, denoted as Sextend.
If Sextend intersects with Lmeet, the status of intersect stop is
activated. There are three possible joint types (Figure 7). Let
pintersect be the intersection point between Sextend and Lmeet and
dintersect = ||pintersect−pend||, where pend is the nearer endpoint
of Lmeet to pintersect. If dintersect is small enough (< 5.0 in our
case), it is detected as tail connect. If the directions of the two lines
at pintersect are similar and dintersect is not very large (< 15.0), it
is a Y-shape at tail. Otherwise, it is T-junction joint type.

Converge stop. If Sextend does not intersect with Lmeet, we
compute the shortest distance from pk to Lmeet. If the distance is
below a threshold (< 1.0 in our case), it is detected as converge stop
and leads to a Y-shape joint type. We have two types of Y-shape,
depending on the distance between pk and its nearer endpoint of
Lmeet.

Parallel stop. Finally if neither of the above conditions are sat-
isfied, L continues to grow, until it reaches some non-line pixel. It is
regarded as a Y-shape at tail.

converge stop
parallel stop

intersect
stop

go out

Fig. 6: Illustration for stop statuses.

2.6. CONNECTING JOINTS
After the joint types are identified, we connect L and Lmeet

correspondingly (Figure 7). For the case of T-junction we directly
connectLwith pintersect. For the Y-shape at tail, we first remove the
common line segment and then use cubic Hermit splines to generate
two new lines connecting to the tail. For the other type of Y-shape,
we remove the joint grow segment ofL and generate a He1rmit curve
instead. For the case of tail connect, we connect L with pintersect

and remove the redundant segment near to the endpoint of Lmeet.

tail connect

Y-shape
(middle)

Y-shape
(tail)T-junction

green lines:
Hermit curves

Fig. 7: Connecting joints of four types.

Input images Our results Adobe IllustratorWinTopo
Fig. 8: Vectorization results. It is highly recommended to examine the details in a PDF reader with 400% zoom level.

Examples γseed γmeet αregular β

Horse 0.5 0.8 PI/3 PI/4
Lion 0.4 0.8 PI/3 PI/3
Car 0.4 0.9 PI/2.7 PI/2.5

Table 1: Parameters used in different examples.

3. RESULTS AND DISCUSSION
We have tested our algorithm on various images of different con-

tent, style, and complexity. Figures 2 and 8 show three representative
results. It is obvious to see that our method outperforms both Win-
Topo and Illustrator and produces visually more pleasing results. We
are interested in a more objective evaluation by conducting user stud-
ies and/or computing numerical metrics (e.g., based on Haussdorf
distance).

Our algorithm involves a few parameters but most of them re-
main fixed. Table 1 shows the parameters we adjusted for the ex-
amples in the paper by trial and error. Our current unoptimized im-
plementation takes a few seconds for the whole vectorization (e.g.,
10.482s for the car example with 412 tracing lines produced).

Although our solution captures much more details than Illustra-
tor, it is not guaranteed that all the details are extracted, especially
at small ambiguous regions. In addition, although the resulting lines
are visually pleasing viewed as a whole, individual lines might still
be very different from the original strokes by artist, which is unsatis-
factory for applications like animation construction of line drawings.

Acknowledgements. We would like to thank the anonymous
reviewers for their valuable comments. This work was substantially
supported by grants from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No. CityU

113610 and CityU 123912).
4. REFERENCES

[1] H. Fu, S. Zhou, L. Liu, and N.J. Mitra, “Animated construction of line
drawings,” ACM Trans. Graph., vol. 30, no. 6, 2011.

[2] J.J. Zou and H. Yan, “Cartoon image vectorization based on shape
subdivision,” in CGI, 2001, pp. 225–231.

[3] X. Hilaire and K. Tombre, “Robust and accurate vectorization of line
drawings,” IEEE TPAMI, vol. 28, pp. 890–904, 2006.

[4] TY Zhang and C.Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–239,
1984.

[5] D. Dori and W. Liu, “Sparse pixel vectorization: An algorithm and its
performance evaluation,” IEEE TPAMI, vol. 21, no. 3, pp. 202–215,
2002.

[6] J. Song, F. Su, J. Chen, C. Tai, and S. Cai, “Line net global vector-
ization: an algorithm and its performance evaluation,” in CVPR, 2000,
vol. 1, pp. 383–388.

[7] J. Song, F. Su, C.L. Tai, and S. Cai, “An object-oriented progressive-
simplification-based vectorization system for engineering drawings:
model, algorithm, and performance,” IEEE TPAMI, vol. 24, no. 8,
pp. 1048–1060, 2002.

[8] G. Li, L. Liu, H. Zheng, and N.J. Mitra, “Analysis, reconstruction and
manipulation using arterial snakes,” ACM Trans. Graph., vol. 29, no.
5, 2010.

[9] S. Paris, H.M. Briceño, and F.X. Sillion, “Capture of hair geometry
from multiple images,” ACM Trans. Graph., vol. 23, no. 3, pp. 712–
719, 2004.

[10] Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung Shum, “Mod-
eling hair from multiple views,” ACM Trans. Graph., vol. 24, no. 3,
pp. 816–820, 2005.

