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1. Introduction
Differential coordinates are essentially vectors encoded in
the global coordinate system. Since the local features on a
mesh are deformed and rotated during editing, the differ-
ential coordinates must somehow be transformed to match
the desired new orientations, otherwise distortion like shear-
ing and stretching will occur. This transformation problem
is basically a chicken-and-egg problem: the reconstruction
of the deformed surface requires properly oriented differ-
ential coordinates, while the reorientation of these coordi-
nates depend on the unknown deformed mesh. We present
an iterative Laplacian-based editing framework to solve this
transformation problem. The only user input required are the
positions of the handles, not their local frames. Thus our sys-
tem supports simple point handle editing. Our iterative up-
dating process finds the best orientations of local features,
including the orientations at the point handles.

2. Laplacian Editing
Let V = (v1, v2, . . . , vn) be the mesh vertex positions, and
i∗ be the index set of vertices adjacent to vi. The Laplacian
Coordinate (LC) of a vertex vi is li = ∑ j∈i∗ wi j(v j − vi),
where wi j is the weight of the edge (i, j) corresponding to
vertex vi. In matrix form, it is l = LV, where L is an n× n
matrix with elements derived from wi j . We refer to these ele-
ments as the Laplacian coefficients. The basic idea of Lapla-
cian editing is to find the positions V′ of the deformed mesh
by minimization, argminV′

∥

∥LV′
− l

∥

∥

2, constrained by the
positions of some selected vertices as the handles of the
model [S∗04, L∗04]. This is equivalent to solving a sparse
linear system AV′ = b in least squares sense. Thus V′ can be
solved from the normal equations AT AV′ = AT b.

Previous related methods cannot produce good results
when the handles involve large angle rotation or are trans-
lated distantly from their original locations. Lipman et
al. [L∗04] used an intermediate reconstructed surface to
guess the new orientations of the LCs. Sorkine et al. [S∗04]
employed implicitly defined transformations onto the LCs.
However, it is untenable for large angle rotation and
anisotropic scaling. Yu et al. [Y∗04] solved the transforma-
tion problem by propagating the transformations of handles
to all vertices. Lipman et al. [L∗05] encode the vertex differ-
ences in local frames and minimize the least squares error of
the changes in the local frames. Since both approaches need

Figure 1: Result of previous methods if a handle is only
translated, not rotated (middle). Our method deforms the lo-
cal features naturally based on only the position (not trans-
formation) of the handle (right).

Figure 2: (left) Input model with handles at the feet, nose
tip, and tail end. (right) Editing by moving the point handles
at the nose tip and tail.

the transformations (or local frames) of the handles as input,
if the handles only undergo translation, there is no transfor-
mation change to be propagated or minimized (see Figure 1);
thus these approaches cannot avoid shearing and stretching
distortion caused by handle translation.

3. Curvature Flow Laplacian Editing
We observe that, to reduce distortion, the edited mesh should
retain (1) parameterization information (shapes of triangles);
(2) geometry information (sizes of local features). To sep-
arate the two types of information, we adopt the curva-
ture flow Laplace operator: the edge (i, j) has weight wi j =
cotαi j + cotβi j , where αi j and βi j are the two angles op-
posite the edge. Now the LC is an approximation of the in-
tegrated mean curvature normal at vi: li = ∑ j∈i∗ wi j(v j −

vi) = 4 Areaiκini, where Areai is the one ring triangles area
of vertex vi, and κi and ni are the mean curvature and unit
normal vector at vi, respectively.

We consider the local parameterization information as
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captured by the Laplacian coefficients, and the geometry in-
formation as encoded by the magnitudes of the LCs. As the
LCs are in the directions of the vertex normals, we regard the
normals as not containing any local information (computable
on the fly). Thus, our approach tries to keep the magnitudes
of LCs and the Laplacian coefficients similar before and af-
ter editing. Since both sets of information generally depend
on the vertex positions nonlinearly, we propose an iterative
updating method that improves the vertex positions vi and
the LC li in each iteration, minimizing parameterization and
geometry distortions progressively.

Algorithm. Let vt
i and lti be the vertex positions and the LCs

at time t, respectively, and let v0
i = vi and l0i = li.

Step 1. Update the vertex positions
We use the current lti to compute the vertex positions vt+1

i ;
that is, we fix the LCs and solve the normal equations with
the current handle positions as constraints.

Step 2. Update the Laplacian coordinates
We update the LCs to match the current deformed surface;
that is, we fix the vertex positions vt+1

i and compute the
new LCs lt+1

i . We use the mean curvature normals computed
from the current vertex positions vt+1

i as the values of lt+1
i ,

but scale them to have the magnitudes of the original l0i , in
order to keep the original feature sizes.

During editing, the 1-ring structure of a vertex vi may
change between being convex and concave, making the com-
puted curvature flow normal of vi flip undesirably inward or
outward. Naturally, we require the LC vector at each ver-
tex to consistently point inward (outward) if the original LC
points inward (outward). We compare the orientations of the
original LC l0i and the current LC lt+1

i , and reflect lt+1
i about

the tangent plane if necessary.

We iterate the two updating procedures until the vertex
positions converge. When that happens, Lt and L0 tend to
be similar, thus retaining the original parameterization in-
formation. Since the magnitudes of the LCs are maintained,
the local feature sizes are also retained. Figure 2 shows a
deformation example with well oriented local features.

Rescaling LCs. Stretching or squashing distortion may oc-
cur when the distances between handles (thus dihedral an-
gles) are changed drastically. Merely reorienting the LCs,
while retaining their magnitudes, cannot give small parame-
terization distortion. Rescaling the LCs (modifying the fea-
ture sizes) to maintain the dihedral angles can produce more
natural results with less parameterization distortion. Since
the LCs are linear combinations of vertex positions, both

Figure 3: A baby lion (right) cloned from her mother (left).
Deformed model with (right) and without (middle) rescaling
the Laplacian coordinates.

(a) (b) (c)

(d) close up of (b) (e) close up of (c)

Figure 4: Editing the skull (a) by moving the topmost handle.
Deformed mesh without (b) and with (c) rescaling the LCs.

have the same scaling factors under isotropic scaling. We
provide the option to rescale each LC to have its magnitude
equals the average edge length at the vertex. Figure 3 shows
an example where the global feature is too big if the LCs are
not rescaled. Figure 4 demonstrates that rescaling the LCs
can eliminate undesired distortion, which is dependent on
the geometry complexity and thus is difficult for user to de-
sign a scaling field for the LCs [Y∗04].

Other applications. Since the magnitudes of the LCs ap-
proximate the integrated mean curvatures, our framework is
useful for modifying mesh geometry via updating the cur-
vature field, for example, assigning a constant curvature to
obtain a spherical mapping or smoothing the curvature field
to achieve non-shrinking smoothing (Figure 5).

Figure 5: Updating the geometry via modifying curvature
field. (left) Input model, (middle) non-shrinking smoothing,
(right) spherical mapping.
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