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“the road is black” /
“colorize the road with black” /

“black road”

“all the trees are green”
“the sun in the sky is yellow”

······ 
“the grasses are dark green”

Scene sketch “the car is red with black
windows”

“the sky is blue and the ground is 
green”

Fig. 1. Given a scene sketch, our system automatically produces a colorized cartoon image by progressively coloring foreground object instances and the
background following user-specified language-based instructions.

Abstract. Being natural, touchless, and fun-embracing, language-based
inputs have been demonstrated effective for various tasks from image gener-
ation to literacy education for children. This paper for the first time presents
a language-based system for interactive colorization of scene sketches, based
on semantic comprehension. The proposed system is built upon deep neu-
ral networks trained on a large-scale repository of scene sketches and
cartoon-style color images with text descriptions. Given a scene sketch,
our system allows users, via language-based instructions, to interactively
localize and colorize specific foreground object instances to meet various
colorization requirements in a progressive way. We demonstrate the effec-
tiveness of our approach via comprehensive experimental results includ-
ing alternative studies, comparison with the state-of-the-art methods, and
generalization user studies. Given the unique characteristics of language-
based inputs, we envision a combination of our interface with a traditional
scribble-based interface for a practical multimodal colorization system, ben-
efiting various applications. The dataset and source code can be found at
https://github.com/SketchyScene/SketchySceneColorization.
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1 INTRODUCTION
In recent years, deep learning techniques have significantly im-
proved the performance of natural language processing [Kim 2014;
Lai et al. 2015; Lample et al. 2016]. Smart speakers such as Google
Home and Amazon Alexa are widely used and offer hands-free in-
teractions through language-based instructions. This has motivated
researchers to explore language-based instructions as an alterna-
tive input to crucial problems such as image editing and genera-
tion [Cheng et al. 2014; Laput et al. 2013; Park et al. 2019; Xu et al.
2018; Yan et al. 2016; Zhang et al. 2017a], and object retrieval [Hu
et al. 2016b; Li et al. 2017].

Despite the fact that a language-based interface might not provide
fine or direct control of results, it does provide unique characteristics
including being natural to everyone and being touchless, allowing
for interesting applications that are difficult or even impossible to
achieve with existing interfaces. Recent studies have also found
its unique strength for children. For example, Lovato and Piper
[2015] found that voice input is mainly used for exploration and
fun by children. A recent study in [Jung et al. 2019] showed that
voice-based interaction leads children to be more immersed in an
educational programming game. Moreover, Raffle et al. [2007] also
found that embedding sound and voice in traditional drawings by
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recording children’s storytelling while painting could provide a sig-
nificantly more effective system to support the literacy development
of children.

In this work, we present a language-based system for interactive
colorization of scene sketches, with respect to text-based color speci-
fications (Fig. 1). Although traditional interactive sketch colorization
solutions (e.g., [Qu et al. 2006; Sangkloy et al. 2017]) support precise
control via a scribble-based interface, they require explicit color
selection using color picking tools and direct target selection. By
contrast, when text-based descriptions are given through voice in-
put, our system can be more easily adopted by novice users, and is
friendly for people with upper limb impairments. Our system can po-
tentially aid in the cognitive development of children through tasks
such as color and object recognition. In addition, indirect association
between language-based instructions and scene sketches also allows
easy reusing of the same set of instructions as a theme for consis-
tently colorizing multiple different sketches involving a similar set
of objects. This is challenging for scribble-based colorization inter-
faces due to their direct and fixed relationship between scribbles
and specific sketch regions. We thus believe that a language-based
interface is complementary to a scribble-based interface for coloriza-
tion tasks, and envision a practical multimodal colorization system
that takes advantages of both types of interfaces.

Our task is challenging mainly because of the unknown and indi-
rect mapping between the input language-based instructions and
the scene sketches. More specifically, the first challenge is how to
automatically localize and segment target objects indicated by the
language-based instructions. High-quality segmentation results are
crucial to the subsequent colorization process, as users are likely
to specify different colors for individual objects. This problem of
text-based instance segmentation for scene sketches has not been
explored before. To address this issue, we propose a new architec-
ture, called instance matching model, which integrates sophisticated
networks for sketch feature extraction and multimodal (textual,
visual, and spatial information) feature fusion, together with a train-
ing strategy tailored for scene sketches upon a text-based instance
segmentation dataset consisting of 38K triplet samples of scene
sketches, text descriptions, and instances.
The second challenge is how to colorize an individual target ob-

ject instance with respect to language-based inputs. This challenge
requires our system to automatically build accurate correspondence
between object instances and text-based color specifications (e.g., in
Fig. 1, given the expression “the car is red with black windows”, black,
rather than red, should be assigned to the carwindows). Additionally,
a user might wish to assign different colorization goals to different
object parts, e.g., colorizing the car body and car windows in Fig. 1.
It therefore requires the system to learn object-part-level segmenta-
tion and colorization from natural language expressions. To tackle
these challenges, we embedded the text-image interaction model
mLSTM (multimodal Long Short-Term Memory) [Liu et al. 2017a]
to a Generative Adversarial Network (GAN) to perform language-
based colorization. To train this network, we collected a large-scale
dataset consisting of 4K triplet samples of object sketches, text de-
scriptions, and colorized instances, as well as 20K quadruple samples
of color foregrounds, text descriptions, colorized backgrounds, and
segmentation label maps.

Our system automatically responds to user-specified colorization
instructions and colorizes target objects in an input scene sketch.
Our system allows a certain range of expression structure variances
and language grammar mistakes for user-specified instructions. For
example, given different expressions but with the same intention
like “the road is black”, “colorize the road with black”, and “black
road”, our system leads to the same colorization results (Fig. 1). Our
system is also able to deal with one or multiple object instances of
the same category with a single instruction. For example, given an
instruction “all the trees are green” in Fig. 1, our system colorizes
all tree instances in green. Our experimental results in Section 8
show that the proposed colorization system achieves visually pleas-
ing results, as confirmed by multiple user studies. The impact of
individual components is validated by a set of ablation studies.

We highlight our main contributions as follows:

(1) The first language-based user-customizable colorization sys-
tem for scene sketches.

(2) The first architecture for text-based instance-level segmenta-
tion of scene sketches.

(3) Three large-scale datasets for text-based instance segmenta-
tion, foreground colorization, and background colorization.

2 RELATED WORK
Language-based Image Segmentation. Image segmentation guided
by natural language expressions has attracted increasing attention
recently, due to the advance of semantic image segmentation and
natural language processing. Hu et al. [2016a] proposed the first
language-based (referring) image segmentation technique, which
directly outputs a binary segmentation mask of a single target object
given a natural language description as a query. Their technique
was improved by Liu et al. [2017a] by employing multimodal feature
fusion with a recurrent multimodal interaction (RMI) model, which
encodes sequential interactions between textual, visual, and spatial
information. Li et al. [2018] proposed a refinement network to im-
prove Hu et al.’s work by feeding late-fused multimodal features
back to low-level layers of an image encoder with a convolutional
LSTM to incorporate multi-scale semantics for better segmentation
results. Shi et al. [2018] argued that extracting key words would be
helpful to suppress the noise in the query and to highlight desired
objects. Following the basic framework of RMI, they proposed a
key-word-aware network, which contains a query attention model
and a key-word-aware visual context model for referring image
segmentation. Apart from these works, there have also been other
studies focusing on visual grounding, which aim to locate the most
relevant object or region in an image by a bounding box [Hu et al.
2016b; Mao et al. 2016] or an attention region [Lu et al. 2016; Yu
et al. 2017] based on a natural language query.
Our instance matching model is closely related to the above ap-

proaches. However, our matching model takes as input natural
language expressions and a scene sketch, rather than a natural im-
age. In addition, our matching model aims to infer the segmentation
masks of one or multiple object instances of interest, including the
information of bounding box, binary instance mask, and class label.
Therefore, the output of our matching model is different from the
existing works in referring image segmentation or visual grounding,
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which output the binary segmentation or bounding box of a single
target object instance.

User-customized ImageColorization. This task generates color
images from gray-scale or sketch images based on user inputs. Sev-
eral types of user inputs currently exist, including user-drawn color
scribbles, user-chosen color reference images, user-selected palettes,
and user-specified language expressions. A scribble-based interface
has been commonly adopted to specify desired colors on a gray-
scale or sketch image [Ci et al. 2018; Liu et al. 2017b; Qu et al. 2006;
Sangkloy et al. 2017; Zhang et al. 2018, 2017b]. There have been
several open-sourced interactive applications for scribble-based
line-drawing colorization, such as PaintsChainer [Yonetsuji 2017]
and Style2paints [Zhang et al. 2018]. As discussed previously, the
scribble-based and language-based interfaces have their own advan-
tages, the former for being direct and supporting precise control
while the latter for being more natural and accessible.

The reference image based colorization task [Fang et al. 2019;
Furusawa et al. 2017; He et al. 2018; Wang et al. 2017] takes color
reference images as input, and achieves colorization by properly
transferring colors from reference images to gray-scale or sketch
images. Such methods greatly reduce the degree of user intervention
(when colorization results are visually plausible) but at the same
time do not allow flexible control of colorization results. The palette-
based colorization approach [Chang et al. 2015] allows users to
specify a certain number of colors (up to 5 colors) from a palette
to control colorization results. This line of work mainly focuses
on automatic global color style transfer, and hence it also does not
support a high degree of user customization. Some recent studies
have been exploring multiple modalities (e.g., color palettes and
scribbles [Xiao et al. 2019b], reference images and palettes [Xiao et al.
2019a]) as input for user-customized colorization. Themultiple input
modalities of the existing approaches do not contain the modality
of natural language expression.

The concept of language-based colorization was first introduced
by Chen et al. [2018b] in their language-based image editing (LBIE)
framework. Their framework contains a recurrent model using at-
tention mechanism for feature fusion between a natural language ex-
pression and an image, and thus allows language-based colorization
for object-level edge maps or gray-scale images. Bahng et al. [2018]
addressed the problem of image colorization with color hints im-
plicitly given by an input text (e.g., coloring a gray-scale image of
bird based on a phrase like “rose sensations of sky” ). Their solution
focuses on the generation of color palettes to reflect the semantics
of an input text.

Our system is most close to LBIE as it is the first natural language
based colorization framework for scene sketches. Directly using
LBIE for our problem is infeasible because of the lack of pair-wise
scene sketch and color image data. We address this challenge by
decomposing a scene sketch into foreground object instances and
background regions, and make this problem solvable by training
deep networks on pair-wise object-level sketch and color image
data that are easy to collect from the Internet or existing datasets.
Although LBIE can be directly used for both foreground object
instance colorization and background colorization, the experiments
in Section 8 show that it is less effective than our networks. There

are some other works that study the mutual reasoning and inference
between language expressions and colors [Monroe et al. 2016, 2017].
These works could potentially be combined with our system to
enable more accurate color control.

3 SYSTEM OVERVIEW
Our current system takes text-based colorization instructions as
input. Such instructions can be obtained through voice or typing.
The voice-based interface is more natural but might suffer from
speech-to-text errors. Integrating our system with direct voice input
would be interesting future work.

As illustrated in Fig. 2, given an input scene sketch and a natural
language expression for color specification, our system offers two
modes for colorization: foreground and background. Two modes
are adopted because foreground objects (e.g., cars, trees, sun) and
background regions (e.g., sky, ground) have very different image
characteristics, and thus are better dealt with in different ways. In
our system, we classify all sketched objects as foreground and the
regions between sketched objects as background. Assuming a user
does not colorize foreground objects and background regions in a
single language expression, either the foreground or background
mode can be easily determined by checking the category label in a
given instruction (e.g., “sky” indicates the background label.)

In the foregroundmode, a network called instance matching model
(Section 4) is first used to locate the foreground object instance(s)
of interest indicated by the natural language instruction (more pre-
cisely, predicting the instance-level mask of the target object in-
stance(s)). Next, a new network architecture called foreground col-
orization model (Section 5.1) specifically designed for foreground
objects is employed to colorize these instance(s). In the background
mode, a third network architecture called background colorization
model (Section 5.2) specifically designed for background stuff is
employed to perform simultaneous segmentation and colorization.
We do not use a specific instance matching model for the back-
ground, since the colorization requirements for background regions
are less complex than those of foreground object instances. With
this divide-and-conquer and progressive strategy, the colorization
of a complex scene sketch becomes feasible, without being trained
on a large-scale set of scene-level sketch and image pairs with the
entire annotated text instructions.

4 INSTANCE MATCHING
The instance matching model takes as input a scene sketch image
and a language-based instruction (a phrase or sentence), and outputs
the pixel-level mask of the target object instance(s), including the
information of bounding box, class label, and binary instance mask.
This problem is challenging and there exists almost no prior work
directly studying it. We refer to this problem as referring instance
segmentation and address it with a new architecture integrating a
set of sophisticated networks.

Our proposed architecture for instance matching as illustrated in
Fig. 3 mainly includes two phases: sketch image feature extraction,
and text-image fusion. The former one extracts the image features of
the sketch, and the latter takes them along with a natural language
description as inputs, and generates the binary mask of the target
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Foreground 
Colorization

Instance 
Matching

“ the car is red with black windows”

… Background 
Colorization

“ the sky is blue and the ground is green”

Foreground mode Background mode

Fig. 2. Our system supports two-mode interactive colorization for a given input scene sketch and text-based colorization instructions, using three models,
namely, the instance matching model, foreground colorization model, and background colorization model. It is not necessary to colorize foreground objects
before background regions.
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Fig. 3. Network architecture of the instance matching model in Section 4. This network is trained in an end-to-end manner to obtain the binary mask (shown
in (b)). In the inferring phase, the generated binary mask is fused with the instance segmentation results generated by Mask R-CNN [He et al. 2017] to obtain
the final results.

object(s) (Fig. 3 (b)). We use the DeepLab-v2 network [Chen et al.
2018a] as the sketch image feature extractor as it is the most effective
network for semantic segmentation of scene sketches according to
the study in [Zou et al. 2018]. The RMI model [Liu et al. 2017a]
which was originally proposed for referring image segmentation,
is employed for text-image fusion phase. The final instance-level
segmentation information is obtained by fusing the binary mask(s)
and the results generated byMask R-CNN [He et al. 2017] (separately
trained). The ignoring-background training strategy [Zou et al. 2018]
tailored for sketch data, which only penalizes the cross entropy loss
of stroke pixels rather than every pixel in a sketch image, is leveraged
to train all the networks. In the remainder of this paper, we refer to
this architecture empowered by DeepLab-v2 and RMI as well as the
ignoring background training strategy as DeepLabv2-RMI.

Methodology. In the sketch image feature extraction phase, given
an image of size H ×W , a ResNet-101 based DeepLab-v2 model is
adopted to extract sketch image features with size H ′ ×W ′ × 1000
whereH ′ = H/8 andW ′ =W /8. The sketch image features are then
concatenated with spatial coordinates to produce aH ′×W ′×(1000+
8) tensor. The 8 spatial coordinate dimensions, where the normalized
horizontal and vertical positions individually use 3 dimensions each
and the remaining 2 dimensions are 1/W ′ and 1/H ′, are determined
by following the implementation of [Liu et al. 2017a].

In the text-image fusion phase, a two-layer LSTM architecture
is employed for multimodal interaction between cross-domain fea-
tures. The text-only LSTM encodes the language instruction con-
sisting of several words {wt }

T
t=1 from their mapping embedding

{et }Tt=1 (et ∈ Re ) and uses the hidden representation {ht }Tt=1
(ht ∈ Rw ) for each word as the text features. At each time step
t , the four kinds of cross-domain features (text embedding et , text
semantic ht , extracted image features v and spatial information
s ∈ Rs ) are concatenated as a joint input for the convolutional
multimodal LSTM (mLSTM). Before concatenation, et and ht are
initially tiled to H ′ ×W ′ to match the dimensions. The mLSTM is
applied to all spatial locations in the concatenated feature maps,
and output hidden states {h′t }Tt=1 (h

′
t ∈ Rm ). The binary mask

R ∈ RW ×H is produced from h
′

T via a projection and an upsam-
pling layer. The network for binary mask generation is trained in
an end-to-end manner. On the inferring stage, the generated binary
mask is fused with the output of Mask R-CNN to produce final
instance segmentation results. Specifically, the segmented instances
from Mask R-CNN with more than 50% mask pixels covered by the
generated binary mask are used as the matched instances, i.e., the
final segmentation results.

Training Loss. Given a binary drawing mask of a sketch M ∈

RW ×H (where Mi j = 1 indicates a black foreground pixel at po-
sition (i, j) and Mi j = 0 indicates a white background pixel) and
the ground truth binary segmentation mask R̂, the loss function is
formulated as the conventional cross-entropy empowered by the
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ignoring background training strategy:

L =
1
N

W∑
i=1

H∑
j=1

(
Mi j ∗

(
R̂i j ∗ −log

(
Ri j

)
+ (1 − R̂i j ) ∗ −log

(
1 − Ri j

)))
(1)

where N =
∑W
i=1

∑H
j=1M

i j is the number of black pixels (Mi j = 1)
in the sketch image.

5 COLORIZATION
Although the existing method LBIE [Chen et al. 2018b] can be di-
rectly used to colorize a segmented object sketch or background
region, it suffers from artifacts as shown in Section 8. There are
two major limitations with LBIE. First, the architecture of its image
encoder and decoder is not suitable for the sketch data or back-
ground regions. Second, its image-text fusion model is not effective,
producing poor-quality results. For example, given an instruction
“the car is red with dark gray windows”, LBIE failed to segment the car
windows and colorized the car windows in red, as shown in Fig. 11.
To achieve better colorization, we designed new architectures tai-
lored for the characteristics of foreground and background regions
for the tasks of both foreground and background colorization.

5.1 Foreground Colorization
Overview. As illustrated in Fig. 4, our network for foreground

object instance colorization is essentially a generative adversarial
network (GAN) consisting of a generator G and a discriminator D.
Unlike traditional generators, such as pix2pix [Isola et al. 2017], only
taking as input the single-modal visual image data, our generatorG
needs to model the interactions between the text description and
visual information since the generated colorization results should
be constrained by the text information.

Generator & Discriminator. The generator G consists of three
modules: an image encoder which encodes the features of theH ×W
input sketch image of a segmented object instance generated from
the instance matching stage, a fusion module which fuses the text
information of a natural language expression into the image feature
maps generated by the image encoder, and finally an image decoder
which takes the fused features and produces an H ×W × 3 output.
We use the MRU blocks [Chen and Hays 2018] as the backbone
of both the encoder and decoder modules. The MRU block, which
was first proposed in [Chen and Hays 2018], takes an extra image
input and produces new feature maps by dynamically merging the
information in the extra image into the original input feature maps.
It is proven that the MRU block has superior performance for sketch
data over naive convolutional approaches. In our implementation,
we use one convolution layer and four cascaded MRUs to encode
the H ×W input object sketch image into H ′ ×W ′ feature maps
(H ′ = H

32 ,W
′ = W

32 ) in the encoder. For the decoder, five MRUs
are cascaded as a deconvolutional network. Skip-connections are
applied between the encoder and the decoder. The fusion module
is an RMI model similar to the one used in the instance matching
stage (Fig. 3). It incorporates the text information into the H ′ ×W ′

image feature maps, and outputs H ′ ×W ′ fusion features. In our
experiments, H andW were both set to 192.

The discriminator D takes as input the synthesized or ground-
truth color image, and decides whether the image is fake or real. We
also build the discriminator with the MRU blocks. D outputs two
logits, one for GAN loss and the other for classification loss.

Loss Functions. Our GAN objective function is similar to the
one in SketchyGAN [Chen and Hays 2018] and can be expressed
as LGAN (D,G). As SketchyGAN, an auxiliary classification loss
Lac (D) for D is introduced to maximize the log-likelihood by the
predicted and ground-truth labels. The generator maximizes the
log-likelihood as Lac (G) = Lac (D) with the discriminator fixed but
the image to be classified as a synthesized one.
Different from SketchyGAN, our task intends to generate col-

orization results with respect to user-specified instructions, instead
of diverse results. We thus do not exploit the perceptual loss or the
diversity loss. We replace the direct L1-distance in SketchyGAN
with smooth L1-distance as the supervision loss, as a color term in
our study might not correspond to a unique RGB value. For example,
in Fig. 4, we might say the colors of both the synthesized image
and the ground-truth are “dark blue” even though their correspond-
ing RGB values are slightly different. Hence the penalty should be
smaller than direct subtraction. We define the supervision loss as:

Lsup (G) =

{ 1
2 (G(x , s) − y)2 if ∥G(x , s) − y∥1 < 1

∥G(x , s) − y∥1 −
1
2 if ∥G(x , s) − y∥1 ≥ 1 (2)

in which x is the input instance sketch image, y is the ground truth
cartoon image, and s is the input text. Lsup (G) is evaluated at each
pixel and summed together to evaluate the loss for a whole image.

The complete loss functions of foreground instance colorization
for discriminator D and generator G are defined as:

L(D) = LGAN (D,G) + λ1Lac (D), (3)

L(G) = LGAN (G) − λ1Lac (G) + λ2Lsup (G). (4)
where λ1 and λ2 are the coefficients. The discriminator D aims to
maximize L(D), while the generator G aims to minimize L(G).

5.2 Background Colorization
Overview. As illustrated in Fig. 5, the proposed network for back-

ground colorization is a conditional GAN (cGAN) network, condi-
tioned by a foreground image. It fills in the background regions of
the input foreground image and produces a 768×768 high-resolution
color image. The generator G consists of a colorization branch and
a segmentation branch. The discriminator D is attached to the col-
orization branch and its design follows a general design of a dis-
criminator in a cGAN [Isola et al. 2017] with minor adaptions. The
whole network is trained in an end-to-end manner.

Generator&Discriminator. The colorization branch in the gen-
erator G has a similar structure to the network for foreground col-
orization. It shares the image encoder with the segmentation branch
with an encoder-decoder structure. The image encoder in the gener-
ator G uses the residual block [He et al. 2016] units as its backbone.
We choose the residual blocks here rather than the MRU blocks
used for foreground colorization, as the residual blocks have supe-
rior capability in producing large-size smooth and gradual texture
compared with the MRU blocks, and are thus more suitable for back-
ground colorization. The first unit of the image encoder employs
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Fig. 4. Network architecture for foreground colorization. It is able to colorize objects from different categories. The generator has a U-Net architecture based
on MRU blocks [Chen and Hays 2018], with skip connections between mirrored layers and an embedded RMI fusion module consisting of LSTM text encoders
and multimodal LSTMs (mLSTM). This architecture is referred to as the FG-MRU-RMI network for conciseness below.
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a general convolutional layer, followed by four cascaded residual
units, whose corresponding numbers of residual blocks are {3, 4, 6,
and 3}, respectively. This structure is similar to ResNet-50. It is worth
mentioning that the single colorization branch in fact performs im-
plicit segmentation. Without the explicit segmentation branch, the
generatorG can still segment and colorize the background with the
help of the mLSTM. The explicit segmentation branch is used to en-
hance segmentation results, producing more accurate segmentation
boundaries, as shown in Fig. 15. The decoder of the segmentation
branch, which produces the segmentation label map, is made up of a
chain of general deconvolutional layers. The discriminator D takes
the already colorized foreground image as the conditional input and
decides whether a synthesized or ground truth color image is fake
or not. It employs a Res-Block based image encoder like the one
used in the generator G.

Loss Functions. The cGAN objective function has a similar form
to the one in [Isola et al. 2017] and is expressed as LcGAN (D,G).
There are three types of loss for the training of generatorG:LcGAN (G),
Lseд(G), and LL1−sup (G). LcGAN (G) is the conditional GAN loss,
and Lseд(G) is the segmentation loss with the form of cross entropy,
while LL1−sup (G) provides the supervision to the network with the
L1-distance between generated images and ground truth images.

The background colorization model fills the background regions
with color while leaving the foreground objects unchanged. There-
fore, LL1−sup (G) does not need to take into account the penality of

foreground object regions. We therefore propose a training strategy,
referred to as w/o-FG, which ignores the contribution of the fore-
ground objects in computing the supervision loss. We use a binary
maskMi j to divide the foreground and background regions (Mi j = 1
indicates a background pixel; otherwise, a foreground pixel). Given
the paired image data, i.e., the input foreground image x and the
ground truth image y, and the natural language description s , the
supervision loss is then formulated as follows:

LL1−sup (G) =
1
N

W∑
i=1

H∑
j=1

(
Mi j ∗ ∥G(x , s)i j − yi j ∥1

)
, (5)

where N =
∑W
i=1

∑H
j=1M

i j is the number of background pixels in
the input image x .
In summary, the loss functions of background colorization for

discriminator D and generator G are formulated as

L(D) = LcGAN (D,G) , (6)

L(G) = LcGAN (G) + λ1Lseд(G) + λ2LL1−sup (G), (7)
where λ1 and λ2 are the coefficients. See Section 1.1 in the supple-
mentary material for more details about the loss functions.

6 DATASETS
We built the datasets for training and testing our networks mainly
on the SketchyScene dataset [Zou et al. 2018], which provides the

ACM Transactions on Graphics, Vol. 38, No. 6, Article 233. Publication date: November 2019.



Language-based Colorization of Scene Sketches • 233:7

the two trees on the left of the 
house are light green

all the clouds are dark gray

(a) (b) (c)

the bus has orange body and 
blue windows

Fig. 6. Illustration of the dataset for instance matching. Each foreground
object instance has a ground-truth binary mask (in colors) and a corre-
sponding natural language expression with optional location information.
Random colorization information (in blue, e.g., “light green”) is included in
the expression, following a set of sentence patterns, to support both instance
matching and foreground colorization using the same expressions in the
testing stage.

instance and semantic segmentation ground truth for more than 7k
scene sketch templates. Below we briefly describe each dataset (for
more details, please see Section 2 in the supplementary material).

Data for Instance Matching. As SketchyScene has provided
the instance segmentation ground truth for a large number of scene
sketches, theoretically we only need to prepare the associated lan-
guage expressions including the optional location information of
each object instance, e.g., “the tree in the middle”, in the sketches to
train the instance matching network. However, in practice, a user
might specify an object of interest with location information and
colorization goal within a single expression. To address this issue,
we need to provide complete text-based instructions including the
object category, optional location information, and colorization goal,
e.g., “the tree in the middle is dark green” for each object instance.
Manually preparing user instructions for each object instance

in a large-scale set of scene sketches requires a huge amount of
user labour. We therefore turned to designing a fully automatic
rule-based algorithm, which tries to imitate human cognition and
expressing habits, to generate the user instructions. Specifically, the
algorithm first automatically generated a phrase about an object and
its location information (if necessary), e.g., “the tree in the middle” /
“all the clouds” , for each object instance. Afterwards, following a set
of sentence patterns like “...is/are...”, “...has/have...”, the algorithm
randomly selected a colorization description (e.g., “dark green” ) from
the instance colorization dataset (see below) and then attached it to
each phrase to generate a complete instruction. Although we only
designed a limited number of sentence patterns for each category
of foreground objects, as shown in Section 7, the model trained on
this dataset could still support the expressions within a large degree
of flexibility.
We collected 38,557 pairs of object instance segmentation mask

and language expression in total through the above automatic algo-
rithm. These data were split into three sets: 30,094 pairs for training,
2,372 pairs for validation, and 6,091 pairs for testing, which covered
1, 337 + 116 + 242 = 1, 695 scene sketches from the SketchyScene
dataset. The object instances were from 24 categories as shown in
Table 1. This dataset is referred to as MATCHING dataset below.
Several representative samples are illustrated in Fig. 6.

the chicken 
in front of 
the house is 
light brown

the car has 
pink body 
and light 
blue 
windows

the person has 
red hair and 
is in pink
shirt with 
cyan pants

the butterfly 
is orange

the left 
house is 
purple
with red
roof

the tree on 
the rightmost
is light 
green

Fig. 7. Illustration of the dataset for foreground instance colorization. 4,587
triplets of cartoon image, edge map (sketch), and text description were
collected. The location information (in blue) was randomly added to color
descriptions to imitate the location-related instructions users might assign
to the system.

Data for Foreground Instance Colorization. The data for fore-
ground instance colorization includes color objects, the correspond-
ing edge maps (sketches), and the language descriptions regarding
the color information of those color objects. To collect these data,
we crawled cartoon instance images from the Internet and then
leveraged X-DoG [Winnemöller 2011] to extract an edge map as
the corresponding sketch for each cartoon image. We employed
6 subjects to manually create color annotations for each cartoon
image and then produced a color description automatically for each
cartoon image based on pre-defined sentence structure patterns.
In this way, we built a collection of in total 4,587 triplets of car-
toon image, edgemap, and language description, covering the same
24 object categories as the data for instance matching. These data
were split into two sets: 3,822 triplets for training, 765 triplets for
validation. Moreover, to evaluate the performance of our instance
colorization model on real sketches rather than edgemaps, we also
built a test set which includes 1,734 pairs of instance sketches and
descriptions. These instance sketches which cover all the 24 object
categories were extracted from the scene sketches of the test set in
SketchyScene. All the cartoon images and edgemaps/sketches were
resized to 192 × 192. The descriptions cover 16 different colors. The
number of colors for each object instance varies from 1 to 3. The
number of words in each description varies from 4 to 15, with an
average of 6. We randomly added the location information based
on pre-defined sentence structure patterns for each collected de-
scription. This dataset is referred to as FOREGROUND dataset below.
Several representative samples are shown in Fig. 7.

Data for BackgroundColorization. Fourmodality data, namely,
foreground image (with empty background), color image (with color
background), text description, and segmentation label map are re-
quired for background colorization. To collect such data, we com-
posed images of foreground objects by placing color object instances
into 768× 768 white images following the object layout information
provided by the sketch templates from the SketchyScene dataset. We
then employed 24 users to produce the color images (by manually
painting the background regions with solid colors). For simplicity,
we considered only two types of background: sky and ground. The
segmentation information and the corresponding text-based color
descriptions for the background regionswere obtained by examining
different painting colors within the background regions. For each
foreground image, we augmented the data by altering the colors of
background regions in the user painting to generate three additional
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Table 1. Details for each category of the dataset for instance matching.

bench bird bus butterfly car cat chick cloud cow dog duck grass horse house moon person pig rabbit road sheep star sun tree truck Total

Train 605 1725 716 343 1205 685 836 1886 580 1254 958 1941 184 2209 56 2655 188 647 744 810 62 1068 8504 233 30094
Val 15 77 32 10 71 64 54 160 102 93 76 195 22 88 6 139 12 97 50 140 14 64 778 13 2372
Test 94 188 36 48 146 86 178 368 105 218 156 347 80 776 50 845 66 72 118 159 57 182 1651 65 6091

pairs of color image and description. In Fig. 8, we illustrate a repre-
sentative sketch template, the corresponding foreground image, the
color image with user-painted background, segmentation map, and
3 pairs of augmented color image and text description. With such
data augmentation, we in total obtained 15,728, 1,200, and 2,908
quadruple data for training, validation, and testing, respectively.
The text descriptions totally cover 11 colors. The number of words
in each description is 9 on average. This dataset is referred to as
BACKGROUND dataset below.

7 INSTANCE MATCHING EXPERIMENTS

7.1 Ablation Studies
We validated the design choices of our proposed instance matching
model in three main aspects: feature extraction, text-image fusion,
and the effect of training with/without background (for more imple-
mentation details, see Section 1.2 in the supplementary material).

Feature Extraction. For sketch feature extraction, we evalu-
ated three alternatives: FCN-8s [Long et al. 2015], SegNet [Badri-
narayanan et al. 2017] and DeepLab-v3+ [Chen et al. 2018c]. These
alternatives are the most effective networks for image feature ex-
traction. FCN-8s is empowered by combining both coarse and fine
image features from different layers during upsampling to allow
the network to discriminate more low-level features (e.g., shape
and boundary). SegNet improves its feature extraction capability
by leveraging an indices-based unpooling scheme for decoding to
form a symmetrical encoder-decoder architecture, which improves
the upsampling performance. To enlarge the fields of view of filters,
DeepLab-v2 employed by DeepLabv2-RMI learns image features by
exploiting atrous convolution and atrous spatial pyramid pooling
(ASPP). Inherited from Deeplab-v2, Deeplab-v3+ further enhances
image feature learning ability by augmenting the ASPP module with
image-level features which contain contextual information and by
replacing the bilinear upsampling process with a decoder.

Text-image Fusion. We studied how different cross-domain fu-
sion mechanisms perform on this task. We validated theRMImodel
employed in DeepLabv2-RMI with two alternatives: an attention-
aware RMI model (RMI-Attn) and a recurrent attention injected
RMI model (RMI-RAttn). In the RMI-Attn mechanism, we pre-
sumed that hidden states from the intermediate mLSTMs, rather
than merely the last one as in RMI model, might contribute more to
the final multimodal feature. This presumption was based on our ob-
servation that some words at the end of a sentence, e.g., “The person
on the right has brown hair and is in purple shirt”, are not relevant
to the segmentation. We then introduced a shared fully connected
layer f to learn a word-level attention and used it to re-weight the

hidden states from all time steps to obtain an attention-aware multi-
modal feature (i.e., RMI-Attn produces the attention only when the
last time step finishes).
RMI-RAttn is another alternative fusion scheme, where word-

level attention is used in a recurrent manner as LBIE [Chen et al.
2018b]. The major difference between RMI-RAttn and RMI-Attn is
that the attention is computed based on the hybrid of word features
and input multimodal features (from each time step) within each
image region at every time step recurrently. At each time step of
RMI-RAttn, the attention produced within a certain image region
indicates the importance of each word to that region. Then, an
attentive feature map, generated by incorporating the attention and
the word features, is fed to mLSTM as input. The multimodal feature
map used to generate the segmentation mask of the target object
instance(s) is achieved at the last time step.

Training with/without Background. We also validated the ef-
fect of the ignoring background training strategy we formulate in
Eq. 1. Apart from this training strategy as presented in Section 4,
we trained the DeepLabv2-RMI model by considering the contri-
bution of all theW × H pixels. We refer to the former as w/oBG
and the latter as withBG. We next present our evaluation of all the
above models on both the validation and test sets in theMATCHING
dataset.

7.2 Results
Quantitative Results. Following Mask R-CNN [He et al. 2017]

and RMI [Liu et al. 2017a], we use mask IoU and mask AP, AP50
and AP75 as metrics to measure the segmentation accuracy of each
comparison model. We summarize the comparison results in Table 2,
where we can see the DeepLabv2-RMI architecture with the ignoring
background training strategy achieves the best overall performance.

From the study of feature extraction we can see that FCN-8s and
SegNet performworse than DeepLab-v2 onmost of the metrics. This
indicates that their upsampling schemes, i.e., combining coarse and
fine features or using indices-based unpooling, do not suit sketch
images well. DeepLab-v3+ performs slightly worse than DeepLab-v2
on most of the metrics, possibly because it fails to extract enough
contextual information into the image-level features due to the
sparsity of sketch images.
From the study of text-image fusion, we can see that the RMI-

Attn model is close to but slightly weaker than the RMI model.
This may be because the former is forced to emphasize particular
words while paying less attention to other words and thus might
lose important information for segmentation. In our task, a target
object could be constrained by other reference information like
relative position and reference object (e.g., “the car in front of the
house”). Assigning too much weight to particular words (like “car”
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(a) Sketch template (b) Foreground image (c) Segmentation
“the sky is brown and the 

ground is black”
“the sky is purple and the 

ground is gray”
“the sky is red and the 

ground is brown”
“the sky is blue and the 

ground is green”

Fig. 8. Illustration of the data collection for background colorization. The three right-most columns are three pairs of color image and text description
generated by automatically altering the colors for background regions in the user painting.

and “house”) might result in inaccurate segmentation due to the lack
of contextual information. As for the RMI-RAttn model, its accuracy
drops by 8 − 12% over the RMI model. This does not agree with the
experimental results in referring image segmentation works such
as [Shi et al. 2018]. This is possibly because, unlike natural images,
the contextual information within each image region in the feature
map of sketch images is too weak to provide strong constraints for
the attention learning, thus making it difficult to match the correct
text information with image regions.
By comparing the withBG model with w/oBG, we can see that

the performance of withBG drops sharply on all the metrics, in-
dicating that the ignoring background training strategy indeed has
significant effects on referring image segmentation, as it does on the
task of semantic segmentation in SketchyScene [Zou et al. 2018].

Qualitative Results. Our visual comparisons confirm the re-
sults indicated in Table 2. In Fig. 9, we show representative results
of the comparison methods on a typical scene sketch from the test
set. We can see that our DeepLabv2-RMI model generally produces
the results close to the ground truth.
By comparing the results of all the feature extractors, we can

see that both FCN-8s and SegNet perform worse than DeepLab-
v2 when the input instructions are complex. For example, given
the instruction “the bench in front of the house is brown” in Fig. 9
(Bottom) where another word “houses” is used as the reference of
the target object “bench”, both FCN-8s and SegNet fail to segment
the target object. The visual quality of DeepLab-v3+ is close to that
of DeepLab-v2.

By observing the results from the text-image fusion study, we can
see neither RMI-Attn nor RMI-RAttn can successfully segment the
target objects in all cases. Specifically, RMI-Attn fails to understand
the complex instructions (e.g., Fig. 9 (Bottom)) due to the unreli-
ably learned attention. By contrast, RMI-RAttn can understand the
complex instruction but fails to segment multiple objects (e.g. the
“grasses” in Fig. 9 (Middle Row)). It is possibly because the incorrect
attention makes the model hard to associate the text information
with all the corresponding regions in the image correctly. From
Fig. 9, it can be observed that the withBG model performs poorly
and can hardly segment any target object due to the poor capacity
of sketch image feature extraction.

7.3 Generalization Study
We evaluated the generalization ability of the instance matching
model. From the collected data in the user study of our system’s

Table 2. Quantitative comparison of text-based instance segmentation per-
formances (mask IoU & mask AP) from different alternative approaches on
our MATCHING dataset.

Model
mIoU mask AP

val test
val test

AP AP50 AP75 AP AP50 AP75

Feature extraction

FCN-8s 70.83 78.05 41.77 64.06 49.17 44.28 68.56 51.70
SegNet 78.62 71.83 46.29 71.68 54.11 44.21 67.66 51.98

DeepLab-v3+ 83.27 76.07 46.44 72.47 53.77 45.07 69.36 52.86
DeepLab-v2 83.67 75.90 47.04 73.09 54.72 45.97 70.79 53.90

Text-image fusion

RMI-Attn 83.52 75.52 46.94 73.05 54.59 45.35 69.94 53.15
RMI-RAttn 73.53 66.25 38.60 60.36 44.55 37.82 57.97 44.60

RMI 83.67 75.90 47.04 73.09 54.72 45.97 70.79 53.90

Training with/without background

withBG 26.82 28.75 5.84 7.62 7.16 5.96 7.94 7.19
w/oBG 83.67 75.90 47.04 73.09 54.72 45.97 70.79 53.90

overall performance (Section 8.3), we found that some language in-
structions were clearly beyond the coverage of the sentence patterns
of the training data. Apart from expected short-phrase instructions
like those in Fig. 1, there are mainly four other cases as shown in
Fig. 10: 1) Part-Aug: instructions with descriptions about object parts
(e.g., “tires” and “wheels”) which never exist in the training data; 2)
Gram-Err : instructions with grammar errors; 3) Multi-Cate: instruc-
tions involving objects from multiple categories; and 4) Alt-Name:
instructions with alternative category names (e.g., “taxi”) which do
not exist in the training data.
We observe that, besides expected short phrases, the matching

model can still successfully segment target objects in the cases of
Part-Aug and Gram-Err. As for the case of Multi-Cate, the matching
model only segments target object(s) described by the words in
the first part of an instruction in most testing cases. (e.g., only the
“bus” is segmented in the example of Multi-Cate in Fig. 10, and only
the “tree” is segmented when given the expression “the tree is light
green and the bus is blue” where “tree” and “bus” were presented in
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RMI-Attn RMI-RAttn withBG

DeepLabv2-RMI
w/o BG

“the grasses are dark green”

“the bench in front of the houses is brown”

“the person has light brown hair and is in red shirt and dark blue pants”

Ground
TruthDeepLab-v3+FCN-8s SegNet

Effect of BGText-image fusionFeature extraction

Fig. 9. Representative results of alternative approaches on a typical sketch in the MATCHING dataset.

color the a bus green and 
are light blue windows

the bus is blue and the 
tree is light green

the car is red with black 
windows and green tires or 

wheels

[Part-Aug] [Gram-Err] [Multi-Cate]

the taxi is yellow with 
blue windows

[Alt-Name]

Fig. 10. Generalization study for instance matching on instructions in the
wild.

reverse order). This can be explained by the fact that our training
dataset does not include this kind of instructions with a different
sentence structure. This causes confusion for the model when it
sees such wild instructions. In the case of Alt-Name, the model can
hardly segment any object because the alternative object name is
not understood at all and is regarded as an unknown word. With the
lack of the most important information, it is difficult for the model
to distinguish the target according to the rest of the information in
the sentence.

8 COLORIZATION EXPERIMENTS
In this section, we first study the alternatives for the foreground ob-
ject instance colorization network, i.e., FG-MRU-RMI, and the back-
ground colorization network, i.e., BG-RES-RMI-SEG. Afterwards,
we describe a user study we conducted to investigate the faithful-
ness and effectiveness of the proposed colorization networks. We
finally study the overall performance of the proposed system and in-
vestigate its generalization and usability (for more implementation
details, please see Section 1.2 in the supplementary material).

the horse in 
front of the 
tree is dark 
gray

the bus is 
pink with 
blue windows

the left person has 
red hair and is in 
pink shirt and
blue pants

the house is 
light blue 
with brown
roof

the car is red
with dark 
gray windows

the second
chicken on the 
left is yellow

FG-MRU-RMI (Ours) LBIE FG-MRU-RMI (Ours) LBIE

Fig. 11. Network comparison for foreground object instance colorization:
FG-MRU-RMI vs. LBIE [Chen et al. 2018b].

8.1 Alternative Studies
8.1.1 Foreground Instance Colorization. We first study the effec-

tiveness of our foreground instance colorization solution, FG-MRU-
RMI, in comparison with LBIE [Chen et al. 2018b], which is the
state-of-the-art language-based automatic image colorization net-
work. Then we investigate what kind of backbone (building block)
is the most effective. We mainly compare the employed MRU blocks
with ResNet blocks [He et al. 2016] and Pix2Pix blocks [Isola et al.
2017], which are the building blocks widely used in deep models for
various applications. We trained all the comparison models on the
same training set of the FOREGROUND dataset. For fair comparison,
all the hyper-parameters for these models were set to be equivalent.

FG-MRU-RMI vs. LBIE. We tested the two methods on all the
examples from the test set of the FOREGROUND dataset. In Fig. 11,
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the car is 
orange with 
gray windows

the bus is 
purple with 
blue windows

the dog on the 
right is dark 
gray

MRU ResNet Pix2Pix

Fig. 12. Building block (backbone) comparison for foreground instance
colorization: MRU (the adopted one) vs. ResNet vs. Pix2Pix.

we show several representative results. It can be seen that FG-MRU-
RMI significantly outperforms LBIE in the aspect of faithfulness, i.e.,
whether the colorization results are consistent with the language
descriptions. For instance, given a user instruction “the car is red
with dark gray windows” and a car sketch, in the LBIE result there
is an undesired green region in the front part of the car, and the car
windows are not in dark gray. By contrast, the FG-MRU-RMI result
meets the user’s colorization requirement. In the aspect of effective-
ness, which measures the overall visual quality of the colorization
results, FG-MRU-RMI is also superior to LBIE. For example, color
bleeding artifacts are more apparent in the LBIE results.

From the results, e.g., the yellow chicken in the bottom row and
the light blue house in the top row, we can also see that both FG-
MRU-RMI and LBIE are capable of understanding the user-specified
color information reasonably well (i.e., associating a specific color
with the color described in the text description). However, when an
instruction contains different colorization requirements for different
object parts, e.g., “the house is light blue with brown roof”, LBIE
often fails to assign the right colors to the corresponding object
parts (e.g., the roof of the house is colorized with blue by LBIE). By
contrast, FG-MRU-RMI achieves better results in such scenarios,
indicating that FG-MRU-RMI is more capable of inferring the part-
level segmentation of an object-level sketch.

MRU vs. ResNet vs. Pix2Pix. With the same architecture shown
in Fig. 4, we built two alternative networks for FG-MRU-RMI by
replacing the MRU blocks with ResNet or Pix2Pix blocks, respec-
tively. We then compared these three networks using the test set of
the FOREGROUND dataset. In Fig. 12, we show several representa-
tive results where we can see that MRU achieves relatively better
performance than ResNet in the aspect of faithfulness (e.g., see the
dog example). The results generated by MRU also have better visual
quality than those by Pix2Pix, e.g., the color of the bus windows has
less bleeding in the results of MRU.

8.1.2 Background Colorization. We first compare our BG-RES-
RMI-SEG network in Fig. 5 with LBIE in the task of background

Foreground image LBIE BG-RES-RMI-SEG (Ours)

the sky is 
blue and the 
ground is 
green

the sky is 
purple and 
the ground 
is gray

Fig. 13. Network comparison for background colorization: LBIE vs. BG-RES-
RMI-SEG.

Foreground image MRU Pix2Pix ResNet

the sky is 
blue and 
the ground 
is green

the sky is 
gray and 
the ground 
is brown

Fig. 14. Backbone comparison for background colorization: MRU vs. Pix2Pix
vs. ResNet (the adopted one).

colorization. Then we compare the performance of the three build-
ing blocks, i.e., MRU, ResNet, and Pix2Pix. Lastly, we present our
ablation study on the effects of the segmentation branch of BG-
RES-RMI-SEG and the w/o-FG training strategy (i.e., excluding the
contribution of foreground) for the computation of the supervision
loss. We trained all the compared models on the training set in the
BACKGROUND dataset. All the hyper-parameters for the compari-
son models were set to be identical to result in fair comparisons.

BG-RES-RMI-SEG vs. LBIE. We compared LBIE and BG-RES-
RMI-SEG on all the examples from the test set of the BACKGROUND
dataset. In Fig. 13 we show the results from two representative
examples, from which we can see that both LBIE and BG-RES-RMI-
SEG can colorize most background regions with correct colors. This
indicates that both LBIE and BG-RES-RMI-SEG have the ability
to understand instructions, do segmentation, and paint with the
required colors. Relatively, BG-RES-RMI-SEG is superior to LBIE.
This can be observed from the green area on the right side of the
house (the upper example) and the purple regions close to the dog
(the bottom example) in the LBIE results. The better performance
of BG-RES-RMI-SEG is mainly because of the segmentation branch
and the stronger multimodal feature learning strength brought by
the RMI module and ResNet block chain.
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MRU vs. ResNet vs. Pix2Pix. Similar to foreground colorization,
we built two alternative networks for BG-RES-RMI-SEG by replacing
its ResNet blocks with MRU or Pix2Pix blocks, respectively. For fair
comparison, the w/o-FG strategy was used for all the three networks.
In Fig. 14 we show the results of the comparison networks on two
representative examples. ResNet outperforms the alternatives. It
can be easily seen that Pix2Pix produces obvious artifacts, possibly
because the cascaded 5-layer Pix2Pix building blocks are too shallow
for high-resolution images (768 × 768 in our experiments). MRU
performs better but still suffers from artifacts around the boundaries
of different semantic regions. This might be because the MRU blocks
are particularly proposed for inferring color images from sketches
rather than painting large blank regions in our scenario.

Ablation Study. To investigate the effects of the explicit segmen-
tation branch of the architecture shown in Fig. 5 and the w/o-FG
training strategy, apart from BG-RES-RMI-SEG, we built three ad-
ditional comparison models, includingw/o SEG: the model without
the segmentation branch;with FG: the model involving foreground
objects in the supervision; w/o SEG - with FG: the model without
the segmentation branch but with the contribution of foreground
objects considered. We compared these four models on all the ex-
amples from the test set of the BACKGROUND dataset.
The comparison results of a representative example is shown

in Fig. 15. By pair-wisely comparing the results generated by w/o
SEG and ours, and those generated by with FG and w/o SEG -
with FG we can see that, without the segmentation branch, the
models produce less reasonable boundaries between the regions
with different semantic labels (i.e., sky and ground). We can also see
that, without the w/o-FG training strategy, the same architecture
produces artifacts around the boundaries of the foreground objects
(see the boundaries of the clouds in the results of with FG and w/o
SEG - with FG). By contrast, our proposed model achieves the best
performance. This conclusion will be further verified by our user
studies.

8.2 User Studies
Study Settings. To further quantitatively evaluate the coloriza-

tion results of the alternative experiments in Section 8.1, we de-
signed and conducted two on-line user studies, effectiveness study
and faithfulness study. The effectiveness score reflects the capability
of the image encoder and decoder in the compared networks. The
faithfulness score can be affected by the capabilities of both the
text-image fusion module and the image encoder-decoder structure.
We recruited 26 participants for both of the studies. All partici-

pants had no prior knowledge of this project. In both studies, for
each test sample, each participant was shown a page of the input
data and the corresponding colorization results of comparison ap-
proaches in random order. In the faithfulness study, the participants
were required to pick out the color image which best meets the
colorization requirement in the given language expression. In the
effectiveness study, the participants were required to pick out the
most visually pleasing color image. For foreground colorization task,
questionnaires were generated on 72 sets of randomly selected test
samples covering 24 categories. For background colorization task,
40 randomly selected sets of test samples were used for the study.

Foreground image w/o SEG – with FG w/o SEG

the sky is gray and 
the ground is black

with FG BG-RES-RMI-SEG (ours)Ground-Truth

Fig. 15. Illustration of the advantages of the segmentation branch of the
proposed architecture and the w/o-FG training strategy for background
colorization.

For foreground colorization task, 18 valid study results were
completed for both sets of the experiments (i.e., FG-MRU-RMI vs.
LBIE, and MRU vs. ResNet vs. Pix2Pix) in both the faithfulness and
effectiveness studies. (18 + 18) × 72 = 2, 592 trials were collected
in total for either of the faithfulness and effectiveness studies. For
background colorization task, 26, 22, and 20 valid study results were
returned for the three sets of experiments, respectively: BG-RES-
RMI-SEG vs. LBIE, MRU vs. ResNet vs. Pix2Pix, and the ablation
study. In total, (26 + 22 + 20) × 40 = 2, 720 trials were collected for
either of the faithfulness and effectiveness studies.

Results. The statistic results of the collected study data are pre-
sented in Fig. 16 and Fig. 17. We can see that the proposed FG-
MRU-RMI clearly outperforms LBIE in foreground colorization task
when measuring in both faithfulness and effectiveness. Relatively,
BG-RES-RMI-SEG has more comparative advantages over LBIE in
background colorization task. This is mainly because both the im-
age encoder and decoder (49 layers) in BG-RES-RMI-SEG are much
deeper than those in by LBIE (15 layers), which enables BG-RES-RMI-
SEG to be more capable of dealing with relatively large-size images
(768 × 768 for background colorization in our implementation). A
similar reason can also be used to explain the backbone comparison
results in the background colorization task, where ResNet (49-layer)
beats MRU (13 layers), which in turn beats Pix2Pix (5 layers).
By comparing the relative advantages of each backbone alter-

native on the foreground and background colorization tasks, we
conclude that MRU is more suitable for foreground colorization
(inferring color images from sketches) while ResNet is more suitable
for background colorization (inferring color images from blank re-
gions). By comparing the statistic results of w/o SEG and with FG,
i.e., 15.88% vs. 30.13% (faithfulness) and 18.13% vs. 27.00% (effective-
ness), we can see that the system benefits more from the explicit
segmentation branch than from the w/o-FG strategy.
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Fig. 16. Statistic results for faithfulness study.
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Fig. 17. Statistic results for effectiveness study.

8.3 Overall Performance
User Study Settings. We conducted two additional studies to

evaluate the overall performance of the proposed system: targeted
colorization where participants were required to colorize a sketch
into target color images as closely as possible, and un-targeted
colorization where participants were allowed to colorize a sketch
with free instructions. Before the experiment we selected 20 scene
sketches with reasonable instance segmentation results from the
test set of SketchyScene [Zou et al. 2018] and generated a target
color image for each sketch in the same way as that we prepared
for the BACKGROUND dataset. In this way, we obtained 20 pairs of
sketch and target color image for the study of targeted colorization,
and 20 sketches for the study of un-targeted colorization. After-
wards, we invited six participants to provide the input expressions
for the un-targeted colorization study first and then for the targeted
colorization study. These participants included a 10-year-old boy
in primary school, a 14-year-old boy in high school, two female
and one male graduate students aged 21 to 23, and a 30-year-old
female working in a company. The 10-year-old boy and one of the
female graduate students are native English speakers, while the
others are not. Each of the 20 examples was randomly assigned to 2
participants to conduct the studies.

In the un-targeted colorization study, before the description data
collection we only showed the participants Fig. 1 for illustrating
the workflow of our system together with the color types of the
foreground and background objects in the training data as the tu-
torial. By contrast, in the targeted colorization study, before the
data collection, we additionally showed them the category names
of all the foreground and background objects, together with Fig. 7
and Fig. 8 for showing the examples of sentence patterns in the
training data. The participants were required to provide complete

instructions to colorize the entire sketch for each example in both
studies.

User Study Results. For each study, we collected instructions
for 2 × 20 = 40 sketches in total, each with around 10 instructions.
With these input data, we generated 40 × 10 = 400 sets of progres-
sive results. For each instruction, our system returned a colorization
result within 2 seconds. Below we briefly present some of the re-
sults (for more results, please see Section 3 in the supplementary
material).

In the un-targeted colorization study, since the participants were
only shown a limited number of sentence patterns in Fig. 1 and were
not informed of the object category names in the training data, we
collected a large proportion of instructions which were beyond the
coverage of the training data (see Fig. 18) in terms of “wild” sentence
structure (e.g., the most similar training instruction to “yellow road”
(A4) is “the road is yellow”), language grammar (e.g., “the clouds
are are in dark gray” (B4)), and unsupported words (e.g., the verb
“colorize” in “colorize the bus in purple” (B5) does not exist in the
training data). However, our system still produces reasonable results
with these kinds of input data. Fig. 18 (Bottom) also shows there is
no need to colorize the foreground before the background (B3), and
our system supports re-colorization (B5).
In the targeted colorization study, even though we showed the

participants some sentence patterns in our training dataset, we still
found diverse expressions in their instructions. In Fig. 19, we show
the results of two representative sets of input data from four users.
These instructions include some significantly different expressions
or slightly different color goals towards the same target. Take the left
case for an example: user A described the objects briefly while user B
preferred to describe in more detail, e.g., “with orange flame” for the
“sun”. Moreover, for the “house”, the sentence structures between
user A and B were quite different. Despite the expression diversity,
our system still produces color images close to the target cartoon for
the two users. In the right example, we can see that different users
assigned different but visually close colors probably due to their
individual color cognition, e.g., “light brown hair”/“purple pants”
from user C and “dark brown hair”/“black pants” from user D. Our
system produces results that are slightly different but still consistent
with the target images to some extent.

Generalization. To further evaluate the generalization ability
and robustness of our system, we also applied our system to a num-
ber of wild sketch images from the Internet. These test sketch images
included three types of styles: cartoon-style drawing, artist free-
hand drawing, and anime line art. In addition, we also evaluated our
system on some non-artist freehand sketches in the Sketchy [Sangk-
loy et al. 2016] (instance-level) and Photo-Sketching [Li et al. 2019]
(scene-level) datasets, which are more “sketchy” than the three styles
just mentioned. We manually constructed the colorization instruc-
tions for these wild sketches. Fig. 20 and Fig. 21 illustrate the results,
from which we can see that our system is also capable of generating
desirable results.
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“the house is pink” “the two trees are light 
green”

“the sky is brown and 
the ground is black”

“all the clouds are light 
blue”

“yellow road”
“color the grasses in dark green”

“the bus is yellow with 
blue windows”

“all the trees are dark 
green”

“dark green grasses”
“colorize the bus in purple”

“color the sky in blue
and the ground in green”

“the clouds are are in dark gray”
“let the rabbit be in pink”

…

…

(A1) (A2) (A3) (A4) (A5)

(B1) (B2) (B3) (B4) (B5)

Fig. 18. Two representative interactive colorization results in the un-targeted colorization study.

“All the trees are dark green”

“The left person has light brown 
hair and is in light blue dress”

“The right person has black hair 
and is in red shirt with purple
pants”

“The leaves on trees are dark 
green and the trunks of trees 
are dark brown”

“The person on the left with dark
brown hair wears light blue
clothes”

“The person on the right with
black hair wears red t-shirt,
black trousers and green shoes”

Scene sketch

Target cartoon

Input from user DInput from user C

Output from user C Output from user D

“The sun is yellow”

“All the chickens are yellow”

“The house is red with dark 
brown roof and light blue 
windows”

“The sun is yellow with orange 
flame”

“All chickens are yellow with red 
crest and yellow feet”

“The walls of the house are 
brown and the roof of the house is 
red”

Scene sketch

Target cartoon

Input from user BInput from user A

Output from user A Output from user B

Fig. 19. Representative results from the targeted colorization study. For better visualization, we highlight the different expressions towards the same target in
red and different color goals in blue.

9 CONCLUSION AND DISCUSSIONS
Empowering machines with the ability to intelligently understand
both natural language expressions and scene sketches with various
styles and to perform colorization tasks is a challenging but useful
task. This paper for the first time presents a language-based sys-
tem for interactive colorization of scene sketches. This is enabled
by multiple carefully designed deep networks for instance match-
ing, foreground colorization, and background colorization, as well
as dedicated large-scale datasets for network training. Our com-
prehensive experiments have demonstrated the effectiveness and
robustness of the presented system. We are interested in combining
a language-based interface and other interfaces (e.g., scribble-based)

for a more powerful multimodal colorization system. Our current
system can still be improved in multiple aspects, as detailed below:

Lack of Language Generality for Instance Matching. One
major limitation of our system is the lack of generality of the lan-
guage component and the compatibility with human’s linguistic
habits. In our targeted colorization study (Section 8.3), most par-
ticipants said that based on their linguistic habits, they preferred
to describe multiple objects even of different categories every time,
rather than one by one as required in the study, like “The sun is
orange and the clouds are light blue”. As shown in Fig. 10 and the
analysis in Section 7.3, it is still difficult for our system to fully
understand this kind of sophisticated expressions with multiple
categories. Moreover, some participants also pointed out that, for
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“the person in the 
middle has dark 
brown hair and 
is in pink shirt 
with light gray 

pants”

“the person on 
the right has 

light brown hair 
and is in orange
shirt with black

pants”

“the rabbit on the upper 
left is dark gray”

(a)

“the person 
on the left 

has red hair 
and is in 

yellow shirt 
with cyan

pants”

“the person on 
the right has 

red hair and is 
in light brown 

shirt with 
purple pants”

“the sky is blue 
and the ground 

is green”

“the rabbit on the 
right is light brown”

“the person on 
the right has 

red hair and is 
in orange shirt 
with cyan skirt”

“the sky is pink
and the ground 

is yellow”

“the person on 
the left has 

light brown 
hair and is in 
red shirt with 

dark gray 
pants”

(b)

(c)
(d)

Fig. 20. Generalization study on the wild sketch data , including: (a) & (b) cartoon-style drawings, (c) artist freehand drawing and (d) anime line art.

“all the trees are 
dark green”

“the dog on the right 
is dark brown”

“the person is in light 
brown shirt with red

pants”

“the sky is blue and 
the ground is green”“the house is blue with gray roof”

“the car is yellow with blue window”

“the dog is dark brown”

Fig. 21. Generalization study on non-artist freehand sketches. The instance-
level sketches are from the Sketchy [Sangkloy et al. 2016] dataset and the
scene-level one is from the Photo-Sketching [Li et al. 2019] dataset.

example, in the right case of Fig. 19, after describing “The left person
has ...”, they tended to describe the right person as “The other person
...” without adding any additional location information. Our current
system can only handle individual language instructions separately
and does not have the capability of understanding the contextual
information.

The main reason for this limitation is that ourMATCHING dataset
was built automatically without any manual annotation. Conse-
quently, the scope of handling language expressions is limited to
variances within the dataset. One feasible solution is to distill and
augment the dataset with crowd workers. For example, further re-
search may invite users to polish the automatically synthesized text.
Moreover, the dataset can be made more compatible with human’s
linguistic habits by asking users to combine the simple automatically
synthesized sentences into more sophisticated expressions.

Lack of Language Generality for Colorization. Another lim-
itation is that our system still cannot handle cases where the in-
put instruction includes arbitrary part-level information (e.g., “the

wheels” of the car) or arbitrary colors (e.g., “blonde hair”). In the
future, the part-level information can be annotated from the Word-
Net [Miller 1995] while the color information can be computed as
a linear mixture of several known colors. Our current dataset was
designed with a narrow scope of objects and colors to reduce the
manual effort of collecting the training and testing data, whereas it
results in low variances within the dataset. In the future, we aim to
facilitate additional networks to recognize and segment the parts
and learn reasonable blended colors for the un-annotated parts.

Colorization Artifacts. In general, there still exist some arti-
facts in our results, such as uncolored pixels (e.g., between the
boy’s legs in Fig. 19) and aliasing artifact (region around the hair in
Fig. 20 (d)). These artifacts are mainly caused by the limitation of
the data. Our colorization scheme requires region-based segmen-
tation information while the SketchyScene dataset only provides
the stroke-based segmentation information. We applied a simple
poly2mask tool to post-process the segmented strokes to obtain
region-based segmentation masks for foreground objects, which
may cause inaccurate region-based segmentation results (e.g., the
blank region between the boy’s legs in Fig. 19 was treated as a part
of the boy). To deal with this problem, we plan to augment the
SketchyScene dataset with region-based segmentation annotations,
which may empower the foreground segmentation network to be a
fully end-to-end model for producing region-based segmentation
masks.
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