
DIFFERENTIAL METHODS

FOR INTUITIVE 3D SHAPE MODELING

by

HONGBO FU

A Thesis Submitted to

The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

in Computer Science and Engineering

July 2007, Hong Kong

Copyright c© by Hongbo FU 2007

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis

to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to repro-

duce the thesis by photocopying or by other means, in total or in part, at the request of

other institutions or individuals for the purpose of scholarly research.

HONGBO FU

ii

DIFFERENTIAL METHODS

FOR INTUITIVE 3D SHAPE MODELING

by

HONGBO FU

This is to certify that I have examined the above Ph.D. thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

DR. CHIEW-LAN TAI, THESIS SUPERVISOR

PROF. LIONEL NI, HEAD OF DEPARTMENT

Department of Computer Science and Engineering

20 July 2007

iii

ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge the great impact of my advisor and

friend, Chiew-Lan Tai, on my research, on this thesis, and on me personally. Her

near-infinite patience saw all manner of my wayward ideas, infeasible schemes, and

frivolous diversions, yet her subtle guidance shaped them into a coherent path.

Many thanks to my thesis committee members, Beifang Chen, Pheng-Ann Heng,

Huamin Qu, and Long Quan, for their patience in reading this thesis and the helpful

comments. This thesis would not been possible in this form without the support and

collaboration of several people, in particular Oscar Au, Yichen Wei, Daniel Cohen-Or,

Shimin Hu, Ligang Liu, Hongxin Zhang, and Xiaohuang Huang. My thanks also go to

the dear communication tutor, Shauna Dalton, for the great help all along in improving

my research papers.

The team of the VisGraph Lab at the Hong Kong University of Science and Tech-

nology supported me a lot by providing valuable feedback in many fruitful discussions.

Special thanks go to Pedro Sander, Chi-Keung Tang, Philip Fu, Albert Chung, Nelson

Chu, Hui Zhao, Gang Zeng, Ruonan Pu, Hong Zhou, Ping Tan, Jia Chen, Kai Zhang,

Jingdong Wang, Hongwei Li, Yingcai Wu, and Lu Yuan.

Finally, I am forever grateful to my parents and my elder sister, who have always

been motivating and supporting me.

iv

TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures vii

List of Tables x

Abstract xi

Chapter 1 Introduction 1

1.1 Contributions 3

1.2 Outline 4

Chapter 2 Intuitive Mesh Deformation 5

2.1 Introduction 5

2.2 Related Work 7

2.2.1 Subspace-Based Shape Deformation 8

2.2.2 Function-Based Shape Deformation 11

2.3 Review on Differential Mesh Editing 13

2.4 Implicit Laplacian Mesh Editing Framework 16

2.4.1 Implicitly Defined Local Deformation Gradients 16

2.4.2 Neighborhood Coherence 17

2.4.3 Handling Degenerate Vertices 19

2.4.4 Shearing Removal by Polar Decomposition 22

2.5 Implementation Details and Discussions 27

2.6 Summary 29

v

Chapter 3 Poisson Mesh Merging 30

3.1 Introduction 30

3.2 Related Work 33

3.3 Configuration-Independent Merging 35

3.3.1 Configuration-Independent Merging 35

3.3.2 Configuration-Dependent Merging 39

3.3.3 Merging with Overlapped Transition Region 39

3.4 Optimal Boundary for Poisson Mesh Merging 41

3.4.1 System Overview 42

3.4.2 Boundary Energy Minimization 43

3.4.3 Iterative Optimization 43

3.4.4 Examples and Discussion 45

3.5 Summary 46

Chapter 4 Hairstyle Sketching 55

4.1 Introduction 55

4.2 Related Work 57

4.3 System Overview 58

4.4 Fast Vector Field Computation 59

4.4.1 Laplacian System as Field Interpolator 59

4.4.2 Incremental Cholesky Factorization 60

4.5 Sketch-based Hairstyle Design System 62

4.6 Implementation and Results 65

4.7 Summary 66

Chapter 5 Conclusion 70

References 72

Appendix A Publications 84

vi

LIST OF FIGURES

2.1 Manipulating the ring finger (Left). surface-based deformation [1]

(Middle) allows more intuitive editing results than space-based defor-

mation [2] (Right). 9

2.2 1-ring neighborhood of vertex vi is used to define the discrete Lapla-

cian coordinate δi at vi. 14

2.3 Left: the original cactus model. Right: the deformed cactus by rotat-

ing and translating the top handle. We render the ROI in blue and the

handle(s) in purple in all the examples. 18

2.4 Handling degenerate vertices. (a) A planar irregular triangular mesh

with the boundary vertices and the vertices in the central region as the

boundary constraints. (b) After displacing every degenerate vertex.

(c) Editing without removing the displacement. (d) and (e): Editing

with the displacement removed, using uniform weighting and cotan-

gent weighting, respectively. (f) Reconstruction errors are distributed

over the ROI. All the images in this chapter are flat-shaded to better

demonstrate that the errors introduced by the handling of degenerate

vertices are unnoticeable. 20

2.5 Difference between using cotangent weights (b) and uniform weights

(c). 21

2.6 An deformation example without shearing removal (Left) and with

shearing removal (Right). 22

2.7 (a) The original bar model with an ROI (blue) and two handles (pur-

ple). After the top handle undergoes a large rotation, (b) and (c) are our

results by setting sdisp = 0.2 and sdisp = 10, respectively, which have

little visual difference. The difference between corresponding vertices

is shown in (d) with red color denoting relatively big difference and

yellow color denoting no difference. (e) and (f) are the deformation

results with methods in [3] and [4], respectively. 23

2.8 An example of rotation of local features resulting from translation of

handles. Top left: The input dinosaur model. The deformation results

by [4] (Top right), [3] (Bottom left) and ours (Bottom right) when

the handle at the tail of the dinosaur undergoes a big-scale translation. 24

2.9 (a) The original Armadillo model with four handles specified. (b)

and (c): Two views of the deformed model by applying several rigid

transformations to the handles. (d) The deformation result with the

same view as (c) but without shearing removal. 25

2.10 An example of scaling local features edited by translating handles.

Left: the input lion model. Right top: the deformed model without

scaling the LCs. Right bottom: the deformed model with scaling the

LCs. 26

vii

2.11 Our method works well for high-genus models. 26

3.1 Configuration-independent merging. The goal is to merge the Man-

nequin head model (source) to the Venus model (target). The user only

specifies the correspondence between the merging boundaries. In (a)

and (b), the Mannequin head model has different positions, orienta-

tions and scales. Our configuration-independent merging method pro-

duces the same result (c), given the same boundary correspondence.

The lines indicate two user-specified key correspondences. 31

3.2 The effectiveness of Poisson mesh merging is highly dependent on

the choice of the boundary conditions. (a) Source mesh. (b) Target

mesh. (c) and (d) are the merging results with the user-specified (un-

optimized) boundary condition (i.e. the boundary separating the region

in red and the region in blue) and the optimal one found by our algo-

rithm (in blue), respectively. 32

3.3 Left: the original cactus model. Right: the reconstructed model after

a global transformation (including translation, rotation and uniform

scaling) is applied to the handle of the original cactus model (Left). 36

3.4 Configuration-independent merging: the Headus skull model (b) is

deformed and merged to the ears of the Stanford Bunny (a). The two

merging boundaries have undulations and are of different shapes. 37

3.5 A configuration-independent merging example with multiple pairs of

merging boundaries. 48

3.6 The hind part of the Feline model is deformed and merged to the

fore part of the Dinosaur model. (b) is the result of configuration-

independent merging with the configuration in (a), and (d) is the result

of configuration-dependent merging with the configuration in (c). In

the configuration-dependent merging, the two feet are specified as han-

dles (purple), thus remain fixed. The same boundary correspondence

is used for both merging. 49

3.7 Configuration-independent merging with overlapped transition regions.

(a) Two transition regions with key correspondences specified. (b) The

merging result. 50

3.8 An illustration of different types of boundaries and regions on the

source mesh. Ω0 is the region of interest (in red) casually marked by

the user. Ωfeature contains the features to be merged (in yellow). The

optimal boundary ∂Ω (in blue) lies in the region Ω0 \ Ωfeature. Cut C

(in green) breaks the ring of Ω0 \ Ωfeature. 50

3.9 (a) Source. (b) Target. (c) and (d) are the merging results using the

unoptimized and optimal boundary conditions, respectively. 51

3.10 Region Ω0 \Ωfeature on the source mesh and its corresponding region

on the target mesh. 51

3.11 (a) Source. (b) Target. (c) and (d) are the merging results using the

unoptimized and optimal boundary conditions, respectively. 52

viii

3.12 (a) Source. (b) Target. (c) and (d) are the merging results using the

unoptimized and optimal boundary conditions, respectively. 53

3.13 (a) Source. (b) Target. (c) and (d) are the merging results using the

unoptimized and optimal boundary conditions, respectively. 54

3.14 Our merging is applicable to a region of interest with nonzero genus. 54

4.1 A realistic hairstyle created using our system in five minutes. The

user is allowed to design interesting hairstyles by intuitively sketching

three types of style primitives: streaming curve, dividing curve and

ponytail. 56

4.2 Left: bounding volume, vector field and style curves. Right: hair

curves generated from scalp. 58

4.3 Editing a stream curve (blue). (a) and (b): two types of supporting

surfaces (purple) and the viewpoint associated to a stream curve. (c)

and (d): cut operation: the hint stroke (green) is long and runs across

the stream curve on the supporting surface; (e) and (f): concatenation

operation: the hint stroke starts near the stream curve and ends far

away from it, possibly out of the supporting surface (in which case the

depth is extrapolated from the last segment on the supporting surface);

(g) and (h): insertion operation: the hint stroke starts and ends near the

stream curve. 61

4.4 A dividing curve and its boundary constraints. Left: a local coordinate

frame defined on the curve. Boundary constraints are defined in the

local xy planes. The tilting angle α of a local plane is interpolated

from two parameters α0 and α1. Right: boundary constraints on a local

xy plane. Blue vectors mimic the local shape of the parting hairstyle

and follow the tangents of a Gaussian function, which passes through

the origin p at its inflexion point and with its local shape controlled

by two parameters σ and h (set to 1 and 0.5 by default, with the unit

as step size in the vector field). Red vectors explicitly represent the

discontinuities around the parting line in the vector field and stop hair

from growing across the parting line. Their magnitude is set smaller

than 1 (we use 0.3) to reduce their global effect. 63

4.5 Left: a stream curve and its boundary constraints. Middle: a ponytail

primitive and its boundary constraints. Right: four style curves of a

ponytail primitive. 64

4.6 A smooth hairstyle created with ten stream curves. 68

4.7 A hairstyle with a short parting line, created with seven stream curves

and a dividing curve. 68

4.8 A hairstyle with two ponytails, created with four stream curves and

two ponytail primitives. This is created in three minutes. See accom-

panying video for a demo. 69

ix

LIST OF TABLES

2.1 The timing results for our deformation examples on a 3.2GHz Pentium

IV machine with 1G RAM. 28

3.1 The timing results for our configuration-independent and configuration-

dependent merging examples on a 3.2GHz Pentium IV machine with

1G RAM. 40

x

DIFFERENTIAL METHODS

FOR INTUITIVE 3D SHAPE MODELING

ABSTRACT

Modeling 3D digital shapes, such as curves and meshes, manually is challenging

for three main reasons. First, realistic shapes are generally complex and involve many

unknown degrees of freedom. Second, users usually only have 2D input devices, which

are inadequate for manipulating 3D shapes. Third, unlike sculptors, ordinary people

usually have no precise space perception, making precisely adjusting relative positions

of 3D shapes even harder.

This thesis presents several novel intuitive techniques that make the modeling

process significantly less labor-intensive. We achieve a balance between the control

intuitiveness of tools and the geometric complexity of modeling output. Our tech-

niques allow the user to intuitively control the modeling effect through only a small

set of easy-to-use manipulators. The unknown vertex positions of the final models

are then computed by solving a system of linear partial differential equations (i.e., the

Laplace or Poisson equations) subject to the constraints derived from the manipula-

tors. These differential-based techniques contribute to three important modeling appli-

cations: mesh deformation, mesh merging and hairstyle design. The differential mesh

deformation technique allows the user to manipulate a small set of handles to deform

highly detailed meshes interactively and to achieve physically plausible deformation

effects. The differential mesh merging framework relieves the user’s burden of both

precise locating of 3D models and precise specification of merging boundaries over

the meshes to be merged. For hairstyle modeling, we design a sketching interface and

adapt an incremental solver to allow users to design compelling hairstyles by drawing

only a small set of strokes. For all these algorithms, we pre-compute the most com-

putationally expensive components to achieve interactive modeling with fast response.

Extensive experiments demonstrate the robustness and usefulness of our techniques.

CHAPTER 1

INTRODUCTION

3D geometric models have been used extensively in the entertainment industry, par-

ticularly in the production of movies and video games. Due to their powerful ability

to encode highly detailed geometric features, polygonal meshes and polygonal curves

are by far the most common representations for discrete surfaces and curves, respec-

tively. For example, to model a digital human character, polygonal curves are often

used for hair curves, and polygonal meshes for the human body surface. Although a

lot of techniques and devices, such as procedural modeling [5, 6], image-based model-

ing [7, 8, 9, 10] and 3D scanning device [11, 12, 13], have been proposed to construct

3D shapes, most 3D shapes have to be modeled via user input, either from scratch or

by editing / modifying existing models.

Modeling 3D digital shapes manually, however, is a tedious and difficult task, pri-

marily due to the following three reasons. First, many realistic shapes are generally

complex in terms of both geometric and topology complexities. For example, there

is a large volume of hair with typically over 100,000 hair curves on a human head.

Clearly, it is impractical to model the geometry of individual hair curves. Second, most

computer user interfaces are based on the keyboard and mouse, which are two dimen-

sional input devices, thus making free manipulation of shapes in three dimensional

spaces very cumbersome. Third, unlike sculptors, most people do not have precise

space perception, causing both accurate locating of shapes and precise adjusting of

relative shape locations in a 3D virtual world even harder. Although there exist many

professional modeling packages (e.g., Maya [14], 3DS Max [15], LightWave [16],

ZBrush [17], Rhino [18]), the above difficulties limit the complex modeling process

to a small group of professional digital artists with extensive practical modeling expe-

rience. Even for these professionals, modeling a complex shape is still rather tedious

and labor-intensive.

Our ultimate goal is to make 3D shape modeling more intuitive to control and eas-

ier to use even for non-professionals. To achieve this goal, we offer a balance between

1

intuitive user control and modeling complexity: rather than letting the user bother with

all the primitive elements which constitute a desirable shape, we provide a small set

of manipulators, typically small portions of the primitive elements, to the user for con-

trolling the modeling effect, and employ the underlying algorithms to optimize the

positions of the rest of the primitive elements of the final shape. In other words, the

modeling complexity is largely determined by the number of manipulators. With this

basic idea in mind, we propose several novel intuitive techniques for surface model-

ing by editing existing meshes, including mesh deformation and mesh merging, and

designing hairstyles from scratch. Handles (i.e., parts of a surface to be manipulated)

and strokes are the respective manipulators for surface modeling and hairstyle design.

The output of the optimizations constrained by the manipulators is easily predictable,

making the whole modeling processing intuitive to control.

The main ingredient of our underlying algorithms is a system of linear partial dif-

ferential equations:

∆(pi) = δi, (1.1)

subject to certain modeling constraints derived from the user-controlled manipulators,

where ∆(·) is the discrete Laplace operator (a second-order differential operator), also

known as the discrete Laplacian. For the applications of mesh deformation and mesh

merging, pi are the (unknown) vertex positions of the desired deformed surface and δi

are the so-called differential coordinates which are obtained by applying a differential

operator, e.g., the discrete Laplace operator, to the vertex positions of the original

unmodified surface. In this setting, δi are generally nonzero and thus the resulting

system is essentially the Poisson equation in mathematics. For hairstyle modeling, pi

are the tangential directions of hair curves and δi ≡ 0, making Equation 1.1 reduce to

the Laplace equation.

The advantages of using Equation 1.1 to govern the modeling effect are manifold.

First, solving this type of linear systems is fast since the associated system matrices

are very sparse and either remain unchanged or undergo undergo little change during

editing, thus making pre-computing the most computationally expensive components

feasible at the initialization stage. The availability of highly-optimized sparse linear

solvers makes the algorithms easy to implement and efficient. Second, the systems

are robust and generally have unique global minimum since solving them is equivalent

2

to minimizing well-defined quadratic energies (i.e.,
∑

i ||∆(pi) − δi||
2). Third, if the

modeling constraints are carefully designed, the modeling effect is a smooth function

of the modeling constraints, making the influence propagated from the constraints to

the rest of the shape under modeling easily predictable. On the other hand, the smooth-

ness of the modeling function of the constraints limits our methods to applications of

low-frequency modeling of shape (i.e., low-frequency deformations of meshes possi-

bly with highly detailed meshes and global shape design of complex hairstyles).

1.1 Contributions

The main contributions of this thesis are as follows:

• We present a novel linear differential mesh editing framework. To our best

knowledge, our method provides the most effective linear approximation to the

essentially nonlinear differential mesh deformation problem. Our deformation

tool allows the user to intuitively design natural deformation effects through only

a small set of handles which are directly defined over the manipulated mesh and

are easy to control.

• We contribute to Poisson mesh merging in two aspects. We introduce the no-

tion of configuration-independent merging, which produces the same merging

result independent of the relative positions, orientations, scales of input meshes.

Unlike existing techniques, configuration-independent merging does not involve

the tedious adjustment of relative locations of input meshes. We also propose to

optimize the merging boundaries such that the user only needs to roughly specify

the merging boundaries on the meshes to be composed and our algorithm com-

putes the final merging boundaries which lead to merging results with minimal

distortions.

• We design an intuitive sketching interface for interactive hairstyle design. The

user portrays the global shape of a desired hairstyle through several style primi-

tives (e.g., stream curve, dividing curve, ponytail), manipulated by interactively

sketching freeform strokes. We present an efficient incremental updating scheme

of the numerical system, which gives rise to a sketching interface that provides

3

interactive visual feedback to the user. Interesting hairstyles can be created in

minutes.

1.2 Outline

The thesis is organized as follows:

Chapter 2 reviews the existing differential mesh deformation methods and presents

our new linear differential mesh deformation framework.

Chapter 3 introduces two intuitive techniques for Poisson mesh merging.

Chapter 4 presents our sketching interface for interactive hairstyle design.

Chapter 5 concludes the thesis and gives several directions for future work.

4

CHAPTER 2

INTUITIVE MESH DEFORMATION

In this chapter, we introduce an intuitive mesh deformation framework which is based

on a novel effective linear approximation solution to the nonlinear differential mesh

deformation problem. With our deformation tool, the user is allowed to interactively

deform existing highly-resolutions meshes through the manipulation of a small set of

easy-to-use manipulators.

2.1 Introduction

The state-of-the-art 3D scanning devices allow fast and high-fidelity scanning of real-

world objects into digital counterparts. However, it is often the case that there exists no

real-world equivalent of a desired model. Then, modeling artists have to create digital

models manually either from scratch or by modifying existing ones. This chapter fo-

cuses on polygonal modeling through deforming existing polygonal meshes, like those

produced by scanning real-world objects. Polygonal meshes are basically a group of

polygons which are connected together by shared vertices and they are by far the most

common representation to represent or approximate object surfaces in 3D computer

graphics. Complex polygonal meshes have a very large set of polygons as well as

vertices. Hence, it is challenging and tedious to deform complex meshes by manually

manipulating individual vertices or polygons.

Desirable shape deformation techniques for digital artists generally should possess

three properties: easy-to-control, interactive, and detail-preserving. The first property

means that a desirable deformation technique should provide simple means to let the

user intuitively control deformation effects and make deformation effects easily pre-

dictable. This property is usually achieved by striking a balance between intuitive user

control and modeling complexity. Unlike surgical applications which demand precise

results, tools for artists prefer a satisfactory interactivity to precision and enable edit-

ing of shapes in interactive sessions. The detail-preserving property sets the criteria

5

for physically plausible and visually pleasing deformations: local features should be

changed as rigidly as possible; the differences of changes (deformations) of neighbor-

ing local features should be as small as possible (in other words, local deformations

should be locally as similar as possible).

Since desirable deformation techniques generally allow only smooth deformations,

that is, low-frequency (global) geometry to be changed during deformation, this moti-

vates existing deformation techniques to constrain deformations of a model with large

degree of freedom either by a subspace with small degree of freedom or by a smooth

function (see the details in Section 2.2). The user is allowed to manipulate the sub-

space or the smooth function to directly or indirectly control deformations of the orig-

inal shape. Due to the great reduction of DOF, the deformation process becomes sig-

nificantly less lab-intensive. Clearly, deformation quality is highly dependent on the

choices of subspace or function.

Recently, several differential mesh editing frameworks have been proposed for in-

teractive mesh deformation. They formulate the mesh deformation problem as a global

variational minimization problem whose solution is the desirable deformed surface.

The rationale of differential mesh editing is to use the so-called differential coordinates

(e.g., the Laplacian coordinates [3, 19] and the gradient fields [20]) to represent local

surface details and to achieve smooth deformation by solving the Poisson equations

which constrain the deformation smoothness for neighboring features. The resulting

editing tools [19, 20] allow the user to simply manipulate parts of a mesh, called the

handles, and the rest of the surface is reconstructed by minimizing the differential coor-

dinates before and after editing. However, as the differential coordinates are defined in

the global coordinate system, they are neither scale invariant nor rotation invariant [3].

Therefore the main challenge of differential editing frameworks is to find appropriate

local transformations such that the transformed differential coordinates fit the orienta-

tions of the details in the deformed surface. To preserve local details, appropriate trans-

formations are required as rigid as possible or as close to similarity transformations as

possible if uniform scaling is allowed. As 3D rigid or similarity transformations are

nonlinearly dependent on (unknown) vertex positions, differential mesh editing is thus

essentially a nonlinear problem.

For fast computation, most existing solutions approximately linearize the original

6

nonlinear problem. They either explicitly define the transformations at all the uncon-

strained vertices by interpolating the user-specified transformations at the constrained

vertices [20, 4, 21] or implicitly define the transformations with respect to the (un-

known) deformed surface [3, 19, 22]. However, these methods only partially solved

the problem: explicit methods suffer from the serious translation-insensitivity problem

(i.e., the inability of inferring the rotation information if the handles are only trans-

lated), while implicit methods cannot tackle large angle deformation.

In this thesis, we present a novel implicit differential editing framework [23], which

is linear and able to effectively capture the local rotation transformations for the local

features during editing. Like [19], the ultimate goal of our framework is to find a sim-

ilarity transformation consisting of a rigid transformation and a uniform scaling. To

achieve interactive editing, like most previous Laplacian editing frameworks, we aim

to formulate a linear reconstruction problem. Since rigid transformations are nonlin-

early dependent on vertex positions in 3D space, we resort to affine transformations,

which linearly depend on vertex positions. By enforcing neighborhood coherence and

user-specified boundary constraints, we solve for the affine transformations in a least-

squares sense. The downside of using affine transformations is the introduction of

shearing distortion. To remove shearing distortion, we perform polar decomposition

to extract from each of the solved affine transformations a similarity transformation

consisting of only rotation and uniform scaling.

By binding each differential coordinate with the corresponding similarity transfor-

mation, our method appropriately orients and scales the local features during editing.

In other words, the changes of the local features are implicitly captured by the simi-

larity transformations. Our framework produces more visually pleasing editing results

than previous related work for deformation with large angle rotations and/or big-scale

translations of handles. To make comparable deformation results, our deformation tool

needs fewer handles than existing methods and thus is easier to use.

2.2 Related Work

Mesh deformation has been an active area of research in digital geometry processing,

due to its wide applications in industrial and artistic design. A lot of mesh deformation

techniques have been proposed to directly deform highly detailed meshes which are

7

often irregular in terms of both sampling and connectivity. In this review, according

to whether the domain of deformation about the original mesh is defined / constrained

through a subspace or a smooth function, we divide the existing techniques into two

categories: subspace-based shape deformation and function-based shape deformation,

and discuss the strengths and weaknesses of each technique.

Our review here focuses on geometrically-based deformations methods rather than

physically-based deformable models (see [24] and references therein). We also do

not discuss techniques which are designed mainly for intuitive surface modeling from

scratch. The inclined reader is therefore encouraged to browse more recent literature

on, for example, space-warp operator [25], vector field based shape deformations [26,

27], sweep-based modeling metaphor [28], sketch-based freeform surface design [29,

30, 31, 32].

2.2.1 Subspace-Based Shape Deformation

Subspace-based shape deformation employs a reduced domain (subspace) to model the

low-frequency deformation of the original mesh. The user controls deformation by ma-

nipulating the subspace and the final deformation is reconstructed from the deformed

subspace. There are a variety of ways to construct such a deformation space. For ex-

ample, it can be control lattices used in free-form deformation, multilevel base meshes

in multiresolution mesh editing or skeletal bones in skeletal subspace deformations.

Free-Form Deformations (FFDs). FFDs [33] and their variants [34, 35, 36, 37,

38] embed a model to be deformed into a lattice and define a mapping which trans-

fers deformations from the lattice to the model. The user is then allowed to control

the deformation of the model by manipulating the control lattice. The deformation

complexity is determined by the density of the control lattice. FFDs only needs a very

coarse regular control lattice to create coarse-scale deformations of a model. However,

for finer-scale deformations, a very dense control lattice is usually required. It is often

easier to deform the underlying geometry directly than to manipulate a dense control

lattice. In addition, since it is cumbersome to construct a control lattice which reflects

the geometry of the embedded model, the mapping from the lattice to the model is of-

ten defined without considering the embedded model geometry. Therefore, like other

space-based deformation methods, FFDs do not generate intuitive results for certain

8

Figure 2.1: Manipulating the ring finger (Left). surface-based deformation [1]
(Middle) allows more intuitive editing results than space-based deformation [2]
(Right).

editing scenarios (see an example in Figure 2.1): FFDs may incorrectly assign heavy

influence to regions that are spatially close to, but geodesically far from, a manipulated

control lattice vertex. Despite their deficiencies, FFDs are often equipped with pro-

fessional modeling tools (e.g., 3ds Max [15], Maya [14]), as they are sufficiently fast

and do not put any constraints on the representations of the embedded models (e.g.,

irregular meshes, point clouds, parametric surfaces).

Singh [39] proposes to use domain curves, called wires, to define the domain of de-

formation about an object. Unlike the control lattices in FFDs, wires tracks deformable

features of an object as such they provide a coarse geometric representation of an ob-

ject and a means to deform it. Like FFDs which let the user employ the control lattice

to drive the deformation of the object being deformed, Singh’s method only allows the

user to interact solely with the wires rather than directly the object. Recently, Sumner

et al. [40] propose to use the so-called deformation graph, a more general deformation

domain, for intuitive deformation for a wide range of shape representations and editing

scenarios. Their method supports direct manipulation of a mesh being deformed and

makes the deformation graph transparent to the user.

Skeletal Subspace Deformations (SSDs). SSDs [41, 42, 43, 44, 45] are by far

the most popular methods for real-time animation and interactive posing of articulated

models. They can also be applied to a wide range of soft objects, for example, cloth

simulation [46]. Inspired by real-world skeletons of models, SSDs bind skeletal struc-

9

tures which are usually represented as tree structures whose nodes are identified with

the joints (given by their positions and orientations) and edges with the bones, with

polygonal meshes, called skins. A skeleton provides the domain of deformation about

a skin mesh. Instead of animating each skin vertex individually, it is sufficient to ma-

nipulate the skeleton, and the skin deforms automatically. Automatic skeleton extrac-

tion purely according to the geometric information of a given mesh is rather difficult.

The topology of the extracted skeleton is often not satisfactory since the extraction

process is sensitive to the shape perturbation of the skin surface. Instead, Baran and

Popović [47] present a method to automatically fit a given template skeleton with the

fixed topology to a mesh. Schaefer and Yuksel [48] propose to extract a skeleton from

a set of example shapes using the hidden motion information.

The most popular way to build the skeleton-to-skin binding is to bind each skin

vertex to several neighboring / closest joints, a.k.a., single weight enveloping. The

vertex weights which denote the amount of influence of individual joints must be spec-

ified during the so-called skinning process. The deformation of each vertex is then

defined as a weighted blending of the transformations of its associated joints. Specify-

ing appropriate skinning weights manually could be a very tedious task, which is often

achieved by a painting interface in professional packages. Several approaches [45,

43, 48] propose to compute skinning weights from examples. Based on the obser-

vation that each bone only influence nearby skin vertices, the locality of skinning

weights, Baran and Popović [47] and Weber et al. [49] compute the weights by solving

the Laplace equation with carefully designed boundary constraints. Directly blending

transformation matrices linearly causes serious artifacts (e.g., collapsing artifacts) for

certain postures. Later, several advanced blending methods, such as, log-matrix blend-

ing [50], spherical blending skinning [51] and dual quaternion blending [52], have

been proposed to alleviate the artifact problems. Most of these blending methods can

be accelerated by graphics hardware [53].

James and Twigg [54] propose to extract generalized bones from given mesh ani-

mation sequences for the main purpose of fast GPU-based rendering. In their method,

the extracted bones are quasi-rigid and thus are not suitable for arbitrary deformations.

Kavan et al. [55] present a method of skinning arbitrary deformations for existing an-

imations. Motivated by [54], Der et al. [56] employ generalized bones to construct a

reduced domain for mesh-based inverse kinematics [57].

10

Multiresolution Mesh Deformation. Multi-resolution frameworks were first de-

signed for spline surfaces [58], and later applied to subdivision surfaces and irregu-

lar meshes [59, 60, 61, 62]. Unlike the FFD and SSD techniques, which are essen-

tially two-level models (one level is the original polygonal mesh and the other is the

lattice/skeleton), multiresolution-based techniques decompose the mesh into multiple

levels—coarser or smoother versions of the original mesh. The differences between

successive levels are defined as local features. They are encoded with respect to the

local frames of the lower level mesh. The details are transformed according to the

changes in the local frames of the lower level mesh during editing. Compared with

two-level deformation models which are mainly for global deformations of shapes,

multiresolution methods are capable of both global and local deformations, which are

achieved by allowing the user to choose an appropriate editing level of detail.

However, as details are defined and reconstructed locally, careful design of de-

tail encoding and reconstruction is crucial to avoid artifacts (e.g., self-intersection,

shearing) which often appear when the base mesh endures large deformations (espe-

cially bending). Several detail encoding methods, for example, normal displacement

vectors [61], displacement prisms [63], local affine transformations [64], have been

proposed. It is noteworthy that the transformation-based encoding scheme proposed

by Xu et al. [64] incorporate the advantages of multiresolution frameworks and dif-

ferential mesh editing frameworks into a unified framework. Botsch et al. [65] adopt

a similar strategy by employing deformation gradients [66] to represent local details

between two levels of details.

2.2.2 Function-Based Shape Deformation

The techniques belonging to this category either use certain functions (e.g., radial ba-

sis functions [67], moving least squares [68]) to model shape deformations explicitly

or formulate deformation functional as a solution to variational problems (e.g., the

differential-based shape deformation techniques (see [69, 70] and references therein)).

Deformations of a shape can be explicitly modeled by a function f that maps ver-

tices in the undeformed shape to the deformed shape. Applying the function f to each

point in the undeformed shape creates the deformed shape. The user selects parts of the

shape to control the deformation. To get intuitive deformation, the desirable function

11

should satisfy the following properties. First, the function should not influence the han-

dles which are fully controlled by the user. Second, the function should be a smooth

function, ensuring smooth deformation. Third, the function must remain the shape

unchanged when the handles are not moved. Radial basis functions [67] and moving

least squares [68] are two examples of functions which satisfy the above properties and

have been used to define shape deformations. However, as these functions are chosen

without respecting the geometry of the shape to be deformed, these techniques suffer

from the same problem as other space-based deformation techniques.

Differential Mesh Editing. From the perspective that deformations of neighbor-

ing features should be as similar as possible, several variational deformation methods

have been proposed. The rationale of these methods is to use the so-called differential

coordinates (e.g., the Laplacian coordinates [19], the gradient fields [20], pyramid co-

ordinates [71, 72]) to encode local details and to formulate the final deformed mesh as

a solution to a variational problem in which the differences of the differential coordi-

nates before and after editing, are minimized. The variational problem is subject to the

constraints derived from the handles through which the user controls the deformation

effects. As the differential coordinates are nonlinearly dependent on the unknown ver-

tex positions, the resulting variational problem is nonlinear. How to solve the nonlinear

global optimization efficiently is challenging.

For fast computation, most of earlier work linearized the problem by replacing the

nonlinear dependence with an explicit process of transformations propagation from

handles [20, 3, 4, 21, 73, 74, 65]. For each vertex, the relative degree of propaga-

tion from a handle is measured by either uniform weights (defined by geodesic dis-

tances [20] or handle-driven harmonic fields [4]) or non-uniform weights [75, 76].

The linearized global optimization is equivalent to solving a sparse linear system of

equations, which can be solved efficiently using advanced sparse linear solvers (e.g.,

TAUCS [77], CHOLMOD [78]). Botsch et al. [79] give the detailed discussions on

efficient linear system solvers for mesh processing. These methods can be further ac-

celerated by using multiresolution frameworks [72] or multigrid methods [74].

Linear approximation methods in general suffer from serious artifacts under large-

scale deformation. More recently, several iterative frameworks [80, 81, 2, 82, 83]

to solve the original nonlinear deformation problem have been proposed, which are

12

carefully designed to achieve interactive editing. Solving the linear or nonlinear defor-

mation problem directly over the original mesh domain is not scalable to large-scale

models due to memory bottleneck, expensive per-iteration cost, and slow convergence.

To allow scalability, reduced models [2, 1] which formulate the original deformation

problem with a small set of control variables have been proposed. In such reduced

deformable models, the deformation of the original mesh is limited by the degree of

freedom of the reduced domain.

Differential mesh editing techniques are designed without considering material

properties of the mesh being deformed. Hence, in a sense, differential mesh editing

itself is not sufficient to model physically plausible deformation of objects with ma-

terials. Popa et al. [76] present a material-aware differential mesh editing method by

letting the user provide certain material information through painting. Combing dif-

ferential mesh editing with skeleton-based deformation has proved very effective to

characterize deformations of character animation in recent literature [84, 49, 85].

Nealen et al. [22] design a sketching interface for differential mesh editing [19].

Instead, we are more interested on the design of effective differential mesh editing

algorithms themselves. Our method presented in Section 2.4 allows more intuitive

deformation of models with the same user interface as the existing differential mesh

editing techniques [20, 3, 4, 21, 73, 19], which are reviewed systematically in the next

section.

2.3 Review on Differential Mesh Editing

Recently, intrinsic differential representations (the Laplacian coordinates [3, 19, 4],

the gradient field [20] and the first/second fundamental surface forms [73]) have been

adopted to mesh editing because the resulting editing tools are intuitive and detail-

preserving. Using these tools, the user can interactively edit a region of interest (ROI)

by manipulating a small set of handles. As our framework is based on the Laplacian

coordinates, this discussion focuses on previous Laplacian-based work.

The Laplacian coordinate (LC) δi at vertex vi (1 ≤ i ≤ n) is defined as follows [3,

19]:

δi = D(vi) =
∑

j∈N(i)

wij(vj − vi),

13

vi

vj

vj−1

vj+1

αi

βi

Figure 2.2: 1-ring neighborhood of vertex vi is used to define the discrete Laplacian
coordinate δi at vi.

where N(i) is the index set of the 1-ring neighboring vertices of vi and wij is the

weight of the edge (i, j). The resulting LC is essentially a 3D vector in the global

coordinate system. Two common weighting schemes are uniform weighting [3, 19]

wij =
1

|N(i)|

and cotangent weighting [86, 87]

wij =
1

|Ωi|
(cotαi + cotβi),

where |Ωi| is the area of the Voronoi cell associated with vi (the shaded area in Fig-

ure 2.2), and αi, βi are the two angles opposite to the edge (i, j).

The Laplacian coordinates have nice mathematical properties: their directions ap-

proximates the vertex normals and their lengths approximate the mean curvature at the

corresponding vertices. Therefore, the most straightforward way to formulate mesh de-

formation using the Laplacian coordinates is to minimize the change of the Laplacian

coordinates before and after editing, subject to given modeling constraints:

D(ṽi) = δi, 1 ≤ i ≤ n, (2.1)

where ṽi are unconstrained vertices (to be solved) and δi are the Laplacian coordinates

constructed over the original undeformed mesh. However, since the Laplacian coordi-

14

nates are essentially vectors encoded in a global coordinate system and they are only

translation-invariant rather than rotation-invariant, the above Naı̈ve Laplacian editing

attempts to preserve the original global orientations of the local details, thus easily

suffering from serious artifacts. Desirable transformations are needed to transform the

Laplacian coordinates before reconstructing the deformed surface from them.

In general, Laplacian mesh editing aims to solve the above transformation problem

can be formulated as the following system

D(ṽi) = Miδi, 1 ≤ i ≤ n, (2.2)

where Mi is a 3 × 3 transformation matrix. To avoid having the LCs deviate from

the normal directions, Mi is mostly required to be a combination of rotation and uni-

form scaling [19]. The method of Poisson mesh editing [20] also results in a linear

system similar to Equation 2.2, since in theory the gradient operator followed by the

divergence operator is equivalent to the Laplace operator.

Depending on whether Mi is defined with respect to the (unknown) deformed

surface, existing differential based mesh editing can be classified as implicit meth-

ods [3, 19] or explicit methods [20, 4, 21]. Explicit methods define Mi without consid-

ering the deformed surface. Instead, Mi is defined by propagating the transformations

at the handles to all the unconstrained vertices, weighted by geodesic distances [20, 21]

or a set of harmonic fields [4]. These methods can produce good deformation when

the handles undergo large-angle rotations, including rotation angles greater than 2π.

However, if the handles are only translated, there is no change of orientation to be

propagated; thus these approaches cannot avoid shearing distortion caused by handle

translation (see an example in Figure 2.8).

Implicit methods define Mi with respect to the deformed surface. This is essen-

tially a chicken-and-egg problem. On the one hand, the deformed surface is to be

reconstructed from the transformed LCs; on the other hand, the transformations are

dependent on the resulting deformed surface. Lipman et al. [3] proposed a heuristic

method: they first reconstruct a rough surface using the original LCs and use the recon-

structed surface to estimate a local rotation for each vertex. Sorkine et al. [19] approx-

imately represent Mi as a function of the unknown vertex positions. Existing implicit

methods work well for small translations and/or small rotation angles of handles. How-

ever, they do not produce visually pleasing results when handles undergo large angle

15

rotations (Figure 2.7) or big-scale translations (Figure 2.8). Our implicit method can

handle these types of large deformation. Our framework has some similarity to Lip-

man et al. [73], which appeared after the initial submission of our method [88] to the

journal of Computer Graphics Forum (see more detailed comparison in Section 2.5).

2.4 Implicit Laplacian Mesh Editing Framework

This section introduces our implicit Laplacian editing framework. We implicitly de-

fine local transformations in terms of the (known) original vertex positions and (un-

known) deformed vertex positions. To avoid having the LCs deviate from the normal

directions, thus suppressing shearing distortion, these transformations are required to

be rigid [19]. However, rigid transformations in 3D space nonlinearly depend on the

vertex positions. To attain linearity in the reconstruction in Equation 2.2, we therefore

adopt affine transformations. Since simply representing affine transformations in terms

of the unknown vertex positions makes the resulting system (Equation 2.2) under-

constrained, we enforce neighborhood coherence to make the reconstruction problem

well-posed. The shearing distortion accompanying affine transformations will be re-

moved in the second step described in the next section.

2.4.1 Implicitly Defined Local Deformation Gradients

Like [19, 66], we define an affine transformation for each vertex using that vertex and

its neighbors as follows:

Mivk + di = ṽk, k ∈ {i} ∪ N(i), (2.3)

where Mi is a 3 × 3 matrix, di is the translation vector, and ṽk is the unknown vertex.

Mi and di together define an affine transformation at vi. Since the LCs to which the

defined affine transformations will be applied are local difference of vertex positions,

what we really care for is only Mi, called the deformation gradient [57].

By eliminating the translation vector di, we rewrite Equation 2.3 in matrix form as

MiVi = Ṽi (2.4)

where

Vi = [vi − vi0 vj1 − vi0 · · · vj|N(i)|
− vi0]

Ṽi = [ṽi − ṽi0 ṽj1 − ṽi0 · · · ṽj|N(i)|
− ṽi0]

, j∗ ∈ N(i)

16

with

vi0 =
1

|N(i)|

∑

j∈N(i)

vj and ṽi0 =
1

|N(i)|

∑

j∈N(i)

ṽj.

To get a least-squares solution for Mi in Equation 2.4, we consider the following equa-

tions

MiViV
T

i = ṼiV
T

i .

If ViV
T

i is invertible, we can directly derive Mi as

Mi = ṼiV
T

i (ViV
T

i)−1. (2.5)

The above expression is similar to the derived deformation gradient in [66]. The

deformation gradient in their work always has a closed form expression because the

vertices used to define the deformation gradient form a basis of 3D space, whereas

we need to handle the special case when ViV
T

i degenerates to a singular matrix (Sec-

tion 2.4.3).

2.4.2 Neighborhood Coherence

We first assume that Mi is well defined for each unconstrained vertex; the degenerate

case will be discussed in the next subsection. By applying Mi to the corresponding

LC δi, we wish to reconstruct the editing vertex positions by minimizing the following

error functional

EL =
n∑

i=1

‖D(ṽi) − Miδi‖
2, (2.6)

However, this reconstruction problem by itself is under-constrained [19].

To make the reconstruction problem well-posed, we introduce a neighborhood co-

herence term to regularize the implicitly defined deformation gradients. Similar to

[89, 66], we require the deformation gradients applied within a surface region to be

as similar as possible. Specifically, besides EL, we also minimize the following error

functional

ER =

n∑

i=1

∑

(i,j)∈SF

‖Mi −Mj‖
2
F , (2.7)

where SF is the set of pairs of neighboring vertex indices and ‖ · ‖F is the Frobenius

norm. Since the deformation gradient defined at each vertex is used to deform the

17

Figure 2.3: Left: the original cactus model. Right: the deformed cactus by rotating
and translating the top handle. We render the ROI in blue and the handle(s) in purple
in all the examples.

features locally (by transforming the corresponding LC), the neighborhood coherence

term essentially minimizes the difference in deformation at neighboring vertices.

We now prove that given the position and the deformation gradient at an arbi-

trary mesh vertex v0, the minimization problem in Equation 2.6 with the neighbor-

hood coherence constraint ‖Mi − Mj‖F = 0 is well-posed. First, we prove that

with the neighborhood coherence constraint and the given deformation gradient, all

the deformation gradients at the unconstrained vertices can be uniquely determined.

As ‖Mi − Mj‖F = 0 implies Mi = Mj , the transformations at vertices adjacent to

v0 must be the same as the given deformation gradient at v0. With the same argument,

all the deformation gradients at the unconstrained vertices can be determined, and are

equal to the given deformation gradient at v0. Second, we prove that, with all the com-

puted deformation gradients and the given position constraint at v0, the positions of

all the unconstrained vertices can be uniquely determined. After Mi is computed, the

optimization in Equation 2.6 is equivalent to solving a simple Poisson system, which

has a unique and exact solution given one position constraint [19].

When more than one position and more than one deformation gradient are con-

strained, exact solution is not guaranteed. The unique solution is solved by minimizing

18

EL + ER in the least squares sense. Formally, the final optimization is formulated as

follows

arg min E(ṽ1, . . . , ṽn) = EL + ER (2.8)

subject to ṽbj
= uj , j ∈ {1 . . . s}

Mck
= Wk, k ∈ {1 . . . t}

where uj is the position of the vertex with index bj on the boundary condition, Wk is

the local deformation gradient at the vertex with index ck on the boundary condition,

and s and t are the number of position constraints and the number of transformation

constraints, respectively. Usually, we specify both the positions and the deformation

gradients for the same set of boundary vertices (i.e. {ṽbj
} = {ṽck

}). Nevertheless, it

is possible to specify only the deformation gradients for the boundary vertices, and let

their positions be free, or vice versa.

As Mi is linearly dependent on the unknown vertex positions, Mi and ṽi are si-

multaneously solved from the optimization in Equation 2.8. Therefore, the formulated

optimization can be used for mesh deformation: like previous Laplacian surface editing

work [19, 20, 73], we allow the user to interactively change the boundary condition

through manipulating the handles and reconstruct the unconstrained region of inter-

est from the optimization. During editing, the locally defined deformation gradients

accommodate the local changes of details (see an example in Figure ??).

2.4.3 Handling Degenerate Vertices

This section explains how we handle the special case when ViV
T

i is singular in Equa-

tion 2.5. We refer to the corresponding vertex vi as a degenerate vertex. For a degen-

erate vertex vi, the rank of ViV
T

i is equal to 2, which means that vi and its neighbors

are coplanar. In practice, meshes with high resolution are locally smooth. Therefore,

degenerate vertices are common. As the uniqueness of the solution to the optimiza-

tion in Equation 2.8 is under the condition that the neighborhood coherence term is

well defined for every pair of neighboring vertices, we have to implicitly define the

transformations for all the vertices, including the degenerate vertices.

Our basic idea of handling degenerate vertices is to move vi out of the plane defined

by its neighboring vertices. Let v′
i denote the modified vertex of vi. Since the direction

19

(
a
)
 (
b
)
 (
c
)

(
d
)
 (
e
)
 (
f
)

Figure 2.4: Handling degenerate vertices. (a) A planar irregular triangular mesh with
the boundary vertices and the vertices in the central region as the boundary constraints.
(b) After displacing every degenerate vertex. (c) Editing without removing the dis-
placement. (d) and (e): Editing with the displacement removed, using uniform weight-
ing and cotangent weighting, respectively. (f) Reconstruction errors are distributed
over the ROI. All the images in this chapter are flat-shaded to better demonstrate that
the errors introduced by the handling of degenerate vertices are unnoticeable.

of a nondegenerate LC approximates the normal, we place v′
i in the normal direction

of vi (see Figure 2.4 (b)). Typically, we set

v′

i = vi +
sdisp

|N(i)|

∑

j∈N(i)

‖vi − vj‖ · ni, (2.9)

where ni is the unit normal vector at vi and sdisp is a scaling factor. We traverse the

entire vertex list to handle all the degenerate vertices. We classify vi as a degenerate

vertex if and only if the condition number of ViV
T

i is greater than a given threshold

(e.g., 2.0 × 105). If a degenerate vertex is on an open boundary, we adopt a small

variation: if its valence is less than 3, we insert a new vertex at the midpoint of its op-

posite edge; if its neighboring vertices are collinear, we displace one of its neighboring

non-boundary vertices instead of vi itself.

After defining the deformation gradients for all the unconstrained vertices, we solve

for the positions of the unconstrained vertices using Equation 2.8. Since the optimized

20

Figure 2.5: Difference between using cotangent weights (b) and uniform weights (c).

position of ṽ′

i, corresponding to the modified vertex v′

i of a degenerate vertex vi, is

influenced by our deliberate displacement (Figure 2.4 (c)), we need to pull ṽ′

i back to

the correct position ṽi (Figure 2.4 (d) and (e)). As Mi is already computed at this stage,

we obtain the new positions of the degenerate vertices by applying the associated affine

transformations to the original vertex positions (before the deliberate displacements):

ṽi = Mi(vi − v′

i) + ṽ′

i.

There is no stability problem as long as all the deformation gradients for the degen-

erate vertices are defined prior to the optimization (cf. Section 2.4.2). Nevertheless, the

handling of degenerate vertices does introduce two types of errors in the editing results,

albeit unnoticeable. Computing the edited position ṽ′

i instead of ṽi through optimiza-

tion introduces the first type of error, which is an increasing function of sdisp. We

experimented with various scaling factors (e.g., sdisp = 0.2 and sdisp = 10) and found

that the resulting shapes are of little visual difference (see an example in Figure 2.7).

Thus we use a small fixed scaling factor (e.g., sdisp = 0.2) in all our experiments.

The second type of error arises because the edited positions of the degenerate ver-

tices are computed through linear transformations (ṽi = Mi(vi−v′
i)+ṽ′

i) whereas the

edited positions of the nondegenerate vertices are solved in the least-squares sense. We

found that discretizing the Laplacian using cotangent weights gives much better results

(Figure 2.4 (e)) than using uniform weights (Figure 2.4 (d)). We illustrate the reason

using a 2D example in Figure 2.5. Vertex vi is an unconstrained degenerate vertex,

which is displaced to v′

i before editing. The LC at v′

i is δ1 (close to the normal direc-

tion) if cotangent weights are used or δ2 (with a tangential component t) if uniform

weights are used. After editing, the tangential component t in δ2 would cause tangen-

21

Figure 2.6: An deformation example without shearing removal (Left) and with shear-
ing removal (Right).

tial drifting, bringing the vertex ”away” from the surface (Figure 2.5 (c)), especially at

vertices in curved regions after editing (Figure 2.4 (d)), producing visual artifact and a

bigger reconstruction error.

It is noteworthy that in the shearing removal step (described in the next section),

solving the system (Equation 2.10 or 2.11) in the least-squares sense makes the second

type of errors uniformly distributed to the whole ROI, making the errors unnoticeable

(Figure 2.4 (f)).

2.4.4 Shearing Removal by Polar Decomposition

The deformation gradients may contain shearing transformations, making the LCs de-

viate from the normal directions and thus causing shearing distortion.

The neighborhood coherence term only partially solves the shearing problem. When

different rigid transformations are applied to different handles, shearing problem may

occur. The neighborhood coherence term only guarantees that features close to the

handle boundaries deform almost rigidly1. Shearing distortion may occur at regions

far away from the constrained regions since the rigid transformations applied to the

handles has less influence on the transformations defined over the far-away regions

(Figure 2.6 left).

To overcome the shearing problem, we introduce an additional step after solving

the optimization in Equation 2.8. Since what we really care for in the information

1According to the formulation of the neighborhood coherence term, the more neighboring vertices we
use to define the coherence term, the wider will be the rigid region (close to the handle boundaries).
This is a desirable property. However, there are two side effects of using more vertices. First, the
local deformation of features will be suppressed. An extreme example is to define the coherence term
using the whole region of interest. Second, the introduction of more vertices makes the system matrix
denser. We choose to use 2-ring neighbors (cf. SF in Equation 2.7) as it is a good trade-off.

22

(
a
)
 (
b
)
 (
c
)
 (
d
)
 (
e
)
 (
f
)

Figure 2.7: (a) The original bar model with an ROI (blue) and two handles (purple).
After the top handle undergoes a large rotation, (b) and (c) are our results by setting
sdisp = 0.2 and sdisp = 10, respectively, which have little visual difference. The
difference between corresponding vertices is shown in (d) with red color denoting
relatively big difference and yellow color denoting no difference. (e) and (f) are the
deformation results with methods in [3] and [4], respectively.

encoded in Mi is the rotation part and the uniform scaling part, similar to [90], our

solution is to extract the rotation and uniform scaling information from Mi by polar

decomposition.

We first perform the singular value decomposition (SVD) on Mi: Mi = UiWiV
T

i ,

where Ui and Vi are two 3× 3 orthogonal matrices and Wi is a 3× 3 diagonal matrix

whose elements are the eigenvalues (λj , 1 ≤ j ≤ 3) of Mi. Next we define the

modified the deformation gradient without shearing as

M′

i = RiSi,

where Ri = UiV
T

i and Si = diag(si, si, si) with si =

√
λ2
1+λ2

2+λ2
3

3
.

We provide the user two options: to retain the sizes of the local features or auto-

matically scale the geometric features during deformation. The respective underlying

systems of the former and latter choices are

D(ṽi) = Riδi (2.10)

or

D(ṽi) = RiSiδi. (2.11)

23

Figure 2.8: An example of rotation of local features resulting from translation of han-
dles. Top left: The input dinosaur model. The deformation results by [4] (Top right),
[3] (Bottom left) and ours (Bottom right) when the handle at the tail of the dinosaur
undergoes a big-scale translation.

The first choice is mainly used when the user applies rigid transformations (including

rotation and translation and excluding scaling) to the handles. The second choice is of-

ten adopted when the transformations applied to the handles include scaling. Note that

the second choice is necessary for configuration-independent merging (Section ??), as

we want the scales of the features to be automatically determined.

With this shearing removal step, our deformation tool always produces more visu-

ally pleasing results than previous methods for large angle rotation or big-scale trans-

lation. Figure 2.7 shows an example when the top handle of the vertical bar undergoes

a large rotation. Our method outperforms existing implicit methods [3, 19] 2. Note

2Here we only compare with [3] and not with [19] as the latter only includes a small refinement on
the results of the former when the approximation error is large.

24

(a) (b)

(c) (d)

Figure 2.9: (a) The original Armadillo model with four handles specified. (b) and
(c): Two views of the deformed model by applying several rigid transformations to the
handles. (d) The deformation result with the same view as (c) but without shearing
removal.

that, like ours, explicit methods [4, 20] also produce natural deformation results as

transformations are explicitly propagated (see more discussions in Section 2.5).

Figure 2.8 demonstrates the effectiveness of our method for deformation under big-

scale translation of the handle. Explicit methods [20, 21, 4] cannot infer any rotation

information from translations of handles (Figure 2.8 left). Implicit methods [3, 19] can

capture rotation under small-scale translation but do not work for big-scale translation

(Figure 2.8 middle). With our method, the global shapes in the deformed model (e.g.,

the whole arms and legs) are appropriately rotated and the local details are well pre-

served. This example also demonstrates that most rotation information is successfully

25

Figure 2.10: An example of scaling local features edited by translating handles. Left:
the input lion model. Right top: the deformed model without scaling the LCs. Right
bottom: the deformed model with scaling the LCs.

Figure 2.11: Our method works well for high-genus models.

captured by the affine transformations and effectively extracted in the shearing re-

moval step. Figure 2.9 illustrates that it is easy to use our deformation tool to produce

complicated but visually pleasing deformation results by simply applying several rigid

transformations to the handles. The contrast between (c) and (d) clearly demonstrates

26

the effectiveness of our shearing removal procedure.

The above examples are obtained by retaining the sizes of the geometric features

(cf. Equation 2.10). Sometimes letting the system automatically scales the LCs is

useful (cf. Equation 2.11). In Figure 2.10, the handles are moved closer to each other,

thus the space between them becomes smaller and cannot accommodate the big global

features of the original body. Automatically scaling the LCs (using Equation 2.11)

gives a better visual result.

Our method requires the input model to be 2-manifold and allows deformation of

models with nonzero genus. Figure 2.11 shows that our method works well for models

with high genus.

2.5 Implementation Details and Discussions

The solution of the optimization in Equation 2.8 and the solution of the linear system

in Equation 2.10/2.11 are obtained by solving the following form of normal equations

ATA[Vx Vy Vz] = AT[bx by bz],

where Vx, Vy and Vz are corresponding components (x, y, and z) of the unconstrained

vertex positions, bx, by and bz are three known vectors constructed from the position

and transformation constraints, and A is a large sparse matrix. As matrix A is only de-

pendent on the original mesh and each row of the deformation gradients (Equation 2.5)

is only dependent on one dimension (e.g. x coordinates), we can pre-factorize ATA

using Choleskey factorization and solve Vx, Vy and Vz separately by back substi-

tution. In practice, we use an efficient sparse linear solver [77]. Table 3.1 lists the

number of unconstrained vertices, the number of degenerate vertices, the factorization

time and back-substitution time in Equations 2.8 and 2.10/2.11 as well as the time for

computing SVD for all deformation gradients.

Given the boundary condition, the unknown surface is reconstructed through opti-

mization, guaranteeing that any errors are distributed over the entire unknown surface.

However, the resulting deformation is still sensitive to the resolution of the boundary

condition. For example, if a complex ROI is subject to a boundary condition consisting

of only 3 vertices, then the reconstructed surface would be extremely sensitive to the

27

Mesh Lion Cactus Dinosaur Bar Armadillo Pegasus

Free Vertices 7,903 8,978 13,252 24,480 48,027 54,517

Degenerate Vertices 77 41 3 5,852 61 788

Factor (Eqn 2.8) 0.313s 0.359s 0.625s 2.516s 4.813s 6.594s

Solve (Eqn 2.8) 0.015s 0.031s 0.031s 0.109s 0.188s 0.297s

Factor (Eqn 2.10/2.11) 0.063s 0.078s 0.110s 0.453s 0.875s 1.016s

Solve (Eqn 2.10/2.11) 0.016s 0.015s 0.015s 0.032s 0.078s 0.125s

SVD 0.156s 0.172s 0.266s 0.469s 0.985s 1.156s

Table 2.1: The timing results for our deformation examples on a 3.2GHz Pentium IV
machine with 1G RAM.

changes in the positions or in the local deformation gradients of the boundary vertices.

Therefore, for boundaries with considerably fewer vertices relative to the ROI, we first

perform a local refinement. This is particularly useful in configuration-independent

merging (without overlapped transition regions), since the boundary condition is com-

posed of only one boundary curve.

We note that, due to the fact that transformations are explicitly propagated rather

than determined via optimization, explicit methods [20, 4] can handle rotation angles

of handles larger than π. Being an implicit method, our system does not support edit-

ing with rotation angles larger than π. The transformations are implicitly defined and

solved simultaneously with the vertex positions by minimizing distortion. Since a

larger angle would give greater distortion, our system always chooses the transforma-

tion with the smallest rotation angle (< π). To perform deformation with large rotation

angles (> π), one possible way is to use more handles such that rotation angles between

successive handles is smaller than π.

Although performing SVD on a 3×3 matrix is fast, performing SVD on a large set

of deformation gradients still becomes the bottleneck of our system. Since solving the

optimization in Equation 2.8 is fast (only involving the back-substitution), the screen

is updated using the solved vertex positions when the user is manipulating a handle.

SVD and the back-substitution of the second linear system are performed only when

the user stops moving the handle. This allows our system to remain at interactive rate

for editing large scale meshes.

The parallel work of Lipman et al. [73] is similar to ours. Their method binds

triple vectors defining a discrete frame to each vertex. The discrete frames before and

after editing essentially determine a deformation gradient (like Mi in our framework).

28

Essentially, in their method, the local details (rigid-invariant coordinates) at each ver-

tex are encoded in the corresponding discrete frame, while in ours the local details

(the LCs) are defined with respect to the corresponding deformation gradients. Since

the discrete frames in [73] are nonlinearly dependent on vertex positions, the discrete

frames and vertex positions cannot be formulated and solved as a single linear system.

To make the reconstruction problem linear, their method uses two sparse linear sys-

tems: one for solving the discrete frames (using only the transformation constraints)

and the other for solving the vertex positions given the discrete frames obtained from

the first system (using the position constraints only). In our method, the deforma-

tion gradients are solved using only one linear system (considering both the position

and transformation constraints). Our solution avoids the incompatibility between the

position and transformation constraints encountered in [73] at the cost of introducing

more shearing distortion. Consequently, we introduce an additional step to remove the

shearing distortion.

2.6 Summary

This chapter presents an implicit differential mesh editing framework that is resistant

to the non-rigid-invariant property of the differential coordinates. Due to the implic-

itly defined local deformation gradients (with shearing removed) introduced at each

vertex, our deformation tool is automatically detail-preserving and produce visually

pleasing deformed results. The deformed results are obtained by solving two sparse

linear systems at interactive rate. We will demonstrate the the advantage of our frame-

work further in a new application, called configuration-independent merging, which is

presented in the next chapter.

Although to our best knowledge, our method provides the most effective linear ap-

proximation to the nonlinear differential mesh deformation, it still suffers from serious

linear approximation errors under very large deformations. To solve the problem, we

have proposed two efficient nonlinear Laplacian mesh editing frameworks [81, 1] very

recently.

29

CHAPTER 3

POISSON MESH MERGING

In this chapter, we present a new Poisson mesh editing framework. Our contribu-

tions are two-fold. First, we present a new merging paradigm, called configuration-

independent merging, based on our new Laplacian editing framework presented in the

previous chapter. Our method produces the same merging result independent of the

relative position, orientation, scale of input meshes. Second, we propose to optimize

the boundary condition (the merging boundary) for Poisson mesh merging. The user

needs only to casually mark a source region and a target region. Our algorithm auto-

matically searches for an optimal boundary condition within the marked regions such

that the change of the found boundary during merging is minimal in terms of similarity

transformation. Experimental results demonstrate that our merging tool is easy to use

and produces visually better merging results than unoptimized techniques.

3.1 Introduction

Directly modeling 3D geometric objects from scratch is often difficult and time-consuming.

Instead, mesh editing techniques aim to create models by modifying existing ones, usu-

ally obtained from 3D scanners. Mesh merging, as one of the most popular mesh edit-

ing tools, produces new meshes by composing parts of existing models. For example,

user can merge the body of a women model with the tail of a fish to create an interest-

ing mermaid model. Mesh merging is achieved either by blending details of meshes

through an intermediate surface or by deforming the merging boundaries of meshes

as well as the meshes themselves and stitching the merging boundaries together. Our

merging framework falls into the second category.

In recent years, several differential mesh editing techniques have been proposed

(see the related literature review in the previous chapter). Besides their easy implemen-

tation, these techniques support intuitive user interface: they allow the user to simply

manipulate parts of a surface, called handles, and the deformation of the rest surface

30

=
 =

(
a
)
 (
b
)
 (
c
)

Figure 3.1: Configuration-independent merging. The goal is to merge the Mannequin
head model (source) to the Venus model (target). The user only specifies the correspon-
dence between the merging boundaries. In (a) and (b), the Mannequin head model has
different positions, orientations and scales. Our configuration-independent merging
method produces the same result (c), given the same boundary correspondence. The
lines indicate two user-specified key correspondences.

is computed by solving the Poisson equation subject to boundary condition from the

handles. By regarding the merging boundaries as the boundary condition, differential

techniques are directly applicable to mesh merging [19, 20]. Without loss of generality,

in this thesis we consider the merging problem as the deformation problem of a source

mesh when the source merging boundary is deformed to the corresponding merging

boundary on a target mesh, which is never deformed. Regardless of the specific differ-

ential representation (e.g. the Laplacian coordinates [19, 3] or gradient field [20]) used

in these techniques, we call all the merging tools based on these techniques Poisson

mesh merging, as all of them need to solve a set of Poisson equations subject to the

Dirichlet boundary condition.

We present a new merging paradigm, called configuration-independent merging [23],

based on our new Laplacian editing framework presented in Chapter 2.4. By config-

uration we refer to the relative position, orientation and scale of meshes. Most re-

lated previous merging techniques require the user to adjust the configuration of input

meshes prior to merging [19, 91, 92]. Thanks to the implicitly defined transformations,

our merging approach can eliminate this user interaction requirement. Our method

computes the transformations (corresponding to configuration adjustment in existing

31

(a) (b)

(c) (d)

Figure 3.2: The effectiveness of Poisson mesh merging is highly dependent on the
choice of the boundary conditions. (a) Source mesh. (b) Target mesh. (c) and (d) are
the merging results with the user-specified (unoptimized) boundary condition (i.e. the
boundary separating the region in red and the region in blue) and the optimal one found
by our algorithm (in blue), respectively.

methods) and solves for the merged mesh simultaneously (Figure 3.1). The user only

specifies the merging boundaries and indicates several key vertex correspondences be-

tween the boundaries.

Existing Poisson mesh editing techniques, including our configuration-independent

merging, mainly focus on designing schemes to propagate deformation from a given

boundary condition to a region of interest. Although solving the Poisson system in the

least-squares sense distributes the distortion errors over the entire region of interest,

large deformation in the boundary condition might still lead to severely distorted re-

sults. The distortion is especially large near the boundary condition (Figure 3.2c), as

32

it provides soft or hard constraints to the deformation optimization [19]. Therefore the

effectiveness of the existing Poisson mesh merging techniques is highly dependent on

how carefully the user specifies the merging boundaries (the boundary condition).

A similar problem exists in Poisson image editing. Poisson image editing [93] may

generate bad image composition results, especially when the boundary conditions on

the source and target images severely conflict with each other. To address the problem,

Jia et al. [94] propose to compute an optimized boundary condition for Poisson image

editing: a boundary condition is optimal if it undergoes only a translation transforma-

tion in {r, g, b} color spaces during composition.

Motivated by [94], we present an algorithm for easy Poisson mesh merging. It finds

an optimal merging boundary within the regions casually marked by the user. A new

objective function is proposed to find a boundary condition under an (unknown) simi-

larity transformation during merging in the least-squares sense. Unlike images, meshes

often have irregular sampling. We incorporate an edge-based weighting scheme to al-

leviate the influence of irregular sampling. Similar to [94], we use an alternating op-

timization method to solve the resulting complicated nonlinear optimization problem.

After obtaining the optimized boundary condition, we apply the differential mesh edit-

ing technique presented in Chapter 2.4 to deform and merge the source mesh to the

target mesh.

Compared with existing Poisson mesh merging techniques, our system supports

much easier user interface: the user only needs to casually mark the region to be cut

on the source mesh and the desirable region to be pasted on the target mesh. Without

the user’s fine tuning of the merging boundaries, the optimal boundary condition leads

to visually good merging results (Figure 3.2d).

3.2 Related Work

Mesh Merging and Surface Pasting. Cut-and-paste editing is ubiquitous in text and

image processing applications. It has been extended to 3D mesh domain to compose

new models from parts of existing models.

Kanai et al. [95] present a mesh merging technique based on local 3D metamor-

phosis. This method allows details from the source and target meshes to be smoothly

33

blended together in the final merging result. Later, the idea of transferring details

is extended to multiresolution framework [96] and differential framework [19]. These

methods need to build one-to-one correspondence between the whole source and target

regions of interest, thus requiring their topologies the same. To remove this require-

ment of topology, Fu et al. [97] uses the base surfaces of the source and target regions

of interest for correspondence building.

Recently, merging techniques directly based on Poisson mesh editing have been

proved effective. The merging methods of Yu et al. [20] and Sorkine et al. [19] con-

nect two meshes at their open boundaries without 2D parameterization. These methods

consider the merging boundaries as the handles used in Poisson mesh editing. There-

fore, these methods only require the merging boundaries to have the same topology. In

[19], the merging operation first fills the gap between two boundaries and then mixes

the details by surface reconstruction. In [20], the two boundaries are first deformed

to an intermediate boundary, and the deformation is propagated from the deformed

boundaries to the interior of the meshes. The smoothness along the merging boundary

is improved by Poisson normal smoothing. Both methods require the user to adjust

the configuration of the meshes to be merged. In addition, if the merging boundary

is not well chosen, the merging result might still be bad. In this thesis, we present an

automatic algorithm to find an optimal merging boundary within the merging regions

that are roughly specified by the user [98].

The merging results with most existing merging techniques [19] largely depend on

the well-adjusted relative positions of source and target meshes. However, precisely

adjusting relative positions of models in 3D space is a difficult task, even for experi-

enced users. To ease user’s effort, Sharf et al. [99] present an intuitive mesh merging

technique, with which the user only needs to roughly adjust the relative positions of

models until there is a significant overlap between them, then the source mesh is au-

tomatically snapped and merged to the target mesh. Hassner et al. [100] introduce a

part-in-whole model alignment method to aid the user in positioning the models. After

the model alignment, they find a minimal cut on the graph respecting both the source

and target models to simultaneously cut and stitch the models.

Poisson Image Editing. Poisson image editing is a powerful tool for image com-

position [93]. This technique seamlessly blends two images by solving the Poisson

34

equations with guidance fields from the source image and a boundary condition from

the target image. However, the effectiveness of Poisson image editing is dependent on

how the user carefully specifies the boundary condition. To make Poisson mesh editing

easier to use, Jia et al. [94] propose to optimize the boundary condition within a region

roughly marked by the user.

3.3 Configuration-Independent Merging

In this section, we present two methods of mesh merging: configuration-independent

merging and configuration-dependent merging. Although some existing techniques [20,

4, 73] could be adopted to implement configuration-independent merging, we believe

that this is the first time such an application is proposed.

3.3.1 Configuration-Independent Merging

The configuration of the objects to be merged refers to their relative position, orienta-

tion and scale. For simplicity, we assume that the target mesh is fixed during merging,

and let the relative position, orientation and scale of the source mesh be free. The

merging is accomplished by deforming the merging boundary of the source mesh (and

the entire source mesh as the ROI) to the merging boundary of the target mesh1.

Having the user adjust the configuration of input meshes is equivalent to applying

a global similarity transformation to the source mesh. Recall that differential-based

editing frameworks deform an ROI by modifying the boundary condition. Therefore,

the basic requirement of performing configuration-independent merging using such

frameworks is that when a global similarity transformation is applied to the boundary

condition, the positions of the vertices in the ROI, obtained through solving the opti-

mization with the modified boundary condition, must reflect the same transformation.

Figure 3.3 (right) demonstrates that our method satisfies this requirement.

To perform configuration-independent merging, the user only needs to establish the

correspondence between the source merging boundary and the target merging bound-

ary. We implement a vertex correspondence tool similar to [20]. From a set of user-

1An alternative approach, which we did not implement, is to merge the meshes along a user-specified
intermediate boundary [20].

35

Figure 3.3: Left: the original cactus model. Right: the reconstructed model after a
global transformation (including translation, rotation and uniform scaling) is applied
to the handle of the original cactus model (Left).

36

(
a
)

(
b
)
 (
c
)

Figure 3.4: Configuration-independent merging: the Headus skull model (b) is de-
formed and merged to the ears of the Stanford Bunny (a). The two merging boundaries
have undulations and are of different shapes.

37

specified key vertex correspondences, our system finds the corresponding position on

the target merging boundary for each remaining vertex on the source merging bound-

ary by curve parameterization. These positions will be used as position constraints of

the optimization.

Next we need to compute a rotation transformation Ri and a scaling factor si for

each pair of corresponding vertices (vs
i ,vt

i), where vs
i is a vertex on the source merging

boundary and vt
i is its corresponding position on the target merging boundary. By

defining two local frames at vs
i and vt

i (composed of the associated tangent vector

along the boundary curve, unit normal vector and the cross product of the previous two

vectors), we compute Ri as the transformation from the local frame at vs
i to the local

frame at vt
i. The scaling factor si is computed as the ratio of the tangent magnitude at

vt
i to the tangent magnitude at vs

i . The deformation gradient Mi is then defined as RiSi

(Si = diag(si, si, si)) and used as the transformation constraint of the optimization.

With the position and transformation constraints, we solve the optimization in

Equation 2.8 to deform the source mesh and merge it to the target mesh. The shear-

ing distortion is removed in the same way as in mesh deformation application. To

get a watertight seam, we trivially zip the target merging boundary and the deformed

source merging boundary [19] by removing one band of triangles adjacent to the target

merging boundary and re-triangulating the resulting gap. To improve smoothness at

the seam, we apply several iterations of the umbrella operator [101]. Detail-preserving

merging is discussed in Section 3.3.3.

Figure 3.1 shows the result of merging a source mesh to a target mesh in two dif-

ferent configurations. This example demonstrates that, given the same boundary corre-

spondence, our configuration-independent merging method produces the same result.

Figure 3.4 demonstrates that our method also works well for merging boundaries of

different shapes and with undulations. Figure 3.5 shows an example with multiple

pairs of merging boundaries. The center CAD model (source mesh to be deformed)

is to be merged to the four cylinders (fixed target meshes). The CAD model is sym-

metrical, but the four cylinders have different scales. With configuration-dependent

merging [19], the user would have great difficulty adjusting the configuration of the

CAD model. Our configuration-independent merging method creates the same result

independent of the configuration. This example also demonstrates that the merging

38

method is applicable to meshes with non-zero genus. The close-up shows that the

smoothness across the merging boundary is not satisfactory. Section 3.3.3 addresses

this problem by using overlapping transition merging regions.

3.3.2 Configuration-Dependent Merging

In configuration-independent merging, the entire source mesh is deformed and merged

to the target mesh. If the size of the source mesh is very large, computation would be

expensive. Allowing only the region near the source merging boundary to be deformed

can accelerate the merging progress. Moreover, the user may want to specify handles

so as to fix certain features on the source mesh. Such tasks can be achieved using

configuration-dependent merging.

For configuration-dependent merging, the user specifies the configuration of the

source and the target mesh as well as a set of handles on the source mesh. The re-

maining algorithm is the same as the configuration-independent merging except the

following. We modify only the positions of the source boundary vertices and their

scaling factors, keeping their local frames unchanged. The deformed source merging

boundary and the fixed handles together provide the boundary condition to the opti-

mization problem. This is similar to the transplanting method in [19].

Figure 3.6 compares some results of the two merging methods. With configuration-

independent merging, the legs of the Feline model are not in harmony with the legs of

the Dinosaur model. With configuration-dependent merging, we adjust the position,

orientation and scale of the Feline model and fix the two feet, and the merging result

is better.

3.3.3 Merging with Overlapped Transition Region

We have assumed so far that no transition region is specified for merging. The tar-

get mesh is never deformed. In order to coincide with the target merging boundary,

the source merging boundary is deformed (consequently deforming the whole source

ROI too). Since the geometry near the target merging boundary and the geometry

near the deformed source boundary are usually different, smoothing needs to be per-

formed [20]. This smoothing step however also filters out geometry details.

39

Mesh Feline CAD Feline Mannequin Headus

Fig. 3.6 (c) Fig. 3.5 Fig. 3.6 (a) head skull

Free Vertices 7,733 9,050 9,434 16,219 16,982

Degenerate Vertices 186 1,839 206 534 77

Factor (Eqn 2.8) 0.593s 0.563s 0.718s 1.437s 1.390s

Solve (Eqn 2.8) 0.032s 0.031s 0.032s 0.062s 0.062s

Factor (Eqn 2.10/2.11) 0.203s 0.110s 0.125s 0.234s 0.203s

Solve (Eqn 2.10/2.11) 0.015s 0.015s 0.016s 0.032s 0.031s

SVD 0.125s 0.156s 0.187s 0.328s 0.329s

Table 3.1: The timing results for our configuration-independent and configuration-de-
pendent merging examples on a 3.2GHz Pentium IV machine with 1G RAM.

To produce merging region with smoothly transited details, the user could specify

a transition region on both the source mesh and the target mesh [19]. The ROIs of

both meshes are deformed and the details are mixed by interpolating the LCs in the

transition regions. For configuration-independent merging, we first apply the implicitly

defined local deformation gradients onto the LCs before interpolating them.

We let the user specify a width for each mesh and define the transition region as

the region encompassing all vertices whose shortest path to the merging boundary has

a length less than a specified width. Correspondence between the merging boundaries

is established by specifying several key vertex correspondences (Figure 3.7 (a)). For

correspondence between the transition regions, we cut each transition region along

the shortest path between two key vertices and parameterize the region over the unit

square domain. A vertex vi in one transition region is mapped to a position vi within

a triangle τ in the other transition region,

vi = bi1vi1 + bi2vi2 + bi3vi3 ,

where vi∗ are the vertices of triangle τ and bi∗ are the corresponding barycentric coor-

dinates.

We add an additional error term ET to the optimization problem in Equation 2.8.

ET =
∑

i∈TR

‖Miδi −
3∑

j=1

bij Mijδij‖
2,

where TR is the index set of vertices in the transition regions, and Mi∗ and δi∗ are the

corresponding affine transformations and Laplacian coordinates of vi∗ , respectively.

40

Adding the error term to the objective function of the optimization problem, we get

arg min E(ṽ1, . . . , ṽn) = EL + ER + wT ET ,

where wT is a weight (e.g. wT = 0.1 in our experiments). By minimizing the objective

function with the same boundary condition as before, we obtain a merged mesh. The

optimal solution, however, generally does not overlap two transition regions exactly.

Therefore, like the method in [19], we reconstruct a smooth transition by using the

connectivity information of one transition region and the linearly interpolated LCs

(Figure 3.7 (b)).

3.4 Optimal Boundary for Poisson Mesh Merging

Our boundary condition optimization for Poisson mesh merging is inspired by [94].

However, extending the boundary condition optimization algorithm from Poisson im-

age pasting [94] to Poisson mesh merging is not straightforward.

First, the optimization problem in mesh merging becomes more complicated, with

more unknowns introduced. In 2D image editing [94], the resulting composite has the

best quality when the difference between the source and target boundary conditions is

a constant (i.e., corresponding to a pure translation of the boundary condition in color

spaces). In Poisson mesh merging, the desirable scenario is when there exists a similar-

ity transformation (consisting of a rigid transformation and uniform scaling) between

the source and target merging boundaries, as there would be no shearing or stretching

distortion in the reconstructed meshes [23]. However, such desirable transformation

does not exist in most merging scenarios, thus we search for a least-squares solution:

the change of the boundary condition in the source mesh during merging is minimal in

terms of an unknown similarity transformation.

Second, irregular sampling in meshes makes the objective function in [94] inap-

plicable to Poisson mesh merging. For images, whether or not sampling factor is con-

sidered in the objective function is insignificant due to the regular structure. However,

sampling consideration is crucial when designing the objective function to optimize

the boundary condition in 3D.

41

3.4.1 System Overview

We give a system overview in this section. Our goal is to find an optimal merging

boundary on the target mesh to be used as the boundary condition to deform the part of

the source mesh containing the features to be pasted onto the target mesh. The target

mesh remains undeformed. Our system contains the following main steps (Figure 3.8):

1. The user casually marks a region of interest Ω0 on the source mesh. This region

should be large enough to cover the features Ωfeature (i.e. Ωfeature ⊂ Ω0) that

the user really wants to paste onto the target mesh. Intuitive cutting techniques,

e.g. easy mesh cutting [102], can be used to identify Ωfeature. To avoid having

the optimal boundary ∂Ω cutting into Ωfeature, we constrain ∂Ω to be within the

region Ω0 \ Ωfeature. On the target mesh, the user roughly chooses a region Ω1

onto which the features from the source mesh are to be pasted. We assume that

Ω1 does not contain complex features; otherwise we simply remove the features

before the pasting so as to reduce distortion in the next parameterization step.

2. For each vertex in Ω0 \ Ωfeature, we find the corresponding position on Ω1 (Fig-

ure 3.10). Unlike 2D image editing, there is no explicit correspondence between

the source and target meshes in 3D. We use one of state-of-the-art surface pa-

rameterization methods, least squares conformal maps [103], to build the corre-

spondence.

Unfortunately, the band shape of Ω0 \ Ωfeature often leads to large parameteri-

zation distortion, which might defeat the gain from having an optimal boundary

condition. To reduce parameterization distortion, we first fill the hole induced

by boundary ∂Ωfeature through an optimal triangulation that minimizes the total

triangle area [104]. We then parameterize the surface (Ω0 \ Ωfeature) ∪ Ωfilled,

where Ωfilled is the region resulting from the boundary triangulation. Replacing

Ωfeature with Ωfilled for the purpose of correspondence building has the follow-

ing advantages. First, additional distortion would not be introduced from para-

meterizing Ωfeature, which could be of complicated geometric shape. Second, as

Ωfeature is not used in surface parameterization, this region can be of complex

topology (e.g. with nonzero genus).

To obtain a meaningful correspondence, the user needs to manually translate,

42

scale and rotate the parameterization of Ω0 \ Ωfeature with respect to the para-

meterization of Ω1. The relative positions of the source and target models are

roughly fixed once the correspondence is determined. The subsequent algorithm

only fine tunes the final orientations and scalings. Therefore, the user can antic-

ipate the composition effect when specifying the correspondence.

3. We search for a closed path ∂Ω within region Ω0\Ωfeature as the optimal bound-

ary condition through an iterative optimization algorithm (Section 3.4). To guar-

antee that ∂Ω encloses Ωfeature, we cut across the ring-like region Ω0 \ Ωfeature

and search for a boundary that begins and ends at this cut.

4. We move the vertices on ∂Ω to their corresponding target positions on Ω1 and

perform Poisson mesh merging to deform the region enclosed by ∂Ω (contain-

ing Ωfeature). We choose to use the Laplacian editing framework presented in

Chapter 2.4.

3.4.2 Boundary Energy Minimization

Following the above discussion, an optimal boundary for Poisson mesh merging is a

boundary ∂Ω in Ω0 \ Ωfeature such that the transformation between ∂Ω and its corre-

sponding boundary ∂Ω∗ on Ω1 is as close as possible to an unknown similarity trans-

formation T. We formulate the objective function to be minimized as follows:

E(∂Ω, T) =
∑

e∈∂Ω

‖Te − e∗‖ · length(e), ∂Ω ⊂ Ω0 \ Ωfeature, (3.1)

where e is any edge on ∂Ω, i.e., a vector with its endpoint positions as the starting and

ending points, e∗ is the corresponding edge of e on Ω1, and ‖·‖ denotes L2 vector norm.

As meshes often have irregular sampling of geometry, we add the term length(e) to

prevent the optimal boundary from bypassing regions with dense sampling. Another

desirable effect of adding the weighting factor is that the length of the optimal bound-

ary will be as short as possible, pushing it to approach ∂Ωfeature.

3.4.3 Iterative Optimization

Since the optimal boundary might contain all the vertices in Ω0 \Ωfeature, minimizing

E(∂Ω,T) to solve for the optimal merging boundary and the transformation simul-

43

taneously is intractable. Similar to [94], we use an alternating method to solve the

minimization problem iteratively. Mainly, it contains the following steps:

1. Initialize ∂Ω as ∂Ω0.

2. Given the current boundary ∂Ω on the source mesh and its corresponding bound-

ary ∂Ω∗ in Ω1 on the target mesh, we compute the optimal similarity transfor-

mation T. Specifically, given the corresponding sets of points on ∂Ω and ∂Ω∗,

we use the algorithm in [105] to compute a rigid motion. The uniform scaling

factor is defined as the ratio of the average edge length of ∂Ω∗ to that of ∂Ω.

3. Given the current transformation T, we optimize the boundary ∂Ω.

4. Repeat steps 2 and 3 until the change of the energy E(∂Ω,T) converges or it

reaches a prescribed maximum number of iterations.

Given T, solving for ∂Ω by minimizing the boundary energy E(∂Ω, T) is equiv-

alent to finding a shortest path in Ω0 \ Ωfeature. However, we have an additional re-

quirement here: ∂Ω should enclose Ωfeature. The path found by a standard shortest

path problem (e.g. Dijkstra algorithm [106]) is very likely not the one we need. To

fulfill the requirement, we first break the ring-like region Ω0 \Ωfeature by adding a cut

C, as shown in Figure 3.8, and then find a shortest path that starts and ends at C. After

cutting, each original vertex on the cut C is split into two vertices, on different sides of

C.

To achieve better performance, we want a cutting path C with minimal number

of vertices. A zigzag cut C may make the found shortest path ∂Ω intersects C more

than once, thus leading to a non-optimal boundary condition [94]. Straightening the

cut can greatly reduce the possibility of multiple intersections. Therefore we find the

shortest path with a source vertex on ∂Ω0 and a sink vertex on ∂Ωfeature as the cut C.

The shortest path is computed using Dijkstra algorithm [106] with edge lengths as the

weighting costs.

Given a cut C, we show how to compute a closest shortest path that begins and

ends at a vertex on C as the boundary ∂Ω. We associate each edge e with cost

||Te − e∗|| · length(e)

44

. The accumulated cost of a path is defined as the summation of the costs of all edges

on the path. For each vertex u on one side of the cut C, we use Dijkstra algorithm to

compute the shortest path path(u) with minimal cost to the vertex v which is originally

split from the same vertex as u. The optimal boundary ∂Ω is set as the one with the

minimum cost from the set {path(u) | u ∈ C}.

Like ours, the algorithm proposed by Hassner et al. [100] finds a merging boundary

respecting both the source and target models. Their solution consists of two main steps:

model alignment (to find an appropriate transformation) followed by a minimal cut. In

a sense, their solution only corresponds to one iteration of ours and thus is not optimal.

3.4.4 Examples and Discussion

In this section, we demonstrate that optimal boundary conditions lead to merging re-

sults with less distortion (i.e., less shearing and stretching) than those reconstructed

using user-specified unoptimized boundary conditions Ω0. We do not compare the

change of the global shapes of the source features when using the two different types

of boundary conditions, as it is dependent on the scale factor. Instead, we compare the

local distortions of the merged source meshes. For the optimal or unoptimized bound-

ary condition, we use the ratio of the average length of the source and target merging

boundaries to uniformly scale the Laplacian coordinates of the source mesh to account

for the difference in the sizes between the source and target boundaries.

When the source and target merging boundaries are of very different shapes, the

deformed source mesh inevitably exhibits local distortion. The distortion is more no-

ticeable near the merging boundary, as the merging boundary serves as soft or hard

constraint to the deformation optimization. For the source and target models in Fig-

ure 3.2, the region Ω0\Ωfeature on the source mesh and its corresponding region on the

target mesh are of very different shapes (Figure 3.10). Using the user-specified bound-

ary condition, the local distortion, especially near the boundary (i.e. the waist region),

is large. In contrast, the optimal boundary condition leads to a much better merging

result. Better merging results are also demonstrated by the examples in Figures 3.9,

3.11, 3.12 and 3.13, when optimal merging boundaries are used.

We need a planar surface parameterization to build the correspondence of Ω0 \

Ωfeature between the source and target meshes. However, as Ωfeature itself is not

45

involved in the parameterization step, our system does not require the topology of

Ωfeature to be homeomorphic to a disk. This is demonstrated by the example in Fig-

ure 3.14.

It is hard to theoretically prove the convergence of the proposed iterative method.

However, experiments show that the iterative process has no convergence problem.

Although the iterative process may fall into a local minimum, the resulting boundaries

always lead to better merging results than those with unoptimized boundaries. As the

time complexity of the Dijkstra algorithm is O(N log N), for each iteration, the overall

computational complexity of finding an optimal boundary is O(MN log N), where M

and N are the number of vertices on the cut C and in Ω0 \ Ωfeature, respectively.

For example, given a region Ω0 \ Ωfeature with about 10K vertices, it takes about 1

minutes to compute the final optimal boundary condition. Performing the Laplacian

deformation is very efficient, as demonstrated in the previous chapter.

3.5 Summary

We present an easy-to-use Poisson mesh merging tool without needing adjusting of

relative configuration of input meshes to be merged and without requiring careful user-

specified merging boundaries. Our algorithm automatically finds an optimal boundary

based on the information casually provided by the user and produces visually better

merging results.

We have shown that, in configuration-dependent merging, the user can choose to

fix specific features during merging. This capability can be extended to configuration-

independent merging. For each feature to be fixed, we implicitly define a common

deformation gradient for all the Laplacian coordinates associated with the feature. In

other words, the feature is subject to a transformation rather than being completely

fixed like in configuration-dependent merging.

The distortion introduced in the correspondence building step using surface para-

meterization definitely influences the final merging results. For models with complex

shapes at Ω0 \ Ωfeature, the parameterization distortion might defeat the gain from

the optimal boundary. As a future work, we will explore other registration methods,

e.g. iterative closest point (ICP) algorithm [107] or its variants, instead of using direct

46

surface parameterization techniques.

The change of the local frames at each vertex of the boundary condition before

and after merging can be used to increase the smoothness across the merging bound-

ary [20]. We plan to incorporate the local rotations or similarity transformations into

the boundary condition optimization formulation to find optimal boundaries that will

lead to better smoothness across the merging boundary.

Currently, we search for the shortest paths on the graph of the original mesh, which

restricts the found optimal boundary to be composed of the mesh edges. Getting rid of

this constraint may further improve the quality of merging results.

47

Figure 3.5: A configuration-independent merging example with multiple pairs of merg-
ing boundaries.

48

(a) (b)

(c) (d)

Figure 3.6: The hind part of the Feline model is deformed and merged to the fore part
of the Dinosaur model. (b) is the result of configuration-independent merging with the
configuration in (a), and (d) is the result of configuration-dependent merging with the
configuration in (c). In the configuration-dependent merging, the two feet are specified
as handles (purple), thus remain fixed. The same boundary correspondence is used for
both merging.

49

(
a
)
 (
b
)

Figure 3.7: Configuration-independent merging with overlapped transition regions. (a)
Two transition regions with key correspondences specified. (b) The merging result.

featureΩ

0Ω

∂Ω

C

Figure 3.8: An illustration of different types of boundaries and regions on the source
mesh. Ω0 is the region of interest (in red) casually marked by the user. Ωfeature contains
the features to be merged (in yellow). The optimal boundary ∂Ω (in blue) lies in the
region Ω0 \ Ωfeature. Cut C (in green) breaks the ring of Ω0 \ Ωfeature.

50

(a)

(b)

(c) (d)

Figure 3.9: (a) Source. (b) Target. (c) and (d) are the merging results using the unopti-
mized and optimal boundary conditions, respectively.

Figure 3.10: Region Ω0 \ Ωfeature on the source mesh and its corresponding region on
the target mesh.

51

(a) (b)

(c) (d)

Figure 3.11: (a) Source. (b) Target. (c) and (d) are the merging results using the
unoptimized and optimal boundary conditions, respectively.

52

(a) (b)

(c) (d)

Figure 3.12: (a) Source. (b) Target. (c) and (d) are the merging results using the
unoptimized and optimal boundary conditions, respectively.

53

Figure 3.13: (a) Source. (b) Target. (c) and (d) are the merging results using the
unoptimized and optimal boundary conditions, respectively.

Figure 3.14: Our merging is applicable to a region of interest with nonzero genus.

54

CHAPTER 4

HAIRSTYLE SKETCHING

This chapter presents an intuitive sketching interface for interactive hairstyle design,

made possible by an efficient numerical updating scheme. The user portrays the global

shape of a desired hairstyle through a few 3D style curves which are manipulated by

interactively sketching freeform strokes. Our approach is based on a vector field rep-

resentation which is obtained by solving a sparse linear system with the style curves

acting as boundary constraints. The key observation is that the specific sparseness pat-

tern of the linear system enables an efficient incremental numerical updating scheme.

This gives rise to a sketching interface that provides interactive visual feedback to the

user. Interesting hairstyles can be easily created in minutes.

4.1 Introduction

Realistic looking hair is an important feature of virtual characters which appear in

many applications, such as movies and games. While significant progress has been

made on hair simulation [108] and rendering (see [109] and references therein), hair

modeling still remains a difficult problem. This is due to the huge number of individual

hair curves on a human head (typically more than 100K) and the large variance of

hairstyles.

The key contribution of our work is a hairstyle design system equipped with a

sketching interface and a fast vector field solver. The user draws freeform strokes to

create and edit a few style curves which depict the global shape of the desired hairstyle.

The hairstyle is then generated by growing along the flow lines in a vector field, which

is transparent to the user. The vector field is formulated as the solution of a sparse linear

system Ax = b with the style curves acting as boundary constraints. Despite the high

sparsity of A, directly solving the system is still too slow (more than twenty seconds

for 50K variables) for user interaction. Instead, we observe that modifying the style

curves induces only changes of b and the diagonal elements of A. Once initialized,

55

Figure 4.1: A realistic hairstyle created using our system in five minutes. The user
is allowed to design interesting hairstyles by intuitively sketching three types of style
primitives: streaming curve, dividing curve and ponytail.

the linear system can be efficiently re-solved incrementally due to the special pattern,

usually taking only a few seconds.

The combination of the sketching interface and the efficient vector field solver

gives rise to a user-friendly system. The user continuously draws strokes to modify the

hairstyle, responding to the interactive feedback, until satisfied. Interesting hairstyles

can be easily created (see Figure 4.1 for an example).

56

4.2 Related Work

A variety of hair modeling techniques have been proposed (see the latest survey in [110]).

We review only the work most related to ours.

Direct Hair Modeling. Many previous interactive hair modeling techniques di-

rectly manipulate the geometry of hair curves, or a group of hair curves, called a hair

cluster [111, 112, 113]. Modeling a complete hair model with such techniques could

be tedious and time-consuming (usually several hours) since hundreds of hair clusters

have to be created manually.

Vector Field-based Hair Modeling. Vector field-based techniques can effectively

reduce manual work by automatically tracking the hair curve flow in a vector field. The

idea was first explored by Hadap and Magnenat-Thalmann [114]. Yu [115] extended

the idea by introducing more vector field primitives to create more complex hairstyles.

A major limitation of these methods is that the global vector field is continuously repre-

sented as the superimposition of many local vector fields generated by those primitives.

When the vector field is changed, several minutes are needed to re-evaluate the vector

field and re-generate a hair model. The high computational cost makes user interaction

inconvenient. Moreover, the vector field is modified via positioning and rotating prim-

itives in space, whose effect on the hairstyle is not always intuitive [115]. Rather than

using a single vector field, Choe et al.[116] proposed to apply individual vector fields

each time to incrementally generate more complex hairstyles, such as braid hair. How-

ever, their styling vector fields are produced using a procedural approach, not allowing

users to fully design hairstyles.

Sketching Interface for Hair Modeling. Sketching interface for 3D design has

been proved intuitive [117, 29]. Mao et al. [118] were the first to apply sketching

to hair modeling, but their approach only assumes symmetric smooth hairstyles. The

recent approach of Malik [113] allows user to draw freeform strokes to mimic various

hairstyling operations on individual hair clusters. Since the user directly manipulates

the hair geometry and the influence of the editing operation is local, it is not easy

to design a globally complex hairstyle. Wither et al. [119] proposed a sketch-based

interface for controlling a physically-based hairstyle generator.

57

To let the user more easily control the global shape of a hairstyle, we constrain the

hairstyle by a vector field which can be designed by sketching a small set of style prim-

itives. Note that, parallel to our work, Takayama et al. [120] and Fisher et al. [121] have

also proposed sketch-based interfaces for designing vector fields inside a volumetric

3D heart model and over arbitrary triangular meshes, respectively.

Image-based Hair Modeling. Recently, researchers have shown that automatic

hair geometry reconstruction based on computer vision techniques is possible [122,

9]. Typically multiple images are captured about the subject head, and dense hair

curve geometry is recovered from hair’s photometric or stereoscopic properties. While

current results are impressive, the use of these approaches are limited by data capturing

conditions.

Figure 4.2: Left: bounding volume, vector field and style curves. Right: hair curves
generated from scalp.

4.3 System Overview

Our system consists of four components (see Figure 4.2): a head mesh, a vector field

defined in the bounding volume, a set of style curves, and a resulting hairstyle con-

sisting of tens of thousands of hair curves. To design a specific hairstyle, the user first

sketches a few style curves depicting the global hair shape. These style curves are cre-

58

ated and modified via drawing freeform strokes. A discrete vector field is defined in a

3D uniform grid within the bounding volume of the head. This vector field is formu-

lated as the solution of a linear system. Different boundary constraints are derived from

the style curves to provide known directions for part of the vector field. For example,

a stream curve (cyan curves in Figure 4.2) causes its neighboring grid points to have

their directional vectors set along the curve’s tangent, and a dividing curve (red curve

in Figure 4.2) causes the neighboring grid points on its two sides to assume roughly

opposite directions (indicated as short yellow lines).

Once solved, the vector field is used to automatically generate a hairstyle as fol-

lows. Each hair curve starts from a root point on the scalp and grows along the flow

directions in the vector field. Equipped with an efficient incremental solver for the

linear system, our system allows the user to modify the style curves, re-solve the lin-

ear system and generate the new hairstyle in several seconds. The interactive visual

feedback greatly facilitates the design process.

4.4 Fast Vector Field Computation

This section introduces the linear system which produces a vector field for hair growth.

We use a Laplacian system as a field interpolator, given the boundary constraints de-

rived from the style curves. A fast solver based on incremental Cholesky factorization

is presented.

4.4.1 Laplacian System as Field Interpolator

In recent years, the Laplace operator has been extensively adopted in mesh editing

due to its ability to produce smooth deformation (see [69] and references therein).

We adopt a similar formulation. For each vertex vi of the grid, the discrete Laplace

operator is defined as

∆(ti) =
∑

j∈N(i)

1

N(i)
(tj − ti),

where ti is a directional vector defined at vi and N(i) is the index set of the 1-ring

neighboring vertices of vi. In our hairstyling application, ti indicates the tangent di-

rection of a hair curve passing through vi.

59

We formulate the problem of field interpolation as a minimization problem with

the cost function,

E(t1, . . . , tn) =
n∑

i=1

||∆(ti)||
2, (4.1)

subject to

ti = ci, i ∈ C

where C = {k1, . . . , km} is the index set of the boundary constraints which specify

the known directions ci at certain vertices marked by the style curves (see the detailed

specification in the next section). Unlike differential mesh editing, which allows using

of hard constraints or soft constraints, the minimization here must use soft constraints

to adapt incremental solver described in the next subsection. It is well known that

the above minimization with the soft constraints applied is equivalent to solving the

following linear system in a least-squares sense

At(x) =

(
D

W

)
t(x) =

(
0

ω c(x)

)
= b(x), (4.2)

where matrix D is an n × n matrix with the entries obtained from the discrete Lapla-

cian, W = (wij)m×n, and wij is ω (ω = 100 in our implementation) if ki = j, and

0 otherwise. The column vectors t(x) and c(x) contain the x-component of ti and ci,

respectively. Similar systems are defined for the y and z components. Solving Equa-

tion (4.2) in the least-squares sense is equivalent to solving the normal equation below:

ATAt(x) = (DTD + WTW)t(x) = ATb(x). (4.3)

Note that WTW is a diagonal matrix.

4.4.2 Incremental Cholesky Factorization

When the user changes the style curves, the set of boundary constraints is updated

(see details in Section 4.5). This requires WTW to be updated, the right hand side of

Equation 4.3 to be changed (DTD always remains unchanged), and the system to be

re-solved. Although the system matrix is very sparse, solving this system with 50K

unknowns still takes more than twenty seconds.

A key observation is that changing the boundary constraints (via modifying the

style curves) only affects the diagonal elements of WTW. Specifically, the number of

60

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.3: Editing a stream curve (blue). (a) and (b): two types of supporting surfaces
(purple) and the viewpoint associated to a stream curve. (c) and (d): cut operation: the
hint stroke (green) is long and runs across the stream curve on the supporting surface;
(e) and (f): concatenation operation: the hint stroke starts near the stream curve and
ends far away from it, possibly out of the supporting surface (in which case the depth
is extrapolated from the last segment on the supporting surface); (g) and (h): insertion
operation: the hint stroke starts and ends near the stream curve.

affected elements is |C̄ − C| + |C − C̄|, where C and C̄ are the old and new sets of

boundary constraints, respectively. Consequently, for such special modifications to the

system matrix, solving the normal equation by modifying the existing Cholesky fac-

torization of ATA is much more efficient than solving the system from scratch [123].

Efficient modification of sparse Cholesky factorization is only possible for some spe-

cial cases. Specifically, given a sparse positive definite matrix ATA and its associated

Cholesky factorization, its modification is efficient only when ATA changes in form

of ATA + RTR (called an update) or ATA−RTR (called a downdate), where R is

an arbitrary matrix [123].

We adopt the incremental Cholesky factorization to solve the system in Equa-

61

tion 4.3. First, we perform a general sparse Cholesky factorization

LLT = ATA = DTD + WTW,

which is pre-computed only once. Given the new boundary constraints set C̄, similar to

the definition of W, we let W+ and W− denote the matrices corresponding to C̄ −C

and C − C̄, respectively. The new system matrix is

ĀTĀ = DTD + WTW + WT

+W+ − WT

−
W−.

The new Cholesky factor L̄ is computed by performing an update to L:

L̃L̃T = LLT + WT

+W+,

followed by a downdate to L̃:

L̄L̄T = L̃L̃T − WT

−
W−.

Once the new Cholesky factor is computed, back-substitution is simply used to com-

pute the vector field. We perform the incremental Cholesky factorization using an ef-

ficient sparse Cholesky factorization package [78]. The parallel work of Takayama et

al. [120] and Fisher et al. [121] use numerical schemes similar to ours to incrementally

solve for the vector fields.

4.5 Sketch-based Hairstyle Design System

Our current implementation supports three kinds of style primitives: stream curve,

dividing curve and ponytail. The ponytail primitive is a composite style consisting

of four style curves. We represent a 3D style curve as a sequence of connected line

segments. Each segment is of the same length, set as the discretization size of the

vector field for convenience. These style curves are created and modified by sketching

freeform strokes (Figure 4.3).

Depth determination is the main difficulty in 3D editing using 2D input devices.

Our system relies on the scalp surface and the supporting surface of a style curve for

depth determination.

Stream Curve. This is the simplest style primitive. It indicates the general flow

direction of the hairstyle. Every segment of a stream curve designates its neighboring

62

x

y

z

σ

α0

α1

α p

p

x

y

h

Figure 4.4: A dividing curve and its boundary constraints. Left: a local coordinate
frame defined on the curve. Boundary constraints are defined in the local xy planes.
The tilting angle α of a local plane is interpolated from two parameters α0 and α1.
Right: boundary constraints on a local xy plane. Blue vectors mimic the local shape
of the parting hairstyle and follow the tangents of a Gaussian function, which passes
through the origin p at its inflexion point and with its local shape controlled by two
parameters σ and h (set to 1 and 0.5 by default, with the unit as step size in the vector
field). Red vectors explicitly represent the discontinuities around the parting line in the
vector field and stop hair from growing across the parting line. Their magnitude is set
smaller than 1 (we use 0.3) to reduce their global effect.

grid points as boundary constraints, each of which has its directional vector set as the

direction of the segment’s tangent (blue vectors in left of Figure 4.5). Optionally, to

prevent hair growth beyond the end of the stream curve, we extrapolate and append a

few extra segments. The magnitudes of the directional vectors associated to these extra

segments vanish gradually, from unit length to zero (red vectors in left of Figure 4.5).

A stream curve is created by drawing a stroke starting from the scalp. The depth

of the starting point is the depth of the intersecting point on the scalp (Figure 4.3(a)).

For each subsequent stroke point, if it is still on the scalp, it takes the depth of the

scalp point, otherwise its depth is set as the depth of the last point on the scalp. A

stream curve is usually long and needs incremental refinement from different view-

points. To facilitate editing, its supporting surface is defined via expanding the stream

curve in its neighborhood, and with respect to the viewpoint. We provide two ways

of building the supporting surface: the supporting surface is either a degenerate rule

surface (Figure 4.3(a)) interpolating the stream curve and the associated viewpoint or

a strip (Figure 4.3(b)) composed of lines locally orthogonal to each triangle formed by

a stream curve segment and the viewpoint. The user can freely change the viewpoint

of a stream curve and/or switch between the two supporting surface modes to rebuild

the supporting surface that is convenient for editing.

63

centripetence

spine

profile

cross section curve

C1

R1

R2

C2

Figure 4.5: Left: a stream curve and its boundary constraints. Middle: a ponytail
primitive and its boundary constraints. Right: four style curves of a ponytail primitive.

Once created, the user may edit a stream curve by sketching a hint stroke starting on

its supporting surface. Depending on the general direction, starting and ending points,

a hint stroke is interpreted as three different editing operations (see Figure 4.3(c)-(h)).

Dividing Curve. Many hairstyles have a clear dividing line on the head where hair

strands part and flow in opposite directions. A dividing curve is drawn on the scalp to

represent such a line (see Figure 4.4). To model the discontinuities in the vector field

around the parting line, a local Cartesian coordinate frame L = {x, y, z} is defined at

every unit point p on the dividing curve (Figure 4.4(a)), where y is the normal of the

scalp at p, and z is the tangent of the dividing curve at p rotated by a tilt angle α that

can be easily adjusted by the user. Boundary constraints are defined in the local xy

planes, on two opposite sides of y axis. The local shape of the boundary constraints

can be easily adjusted via a few controlling parameters. See Figure 4.4 for details.

A dividing curve must be on the scalp and is relatively short, thus can usually be

created by drawing one stroke on the scalp (inappropriate ones can be easily discarded).

The user can then draw a hint stroke on each side of the dividing curve (in the strip

spanned by the yellow lines in Figure 4.2) to adjust the tilting angle of each local plane

(see Figure 4.4).

Ponytail. The ponytail primitive consists of four style curves: a spine curve, a

cross section curve, and two profile curves (Figure 4.5). The creation and editing

of the spine curve is the same as that of a stream curve. The user then changes the

64

viewpoint, rebuilds the supporting surface, and sketches the cross section curve and

profile curves on it. A set of cross sections (circles) is then generated along part of the

spine curve between the profile curves. Let C1 and C2 denote the first (near scalp) and

the last cross sections respectively.

Three types of boundary constraints are derived (Figure 4.5). The first type (pur-

ple) are defined at grid points near to the cross sections, with their directions along

the longitudinal directions of the revolutional shape. The second type (blue) are at

grid points near the spine curve. Their direction assignment is the same as for stream

curves except that we start near the cross section C2 (since fewer changes of boundary

constraints means more efficient modification of Cholesky factorization). The third

type (green), called centripetal constraints, are introduced to make the vector field flow

into the first cross section C1. They point to the center of C1 and are defined at the

region between two concentric circles R1 and R2 lying on the plane of C1. The radii

of R1 and R2 are proportional to the radius of C1 (we use 1.3 and 1.9). The magnitude

of the last set of constraints is a parameter to control the tightness of the ponytail (we

use the default value of 0.6). Essentially, the introduction of the centripetal constraints

transfers the complexity of creating a ponytail from the user to the design of the pony-

tail sketch tool. Without the centripetal constraints, the user would need to draw many

more stream curves to guide the hair curves to pass through the cross sections.

4.6 Implementation and Results

System Initialization The bounding volume and resolution of the discrete vector field

is fixed during the whole design process. The vector field resolution depends on the

desired hairstyle. A low resolution (about 25K variables) is used for smooth hairstyles,

and high resolution (about 50K variables) for complex hairstyles such as a ponytail.

The initialization of the linear system takes tens of seconds.

Hair Growth. To generate hair curves from the vector field, root points are first

uniformly sampled on the scalp, with a small amount of randomness added. Two

spherical coordinates θ ∈ [0, 180) and φ ∈ [0, 360) are used for scalp surface parame-

terization, and the hair density is controlled via the sampling steps of these two angles.

Each hair curve is a sequence of connected line segments. In hair growth, let p de-

note the current end point of a hair curve, a new segment l · v(p) is appended, where

65

v(p) is the directional vector linearly interpolated from the vector field, and the scalar l

takes a smaller value than the step size d in the vector field to make the growth smooth

(l = 0.5d in our implementation). Hair growth is terminated when |v(p)| is too small

(< 0.05 in our implementation) or p is out of the bounding volume. The whole process

of growing thousands of hair curves is extremely fast (e.g., less than 0.5 seconds for

100K hair curves).

Scalp Penetration Detection and Avoidance. It is not guaranteed that the flow

lines in the vector field will not penetrate the scalp, which is undesirable and should

be avoided. If necessary, the user can draw enough stream curves (usually about ten)

around the scalp so that the flow lines in the vector field will not penetrate the scalp.

We use a simple strategy to alleviate such non-essential user interaction. User first

designs a hairstyle by drawing style curves without considering the scalp penetration

problem. When a satisfactory hair shape is obtained, for each grid point near the scalp

with direction pointing inwards1, its direction is first replaced with its projection on

the tangent plane of the nearest scalp point. All the grid points near the scalp are then

added as boundary constraints. The magnitude of these directions are set small (we

use 0.3) to reduce global influence. This step is done only once in the design process.

This strategy is useful for saving user interactions when designing complex hairstyles

such as ponytails.

Rendering. We use a free Renderman compliant software Aqsis [124] and the hair

rendering algorithm proposed by Kajiya and Kay [125] to render all the results.

Results. Figure 4.6 shows a result created only using stream curves. Figure 4.7

demonstrates a typical hairstyle with a parting line. Figure 4.8 demonstrates a hairstyle

with two ponytails. The hairstyle in Figure 4.1 uses eleven stream curves, four dividing

curves and one ponytail primitive. All examples are created in a short time. The most

complex hairstyle in Figure 4.1 takes five minutes.

4.7 Summary

We present a hairstyle design system [126] supported by an intuitive sketching inter-

face and a fast vector field solver. User can modify the hairstyle with interactive visual

1This can be easily detected by computing the angle between the direction and its nearest scalp normal.

66

feedback. Interesting hairstyles can be easily designed. We plan to design more style

primitives.

Since we only use one vector field to depict a hairstyle and each vertex has only

one direction, our current method cannot handle hairstyles which require multiple tan-

gent directions at a vertex, e.g., braids. Multiple vector fields coupled with physically

guided tool proposed by Choe and Ko [116] may address this limitation.

Due to the smooth interpolation in the vector field, the output hairstyles of our

system may lack local variations (e.g., curls) that are present in real human hair. One

straightforward solution is to integrate previous hair modeling techniques as a post-

processing step to add local details directly on the already-grown hair curves. Since the

global shape and the positions of the hair curves are already satisfactory, post process-

ing on such output is easier than designing hairstyles from scratch. Therefore, our sys-

tem could be used as an independent design tool or a complementary pre-processor for

other hair modeling techniques. Another possible solution is to introduce local details

by differential coordinates as employed in differential mesh editing [69] by rewriting

Equation 4.1 as

E(t1, . . . , tn) =

n∑

i=1

||∆(ti) − δi||
2 + ω2

∑

i∈C

||ti − ci||
2,

where δi are the differential coordinates which encode the local details built over the

existing example hairstyles.

67

Figure 4.6: A smooth hairstyle created with ten stream curves.

Figure 4.7: A hairstyle with a short parting line, created with seven stream curves and
a dividing curve.

68

Figure 4.8: A hairstyle with two ponytails, created with four stream curves and two
ponytail primitives. This is created in three minutes. See accompanying video for a
demo.

69

CHAPTER 5

CONCLUSION

Modeling complex polygonal meshes and polygonal curves is generally tedious and

limited to a small group of professional digital artists. Our ultimate goal is to make 3D

shape modeling easy to use even for novices. In this thesis, we achieve this goal by

striking a balance between control intuitiveness of tools and output modeling complex-

ity: the modeling process is governed by the pre-designed optimizations and a small

set of easy-to-use manipulators by which the user controls the modeling effect. The

user is allowed to use more manipulators to obtain more complex modeling results.

Our optimization methods are based on systems of the Laplace or Poisson equations

subject to the modeling constraints derived from the user-controlled manipulators. The

resulting optimizations are easy to implement by using the available highly-optimized

sparse linear system solvers and are efficient to solve by pre-computing the most time-

consuming components.

We have contributed to three important modeling applications: mesh deformation,

mesh merging and hairstyle design. More specifically, we present a new linear differen-

tial mesh deformation framework, two intuitive techniques for Poisson mesh merging,

and a system for interactive hairstyle design. All these modeling techniques support

intuitive user interface and interactive editing. The user is allowed to easily use only a

small set of manipulators to interactively design compelling shapes.

In the future, we plan to explore more applications of the idea of controlling mod-

eling effect through a small set of manipulators. Several possible directions are as

follows:

• Interactive mesh segmentation. Mesh segmentation has a variety of applica-

tions in geometry modeling, such as skeleton extraction and object recognition.

Whether the segmentation results are desirable or not is very subjective and

application-oriented. Hence automatic mesh segmentation methods [127, 128]

are definitely not omnipotent. Instead, we are more interested in interactive mesh

70

segmentation, that is, letting the user to give hints for guidance of desirable seg-

mentation. Ji et al. [102] proposed an intuitive user interface for interactive mesh

segmentation which allows the user to roughly draw 2D foreground/background

strokes to indicate which regions are of interest. It is possible to use an opti-

mization method similar to the Laplacian system used for hairstyle modeling in

Section 4.4 to propagate the guidance information at the user-drawn strokes to

the unknown regions. However, how to design appropriate weighting schemes

for discretizing the Laplace operator (cf. similarity metrics in other segmenta-

tion algorithms), is the most challenging, so this aspect of the problem requires

some additional research.

• Intuitive correspondence specification for cross-parameterization of meshes. Cross-

parameterization (also known as inter-surface mapping) is very useful for texture

blending and shape morphing between meshes. Existing cross-parameterization

techniques [129, 130] rely on dozens of pairs of user-specified point correspon-

dences over meshes in order to align important corresponding features. However,

in many cases, using points only can be cumbersome to specify semantically

meaningful regional features (e.g., legs, arms of human character models). A

possible solution is to use stroke-based guidance as adopted in interactive mesh

segmentation. With the boundary condition derived from the user-drawn cor-

responding stroke pairs, it might be possible to apply the harmonic fields [4]

which is obtained by solving the Laplacian system, to build a one-to-one corre-

spondence between meshes.

• Sketch-based surface reconstruction from unorganized point clouds. Many of ex-

isting highly detailed models are obtained by scanning real-world objects. The

raw output of 3D digital scanners is a set of unorganized point clouds, possibly

with vertex normals. The problem of reconstructing polygonal meshes from un-

organized point clouds is ill posed. The problem becomes even harder to address

when the sampling of the point clouds is highly nonuniform. Very recently, Ju et

al. [131] and Sharf et al. [132] have proposed to use minimal user guidance to get

topologically correct reconstructed surfaces. It would be an interesting topic to

employ minimum user intervention to improve the reconstruction of geometric

details at uncertain regions (e.g., big missing areas).

71

REFERENCES

[1] O. K.-C. Au, H. Fu, C.-L. Tai, and D. Cohen-Or, “Handle-aware isolines for

scalable shape editing,” ACM Transactions on Graphics (Proceedings of SIG-

GRAPH 2007), vol. 26, no. 3, p. to appear, 2007.

[2] J. Huang, X. Shi, X. Liu, K. Zhou, L.-Y. Wei, S.-H. Teng, H. Bao, B. Guo,

and H.-Y. Shum, “Subspace gradient domain mesh deformation,” ACM Trans.

Graph., vol. 25, no. 3, pp. 1126–1134, 2006.

[3] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P. Seidel,

“Differential coordinates for interactive mesh editing,” in Proceedings of Shape

Modeling International. IEEE Computer Society Press, 2004, pp. 181–190.

[4] R. Zayer, C. Rössl, Z. Karni, and H.-P. Seidel, “Harmonic guidance for surface

deformation,” Computer Graphics Forum, vol. 24, no. 3, pp. 601–609, 2005.

[5] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,” in SIGGRAPH

’01. New York, NY, USA: ACM Press, 2001, pp. 301–308.

[6] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool, “Procedural model-

ing of buildings,” ACM Trans. Graph., vol. 25, no. 3, pp. 614–623, 2006.

[7] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering architec-

ture from photographs: a hybrid geometry- and image-based approach,” in SIG-

GRAPH ’96. New York, NY, USA: ACM Press, 1996, pp. 11–20.

[8] ImageModeler, Realviz, 2007.

[9] Y. Wei, E. Ofek, L. Quan, and H.-Y. Shum, “Modeling hair from multiple

views,” ACM Trans. Graph., vol. 24, no. 3, pp. 816–820, 2005.

[10] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B. Kang, “Image-based plant

modeling,” ACM Trans. Graph., vol. 25, no. 3, pp. 599–604, 2006.

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginz-

ton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital

72

michelangelo project: 3d scanning of large statues,” in SIGGRAPH ’00, 2000,

pp. 131–144.

[12] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz, “Spacetime faces: high reso-

lution capture for modeling and animation,” ACM Trans. Graph., vol. 23, no. 3,

pp. 548–558, 2004.

[13] D. Scanner, Cyberware, 2007.

[14] Maya, Autodesk, 2007, http://www.autodesk.com/maya.

[15] 3ds Max, Autodesk, 2007, http://www.autodesk.com/3dsmax.

[16] LightWave, NewTek, 2007, http://www.newtek.com/lightwave/.

[17] ZBrush, Pixologic, Inc., 2007.

[18] Rhino, McNeel, 2007.

[19] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P. Seidel,

“Laplacian surface editing,” in Symposium on Geometry Processing, 2004, pp.

179–188.

[20] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum, “Mesh editing

with Poisson-based gradient field manipulation,” ACM Trans. Graph., vol. 23,

no. 3, pp. 644–651, 2004.

[21] K. Zhou, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, and H.-Y. Shum, “Large

mesh deformation using the volumetric graph Laplacian,” ACM Trans. Graph.,

vol. 24, no. 3, pp. 496–503, 2005.

[22] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-based inter-

face for detail-preserving mesh editing,” ACM Trans. Graph., vol. 24, no. 3,

pp. 1142–1147, 2005.

[23] H. Fu, O. K.-C. Au, and C.-L. Tai, “Effective derivation of similarity transforma-

tions for implicit Laplacian mesh editing,” Computer Graphics Forum, vol. 26,

no. 1, pp. 34–45, 2007.

73

[24] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Laplacian mesh optimiza-

tion,” in ACM GRAPHITE, 2006.

[25] I. Llamas, B. Kim, J. Gargus, J. Rossignac, and C. D. Shaw, “Twister: a space-

warp operator for the two-handed editing of 3D shapes,” ACM Trans. Graph.,

vol. 22, no. 3, pp. 663–668, 2003.

[26] W. von Funck, H. Theisel, and H.-P. Seidel, “Vector field based shape deforma-

tions,” ACM Trans. Graph., vol. 25, no. 3, pp. 1118–1125, 2006.

[27] ——, “Elastic secondary deformations by vector field integration,” in Sympo-

sium of Geometry Processing, 2007.

[28] S.-H. Yoon and M.-S. Kim, “Sweep-based freeform deformations,” Computer

Graphics Forum, vol. 25, no. 3, pp. 487–496, 2006.

[29] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching interface for 3D

freeform design,” in SIGGRAPH ’99, 1999, pp. 409–416.

[30] C.-L. Tai, H. Zhang, and J. C.-K. Fong, “Prototype modeling from sketched

silhouettes based on convolution surfaces,” Computer Graphics Forum, vol. 23,

no. 1, pp. 71–83, 2004.

[31] O. A. Karpenko and J. F. Hughes, “Smoothsketch: 3d free-form shapes from

complex sketches,” ACM Trans. Graph., vol. 25, no. 3, pp. 589–598, 2006.

[32] A. Nealen, T. I. O. Sorkine, and M. Alexa, “FiberMesh: designing freeform

surfaces with 3D curves,” ACM Transaction on Graphics, vol. 26, no. 3, p. To

appear, 2007.

[33] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric

models,” in Computer Graphics (Proceedings of ACM SIGGRAPH 86), 1986,

pp. 151–160.

[34] S. Coquillart, “Extended free-form deformation: a sculpturing tool for 3D geo-

metric modeling,” in Computer Graphics (Proceedings of ACM SIGGRAPH 90),

1990, pp. 187–196.

74

[35] W. Hsu, J. Hughes, and H. Kaufman, “Direct manipulation of free-form defor-

mations,” Computer Graphics, vol. 26, no. 2, pp. 177–184, 1992.

[36] Y. Chang and A. Rockwood, “A generalized de Casteljau approach to 3D free-

form deformation,” Computer Graphics, vol. 28, no. 4, pp. 257–260, 1994.

[37] R. MacCracken and K. I. Joy, “Free-form deformations with lattices of arbitrary

topology,” in Proceedings of ACM SIGGRAPH 96, 1996, pp. 181–188.

[38] T. Ju, S. Schaefer, and J. Warren, “Mean value coordinates for closed triangular

meshes,” ACM Trans. Graph., vol. 24, no. 3, pp. 561–566, 2005.

[39] K. Singh and E. Fiume, “Wires: a geometric deformation technique,” in SIG-

GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics

and interactive techniques, 1998, pp. 405–414.

[40] R. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for shape manip-

ulation,” ACM Transaction on Graphics, vol. 26, no. 3, p. To appear, 2007.

[41] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann, “Joint-dependent lo-

cal deformations for hand animation and object grasping,” in Proceedings on

Graphics interface ’88. Toronto, Ont., Canada, Canada: Canadian Informa-

tion Processing Society, 1988, pp. 26–33.

[42] X. C. Wang and C. Phillips, “Multi-weight enveloping: least-squares approxi-

mation techniques for skin animation,” in ACM SIGGRAPH/Eurographics Sym-

posium on Computer animation, 2002, pp. 129–138.

[43] P. Kry, D. James, and D. Pai, “Eigenskin: real time large deformation character

skinning in hardware,” in Symposium on Computer Animation, 2002.

[44] A. Mohr and M. Gleicher, “Building efficient, accurate character skins from

examples,” ACM Trans. Graph., vol. 22, no. 3, pp. 562–568, 2003.

[45] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deformation: a unified ap-

proach to shape interpolation and skeleton-driven deformation,” in Proceedings

of ACM SIGGRAPH 2000, 2000, pp. 165–172.

75

[46] F. Cordier and N. Magnenat-Thalmann, “A data-driven approach for real-time

clothes simulation,” Computer Graphics Forum, pp. 173–183, 2005.

[47] I. Baran and J. Popović, “Automatic rigging and animation of 3D characters,”

ACM Transaction on Graphics, vol. 26, no. 3, p. To appear, 2007.

[48] S. Schaefer and C. Yuksel, “Example-based skeleton extraction,” in Symposium

on Geometry Processing, 2007.

[49] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman, “Context-aware skeletal

shape deformation,” Computer Graphics Forum, vol. 26, no. 3, p. To appear,

2007.

[50] M. Alexa, “Linear combination of transformations,” ACM Trans. Graph.,

vol. 21, no. 3, pp. 380–387, 2002.

[51] L. Kavan and J. Zara, “Spherical blend skinning: a real-time deformation of

articulated models,” in I3D, April 2005, pp. 9–16.

[52] L. Kavan, S. Collins, J. Zara, and C. O’Sullivan, “Skinning with dual quater-

nions,” in 2007 ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games. ACM Press, April/May 2007.

[53] E. Lindholm, M. J. Kligard, and H. Moreton, “A user-programmable vertex

engine,” in SIGGRAPH 2001, 2001, pp. 149–158.

[54] D. L. James and C. D. Twigg, “Skinning mesh animations,” ACM Trans. Graph.,

vol. 24, no. 3, pp. 399–407, 2005.

[55] L. Kavan, R. McDonnell, S. Dobbyn, J. Zara, and C. O’Sullivan, “Skinning

arbitrary deformations,” in 2007 ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games. ACM Press, April/May 2007.

[56] K. G. Der, R. W. Sumner, and J. Popović, “Inverse kinematics for reduced de-

formable models,” ACM Trans. Graph., vol. 25, no. 3, pp. 1174–1179, 2006.

[57] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović, “Mesh-based inverse

kinematics,” ACM Trans. Graph., vol. 24, no. 3, pp. 488–495, 2005.

76

[58] D. Forsey and R. Bartels, “Hierarchical b-spline refinement,” in Proceedings of

ACM SIGGRAPH 88, 1988, pp. 205–212.

[59] D. Zorin, P. Schröder, and W. Sweldens, “Interactive multiresolution mesh edit-

ing,” in ACM SIGGRAPH, 1997, pp. 259–268.

[60] I. Guskov, W. Sweldens, and P. Schröder, “Multiresolution signal processing for

meshes,” in Proceedings of ACM SIGGRAPH 99, 1999, pp. 325–334.

[61] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive multi-

resolution modeling on arbitrary meshes,” in Proceedings of ACM SIGGRAPH

98, 1998, pp. 105–114.

[62] M. Garland, “Multiresolution modeling: survey & future opportunities,” Euro-

graphics: State of the Art Report, Tech. Rep., 1999.

[63] M. Botsch and L. Kobbelt, “Multiresolution surface representation based on

displacement volumes,” in Eurographics, 2003, pp. 483–491.

[64] D. Xu, W. Chen, H. Zhang, and H. Bao, “Multi-level differential surface repre-

sentation based on local transformations,” The Visual Computer, 2006.

[65] M. Botsch, R. Sumner, M. Pauly, and M. Gross, “Deformation transfer for

detail-preserving surface editing,” in Vision, Modeling & Visualization, 2006.

[66] R. W. Sumner and J. Popović, “Deformation transfer for triangle meshes,” ACM

Trans. Graph., vol. 23, no. 3, pp. 399–405, 2004.

[67] M. Botsch and L. Kobbelt, “Real-time shape editing using radial basis func-

tions,” in Eurographics, 2005, pp. 611–621.

[68] S. Schaefer, T. McPhail, and J. Warren, “Image deformation using moving least

squares,” ACM Trans. Graph., vol. 25, no. 3, pp. 533–540, 2006.

[69] O. Sorkine, “Differential representations for mesh processing,” Computer

Graphics Forum, vol. 25, no. 4, pp. 789–807, 2006.

[70] M. Botsch and O. Sorkine, “On linear variational surface deformation methods,”

IEEE Transactions on Visualization and Computer Graphics, 2007, to appear.

77

[71] A. Sheffer and V. Krayevoy, “Pyramid coordinates for morphing and deforma-

tion,” in 3D Data Processing, Visualization, and Transmission, 2004, pp. 68–75.

[72] V. Kraevoy and A. Sheffer, “Mean-value geometry encoding,” International

Journal of Shape Modeling, vol. 12, no. 1, 2006.

[73] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or, “Linear rotation-invariant

coordinates for meshes,” ACM Trans. Graph., vol. 24, pp. 479–487, 2005.

[74] L. Shi, Y. Yu, N. Bell, and W.-W. Feng, “A fast multigrid algorithm for mesh

deformation,” ACM Trans. Graph., vol. 25, no. 3, pp. 1108–1117, 2006.

[75] D. Xu, H. Zhang, and H. Bao, “Non-uniform differential mesh deformation,” in

Lecture Notes in Computer Science, 2006.

[76] T. Popa, D. Julius, and A. Sheffer, “Material-aware mesh deformations,” in SMI

’06, 2006.

[77] S. Toledo, “TAUCS: a library of sparse linear solvers, version 2.2,” 2003, tel-

Aviv University, Available online at http://www.tau.ac.il/ stoledo/taucs/.

[78] T. Davis, “Cholmod: a sparse supernodal cholesky factorization pack-

age., version 1.5,” 2007, university of Florida, Available online at

http://www.cise.ufl.edu/research/sparse/cholmod/.

[79] M. Botsch, D. Bommes, and L. Kobbelt, “Efficient linear system solvers for

mesh processing,” Lecture Notes in Computer Science, vol. 3604, pp. 62–83,

2005.

[80] O. K.-C. Au, C.-L. Tai, H. Fu, and L. Liu, “Mesh editing with curvature flow

laplacian operator,” Hong Kong University of Science Technology, Computer

Science Technical Report, HKUST-CS05-10, Tech. Rep., 2005.

[81] O. K.-C. Au, C.-L. Tai, L. Liu, and H. Fu, “Dual Laplacian editing for meshes,”

IEEE Transaction on Visualization and Computer Graphics, vol. 12, no. 3, pp.

386–395, 2006.

[82] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt, “PriMo: coupled prisms for

intuitive surface modeling,” in Symposium on Geometry Processing, 2006, pp.

11–20.

78

[83] M. Botsch, M. Pauly, M. Wicke, and M. Gross, “Adaptive space deformations

based on rigid cells,” Computer Graphics Forum (Proc. Eurographics 2007),

vol. 26, no. 3, p. To appear, 2007.

[84] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo, “Mesh puppetry:

cascading optimization of mesh deformation with inverse kinematics,” ACM

Transaction on Graphics, vol. 26, no. 3, p. To appear, 2007.

[85] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “Skeleton-based variational mesh

deformations,” Computer Graphics Forum, vol. 26, no. 3, p. To appear, 2007.

[86] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit fairing of irregular

meshes using diffusion and curvature flow,” in Proceedings of ACM SIGGRAPH

99, 1999, pp. 317–324.

[87] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete differential geom-

etry operators for triangulated 2-manifolds,” in VisMath, 2002, pp. 35–57.

[88] H. Fu and C.-L. Tai, “Mesh editing with affine-invariant laplacian coordinates,”

Hong Kong University of Science and Technology, Computer Science Technical

Report, HKUST-CS05-01, Tech. Rep., 2005.

[89] B. Allen, B. Curless, and Z. Popović;, “The space of human body shapes: recon-

struction and parameterization from range scans,” ACM Transaction on Graph-

ics, vol. 22, no. 3, pp. 587–594, 2003.

[90] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless deforma-

tions based on shape matching,” ACM Trans. Graph., vol. 24, no. 3, pp. 471–

478, 2005.

[91] H. Biermann, D. Kristjansson, and D. Zorin, “Approximate Boolean operations

on free-form solids,” in Proceedings of SIGGRAPH 2001, 2001, pp. 185–194.

[92] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr, “Level set surface

editing operators,” ACM Trans. Graph., vol. 21, no. 3, pp. 330–338, 2002.

[93] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM Transactions

on Graphics, vol. 22, no. 3, pp. 313–318, 2003.

79

[94] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, “Drag-and-drop pasting,” ACM

Trans. Graph., vol. 25, no. 3, pp. 631–637, 2006.

[95] T. Kanai, H. Suzuki, J. Mitani, and F. Kimura, “Interactive mesh fusion based

on local 3D metamorphosis,” in Graphics interface ’99, 1999, pp. 148–156.

[96] H. Biermann, I. Martin, F. Bernardini, and D. Zorin, “Cut-and-paste editing of

multiresolution surfaces,” ACM Transaction on Graphics, vol. 21, no. 3, pp.

312–321, 2002.

[97] H. Fu, C.-L. Tai, and H. Zhang, “Topology-free cut-and-paste editing over

meshes,” in Geometric Modeling and Processing 2004, April 2004, pp. 173–

182.

[98] X. Huang, H. Fu, O. K.-C. Au, and C.-L. Tai, “Optimal boundaries for Poisson

mesh merging,” in ACM Solid and Physical Modeling Symposium 2007, 2007,

pp. 35–40.

[99] A. Sharf, M. Blumenkrants, A. Shamir, and D. Cohen-Or, “SnapPaste: an in-

teractive technique for easy mesh composition,” The Visual Computer, vol. 22,

no. 9, pp. 835–844, 2006.

[100] T. Hassner, L. Zelnik-Manor, G. Leifman, and R. Basri, “Minimal-cut model

composition,” in SMI, 2005, pp. 72–81.

[101] G. Taubin, “A signal processing approach to fair surface design,” in Proceedings

of ACM SIGGRAPH 95, 1995, pp. 351–358.

[102] Z. Ji, L. Liu, Z. Chen, and G. Wang, “Easy mesh cutting,” Computer Graphics

Forum, vol. 25, no. 3, pp. 283–291, 2006.

[103] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, “Least squares conformal maps

for automatic texture atlas generation,” ACM Trans. Graph., vol. 21, no. 3, pp.

362–371, 2002.

[104] G. Barequet and M. Sharir, “Filling gaps in the boundary of a polyhedron,”

Computer Aided Geometric Design, vol. 12, no. 2, pp. 207–229, 1995.

80

[105] B. K. P. Horn, “Closed-form solution of absolute orientation using unit quater-

nions,” Journal of the Optical Society of America, vol. 4, no. 4, pp. 629–642,

1987.

[106] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[107] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp.

239–256, 1992.

[108] F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque,

“Super-helices for predicting the dynamics of natural hair,” ACM Transaction

on Graphics, vol. 26, no. 3, pp. 1180–1187, 2006.

[109] J. T. Moon and S. R. Marschner, “Simulating multiple scattering in hair using a

photon mapping approach,” ACM Trans. Graph., vol. 25, no. 3, pp. 1067–1074,

2006.

[110] K. Ward, F. Bertails, T.-Y. Kim, S. Marschner, M.-P. Cani, and M. Lin, “A

survey on hair modeling: styling, simulation, and rendering,” IEEE Transaction

on Visualization and Computer Graphics, vol. 13, no. 2, pp. 213–234, 2007.

[111] A. V. Gelder and J. Wilhelms, “An interactive fur modeling technique,” in Proc.

Graphics Interface, 1997, pp. 181–188.

[112] T.-Y. Kim and U. Neumann, “Interactive multiresolution hair modeling and edit-

ing,” ACM Trans. Graph., vol. 21, no. 3, pp. 620–629, 2002.

[113] S. Malik, “A sketching interface for modeling and editing hairstyles,” in EG

Workshop on Sketch Based Interfaces and Modeling, 2005, pp. 185–194.

[114] S. Hadap and N. Magnenat-Thalmann, “Interactive hair styler based on fluid

flow,” in EG Workshop on Computer Animation and Simulation, 2000, pp. 87–

99.

[115] Y. Yu, “Modeling realistic virtual hairstyles,” in Pacific Graphics, 2001, pp.

295–304.

81

[116] B. Choe and H.-S. Ko, “A statistical wisp model and pseudophysical approaches

for interactive hairstyle generation,” IEEE Transactions on Visualization and

Computer Graphics, vol. 11, no. 2, pp. 160–170, 2005.

[117] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “SKETCH: An interface for

sketching 3D scenes,” in Proceedings of ACM SIGGRAPH, 1996, pp. 163–170.

[118] X. Mao, H. Kato, A. Imamiya, and K. Anjyo, “Sketch interface based expressive

hairstyle modelling and rendering,” in CGI ’04, 2004, pp. 608–611.

[119] J. Wither, F. Bertails, and M.-P. Cani, “Realistic hair from a sketch,” in Shape

Modeling International, June 2007.

[120] K. Takayama, T. Igarashi, R. Haraguchi, and K. Nakazawa, “A sketch-based

interface for modeling myocardial fiber orientation,” in Smart Graphics 2007,

2007.

[121] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe, “Design of tangent vector

fields,” ACM Transaction on Graphics, vol. 26, no. 3, p. To appear, 2007.

[122] S. Paris, H. M. B. o, and F. X. Sillion, “Capture of hair geometry from multiple

images,” ACM Trans. Graph., vol. 23, no. 3, pp. 712–719, 2004.

[123] T. A. Davis and W. W. Hager, “Modifying a sparse Cholesky factorization,”

SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 3, pp. 606–627,

1999.

[124] Aqsis, 2007, http://www.aqsis.org/.

[125] J. Kajiya and T. Kay, “Rendering fur with three dimensional textures,” in Proc.

ACM SIGGRAPH ’89, 1989, pp. 271–280.

[126] H. Fu, Y. Wei, C.-L. Tai, and L. Quan, “Sketching hairstyles,” in Eurographics

Workshop on Sketched-based Interfaces and Modeling, 2007.

[127] S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy clustering

and cuts,” ACM Trans. Graph., vol. 22, no. 3, pp. 954–961, 2003.

[128] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal, “Mesh

segmentation - a comparative study,” in SMI, 2006, p. 7.

82

[129] V. Kraevoy and A. Sheffer, “Cross-parameterization and compatible remeshing

of 3D models,” ACM Trans. Graph., vol. 23, no. 3, pp. 861–869, 2004.

[130] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe, “Inter-surface mapping,”

ACM Trans. Graph., vol. 23, no. 3, pp. 870–877, 2004.

[131] T. Ju, Q.-Y. Zhou, and S.-M. Hu, “Editing the topology of 3d models by sketch-

ing,” ACM Transaction on Graphics, vol. 26, no. 3, 2007.

[132] A. Sharf, T. Lewiner, G. Shklarski, S. Toledo, and D. Cohen-Or, “Interactive

topology-aware surface reconstruction,” ACM Transaction on Graphics, vol. 26,

no. 3, p. To appear, 2007.

83

APPENDIX A

PUBLICATIONS

Journal

1 Oscar Kin-Chung Au, Hongbo Fu, Chiew-Lan Tai, Daniel Cohen-Or. Handle-aware

isolines for scalable shape editing. ACM Transaction on Graphics (TOG) special

issue: Proceedings of ACM SIGGRAPH 2007. 26(3). In press.

2 Kun Xu, Yuntao Jia, Hongbo Fu, Shimin Hu, Chiew-Lan Tai. Spherical piece-

wise constant functions for all-frequency precomputed radiance transfer, IEEE

Transaction on Visualization and Computer Graphics (TVCG), Under second

round review.

3 Hongbo Fu, Oscar Kin-Chung Au, Chiew-Lan Tai. Effective derivation of similarity

transformations for implicit Laplacian mesh editing, Computer Graphics Forum

(CGF). 26(1): 34-45, March 2007.

4 Oscar Kin-Chung Au, Chiew-Lan Tai, Ligang Liu, Hongbo Fu. Dual Laplacian

editing for meshes, IEEE Transaction on Visualization and Computer Graphics

(TVCG). 12(3): 386-395, MAY/JUNE 2006.

Conference

1 Hongbo Fu, Yichen Wei, Chiew-Lan Tai, Long Quan. Sketching hairstyles, Euro-

graphics Workshop on Sketch-based Interfaces and Modeling 2007, To appear.

2 Xiaohuang Huang, Hongbo Fu, Oscar Kin-Chung Au, Chiew-Lan Tai. Optimal

boundaries for Poisson mesh merging, ACM Solid and Physical Modeling Sym-

posium 2007 (SPM 2007), To appear.

3 Xiangye Xiao, Qiong Luo, Dan Hong, Hongbo Fu, Slicing*-tree based web page

transformation for small displays. ACM Fourteenth Conference on Information

and Knowledge Management (CIKM 2005), Bremen, Germany, 2005.

84

4 Hongbo Fu, Chiew-Lan Tai, Oscar Kin-Chung Au. Morphing with Laplacian co-

ordinates and spatial-temporal texture, In Proceedings of Pacific Graphics 2005

(PG 2005), pages 100-102.

5 Oscar Kin-Chung Au, Chiew-Lan Tai, Hongbo Fu, Ligang Liu. Mesh editing

with curvature flow Laplacian, Symposium on Geometry Processing 2005 (SGP

2005), Vienna, 4-6 July, 2005 (poster).

6 Hongbo Fu, Chiew-Lan Tai, Hongxin Zhang. Topology-free cut-and-paste edit-

ing over meshes, Geometric Modeling and Processing 2004 (GMP 2004), pages

173-182, Beijing, April, 2004.

Working Paper

1 Chunxia Xiao, Hongbo Fu, Chiew-Lan Tai. Multiscale aggregation for efficient

shape extraction, 2007.

2 Shu Liu, Chunxia Xiao, Chengchun Lin, Hongbo Fu, Chengfang Song, Qunsheng

Peng. Smart belief propagation for video completion, 2007.

Technical Report

1 Oscar Kin-Chung Au, Chiew-Lan Tai, Hongbo Fu, Ligang Liu. Mesh editing

with curvature flow Laplacian operator, Technical report, HKUST-CS05-10, July

2005.

2 Hongbo Fu, Chiew-Lan Tai. Mesh editing with affine-invariant Laplacian coordi-

nates, Technical report, HKUST-CS05-01, January 2005.

3 Hongbo Fu, A survey of editing techniques on surface models and point-based mod-

els, PhD Qualifying Examination, Department of Computer Science and Engi-

neering, HKUST, 19 December 2003.

85

	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Contributions
	1.2 Outline

	Chapter 2 Intuitive Mesh Deformation
	2.1 Introduction
	2.2 Related Work
	2.2.1 Subspace-Based Shape Deformation
	2.2.2 Function-Based Shape Deformation

	2.3 Review on Differential Mesh Editing
	2.4 Implicit Laplacian Mesh Editing Framework
	2.4.1 Implicitly Defined Local Deformation Gradients
	2.4.2 Neighborhood Coherence
	2.4.3 Handling Degenerate Vertices
	2.4.4 Shearing Removal by Polar Decomposition

	2.5 Implementation Details and Discussions
	2.6 Summary

	Chapter 3 Poisson Mesh Merging
	3.1 Introduction
	3.2 Related Work
	3.3 Configuration-Independent Merging
	3.3.1 Configuration-Independent Merging
	3.3.2 Configuration-Dependent Merging
	3.3.3 Merging with Overlapped Transition Region

	3.4 Optimal Boundary for Poisson Mesh Merging
	3.4.1 System Overview
	3.4.2 Boundary Energy Minimization
	3.4.3 Iterative Optimization
	3.4.4 Examples and Discussion

	3.5 Summary

	Chapter 4 Hairstyle Sketching
	4.1 Introduction
	4.2 Related Work
	4.3 System Overview
	4.4 Fast Vector Field Computation
	4.4.1 Laplacian System as Field Interpolator
	4.4.2 Incremental Cholesky Factorization

	4.5 Sketch-based Hairstyle Design System
	4.6 Implementation and Results
	4.7 Summary

	Chapter 5 Conclusion
	References
	Appendix A Publications

