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Fast Sketch Segmentation 

and Labeling with Deep 

Learning 

We present a simple and efficient method based on 

deep learning to automatically decompose sketched 

objects into semantically valid parts. We train a deep 

neural network to transfer existing segmentations and 

labelings from 3D models to freehand sketches 

without requiring numerous well-annotated sketches 

as training data. The network takes the binary image 

of a sketched object as input and produces a corresponding segmentation map with 

per-pixel labelings as output. A subsequent post-process procedure with multi-label 

graph cuts further refines the segmentation and labeling result. We validate our 

proposed method on two sketch datasets. Experiments show that our method 

outperforms the state-of-the-art method in terms of segmentation and labeling accuracy 

and is significantly faster, enabling further integration in interactive drawing systems. 

We demonstrate the efficiency of our method in a sketch-based modeling application 

that automatically transforms input sketches into 3D models by part assembly. 

Freehand sketching is frequently adopted as an efficient means of visual communication. Nowa-

days, the wide adoption of touch devices, together with the development of well-designed draw-

ing software (e.g., Autodesk SketchBook), notably gives rise to easy creation of digital sketches 

without pen and paper. Unlike photos, which are faithful captures of the real world from cam-

eras, sketches are artistic depictions from humans. Due to various levels of abstraction and dis-

tortion existing in sketches, the computer is still far from being able to robustly interpret their 

underlying semantics conveyed by humans. 

Existing studies on sketch analysis, such as sketch classification or sketch-based retrieval, have 

mainly focused on interpreting an input sketch globally, lacking further understanding of its con-

stituent parts. Sketch segmentation is a step towards finer-level sketch analysis.1–3 Its goal is to 
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decompose an input sketch into several semantically meaningful components, to which corre-

sponding semantic labels may be assigned at the same time. Yet segmenting freehand sketches 

automatically is still a challenging task, because hand-crafted features or heuristic relations of 

the strokes designed for segmentation1,2 may be sensitive to large variations of the sketches. 

Many existing sketch-based systems4,5 require users to explicitly segment input drawings into 

meaningful components. An automatic and real-time sketch segmentation and labeling algorithm 

allows users to draw continuously without interruptions, paving the way to more natural human-

computer interaction and downstream applications, such as sketch-based modeling by part as-

sembly,6 sketch editing7 or sketch captioning.8 

In this work, we focus on segmenting and labeling individually sketched objects. There has been 

research effort to investigate data-driven approaches for such a task,1,2 more specifically, by 

transferring segmentations and labelings of 3D models1 or 2D example sketches2 to target 

sketched objects. However, these methods are either complicated or computationally inefficient 

even with small-scale databases serving as the knowledge base of semantic segmentation. The 

state-of-the-art method by Schneider and Tuytelaars2 typically requires several minutes to inter-

pret an input sketch. Thus, interactive sketching systems still cannot benefit from existing meth-

ods for more user-friendly interface designs. 

We present a simple and efficient method based on deep Convolutional Neural Networks 

(CNNs) for semantic sketch segmentation and labeling. As illustrated in Figure 1, our network is 

trained to take the binary image of a sketched object as input and predict a corresponding seg-

mentation map with per-pixel labelings as output. Our main challenge is the lack of a large vol-

ume of well-segmented freehand sketches with part annotations as training data. To address this, 

we utilize existing 3D model datasets with part segmentations and labelings.1,9 We render each 

segmented 3D model from various viewpoints and extract edge maps to simulate human draw-

ings. However, there exists a domain shift between edge maps from 3D models and freehand 

sketches from humans. Therefore, we adopt regularization techniques in our network design to 

improve the network performance on freehand sketches. Since sketches are commonly collected 

as sequences of polylines that can be viewed as graphs, we also perform a post-process with 

multi-label graph cuts10 to further refine the segmentation result. Experiments show that our 

method is capable of effectively transferring the segmentation knowledge across the different 

domains. Our method outperforms the state-of-the-art method2 in terms of segmentation accu-

racy and is approximately two orders of magnitude faster during test time. 

We further demonstrate the application of our semantic segmentation method in a sketched-

based modeling system, in which a completed sketch is automatically transformed into a 3D 

model by part assembly.6 Specifically, once the user finishes drawing an object, our system auto-

matically decomposes the sketch into semantic parts in a fraction of a second, retrieves similar 

3D parts from a database of segmented 3D models and assembles them together. Thanks to the 

efficiency and accuracy of our semantic segmentation method, the user can instantly obtain 3D 

modeling results for further editing or refinement. 

 

Figure 1. The pipeline of our method. The binary image of an input sketch is fed into our semantic 
sketch segmentation network to estimate a segmentation map of the constituent parts. Then we 
query part labels from the segmentation map for the stroke points in the stroke-based 
representation (sequences of polylines) of the input sketch and perform a post-process using multi-
label graph cuts for further refinement. 
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To sum up, our main contributions in this work are: 1) the first CNN-based approach for seman-

tic segmentation and labeling of freehand sketches with better performance; 2) an application of 

the semantic segmentation method in sketch-based modeling by part assembly. We will make the 

datasets of 3D models and sketches used in our training and testing stages publicly available. 

RELATED WORK 

Sketch Segmentation and Labeling. Early studies on sketch segmentation used low-level features 

of input drawings, such as distances, curvature or pen speed, to automatically decompose the in-

puts into geometric primitives or symbols.11 By leveraging several low-level geometric features, 

Delaye and Lee12 proposed an agglomerative clustering algorithm for online handwritten docu-

ment segmentation, and Perteneder et al.13 extended it to group sketches on large interactive 

screens, but semantic labelings are not considered. Noris et al.7 developed Smart Scribbles, a 

user-guided segmentation system that combines the graph cut algorithm with constraints from 

additional annotations as strokes. 

Recently a few studies have explored a data-driven approach to achieve high-level semantic seg-

mentation of freehand sketches. To separate objects in a sketched scene, Sun et al.3 employed a 

large clip-art database as the semantic knowledge base to merge strokes that belong to the same 

objects. However, their algorithm heavily depends on the drawing order of input strokes. To seg-

ment a single sketched object, Huang et al.1 proposed to transfer part segmentations and label-

ings from a 3D model database by adopting a Mixed Integer Programming (MIP) formulation. 

However, their method needs manually specified viewpoints for input sketches for higher seg-

mentation accuracy and requires nearly 40 minutes to process a single sketched object. A follow-

up study by Schneider and Tuytelaars2 used a Conditional Random Field (CRF) technique to 

transfer segmentations and labelings from a few example sketches to the inputs. It operates com-

pletely within the sketch domain and achieves high accuracy on the benchmark of Huang et al.1 

Yet their method still takes several minutes to segment a single sketch and may require a large 

number of manually segmented sketches as training data in practice to deal with large variations 

in freehand sketches, especially given the fact that an object can be drawn diversely under differ-

ent viewpoints. 

Our work is closely related to the studies by Huang et al.1 and Schneider and Tuytelaars,2 but our 

method can more efficiently predict sketch segmentations in a fraction of a second by running 

the inference pass of the trained network, instead of iterating over all the database models each 

time.1 Besides, deep CNNs, adopted in our method for revealing part semantics of input 

sketches, do not require specially hand-crafted relations or features of input strokes.1,2 

Semantic Image Segmentation. Studies on semantic image segmentation with deep learning are 

also related to our work. Their goal is to assign a label to each pixel of an input image of natural 

scenes. Long et al.14 proposed to use fully convolutional networks for end-to-end learning, pro-

ducing segmentation maps directly by one inference pass and thus yielding an efficient and uni-

fied framework. Several further improvements have been investigated as well, such as adding 

shortcut connections15,16 or using dilated convolutions.17 We adopt an encoder-decoder network 

design similar to the one by Ronneberger et al.16 but transfer segmentations and labelings from 

edge maps of 3D models to 2D sketches, involving a domain shift. 

Different from natural images with rich texture details, freehand sketches are highly abstract and 

only composed of simple strokes. Sarvadevabhatla et al.8 designed a two-level CNN for parsing 

the image of a sketched object roughly as semantic regions, demonstrating the capability of neu-

ral networks in interpreting freehand sketches at part levels. However, as discussed in their 

work,8 their region-based method cannot produce precise labelings of stroke pixels, that is, 

boundaries of the estimated part regions by their method may not correspond to the strokes of the 

input sketch. 

METHOD 

Given a sketched object of a specific category in the stroke-based representation (i.e., sequences 

of polylines) as input, our method aims to decompose the sketch into semantically valid parts, to 
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which corresponding labels are also assigned at the same time. We resort to deep CNNs, which 

are proven to have large capacity in learning descriptive features for various visual tasks given 

enough training data. Our designed network is trained to take a binary image of the sketched ob-

ject as input and then build a hierarchical and global understanding of the input to produce a seg-

mentation map with per-pixel labelings. We detail the network architecture in the following 

section. Training our semantic sketch segmentation network requires numerous well-segmented 

and labeled sketches, however existing large-scale crowd-sourced sketch datasets18 lack such in-

formation. We use 3D models with segmentations (e.g., from ShapeNet9) to generate edge maps 

with part labelings. Our network is trained on the edge maps and then tested on freehand 

sketches, transferring segmentations and labelings across the two domains. We apply regulariza-

tions in the network design to avoid overfitting. 

Sketches are often stored as sequences of polylines that can be directly gathered from the user's 

drawing trajectories. Given such a representation which can be treated as a graph, for each stroke 

point, we sample part labels from the segmentation map, estimated by our network, and perform 

multi-label graph cuts10 to utilize the grouping information given by humans while drawing for 

further segmentation refinement. 

Network Architecture 

We use an hourglass-shaped network that contains an encoder and a decoder for semantic sketch 

segmentation (see Figure 2).16,19 The binary input image of the sketched object is of size 

256256, containing only one channel. The encoder passes the image through a sequence of con-

volutional layers, which perform progressive down-sampling to produce a relatively low-dimen-

sional feature vector. The decoder inversely up-samples the output of the encoder via a series of 

up-convolutional layers to estimate a corresponding segmentation map as output. 

 

Figure 2. The architecture of our semantic sketch segmentation network. The upper part is an 
encoder that progressively down-samples the input while the lower part is a decoder that inversely 

up-samples feature representations. The input edge map is of size 256256, so is the output 

segmentation map. The dashed lines represent shortcut connections and the symbol  denotes 
concatenation. (Conv: convolution; Act: activation; Drop: dropout; BN: batch normalization; Upconv: 
up-convolution.) The numbers within parentheses represent kernel size, stride and the number of 
output feature maps of a convolutional operation. The segmentation map contains k feature maps, 
representing estimations over k part labels (including background). During testing, the inputs are 
freehand sketches instead and the dropout operations are disabled. 
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More specifically, the encoder of our network contains seven convolutional layers with kernel 

size = 4 and stride = 2, except for the first layer with kernel size = 8 to accommodate the sparsity 

of stroke pixels. The number of output feature maps of each layer is shown in Figure 2. We ap-

ply batch normalization (except for the first layer) and leaky ReLUs with slope = 0.2 as activa-

tion functions after each convolutional operation. To better regularize the network and improve 

the robustness when the network deals with freehand sketches, we use dropout with probability = 

0.5 in the first three layers during training. Note that features produced by the last layer are of 

size 22512. We will use these features in the application section for sketch-based 3D model 

part retrieval. 

Similarly, the decoder has seven up-convolutional layers, each with kernel size = 4 and stride = 

2, except for the last layer with kernel size = 8. We apply batch normalization and ReLUs as ac-

tivation functions (except for the last layer) after each up-convolutional operation. We use drop-

out with probability = 0.5 in the first three layers as well. To transfer information between 

corresponding network layers at the same level, we add shortcut connections, akin to the design 

of U-Net16 for better information flow. Specifically, the input of each up-convolutional layer in 

the decoder is the concatenation of the outputs of its previous layer and the corresponding layer 

in the encoder. Additionally, before feeding the concatenation result into each up-convolutional 

layer, we pass it through a small module, which contains a stack of convolution (kernel size = 1, 

stride = 1), batch normalization and ReLU operations, to halve the number of feature maps. This 

helps to reduce the number of parameters of the decoder from 8.2M to 5.6M. The output seg-

mentation map is of size 256256 and contains k  channels, representing the estimations over k  

part labels (including one label for blank background, i.e., non-stroke pixels). Note that the value 

of k  varies with object categories. 

Training 

To train our network, we adopt the per-pixel cross-entropy loss function. Specifically, the soft-

max function is first applied to the k  channels at each pixel position of the predicted segmenta-

tion map. Let j

ip  denote the probability estimation for the j th part label (1 j k  ) at the i th 

pixel position, and let j

ip  be the one-hot representation of the ground truth (i.e., the bit corre-

sponding to the ground truth label is 1 while the rest is 0). The loss function is defined in the fol-

lowing form: 

 log( )j j

i ii j
L p p    .(1) 

Here we briefly discuss alternative loss functions. During network design, we initially tried to 

introduce weighting factors in the loss function to balance the disproportional ratios between the 

background and the foreground as well as the ratios of part labels of an object category. How-

ever, we observed no significant improvements in segmentation accuracy. We also tried to con-

sider only the segmentation predictions of the foreground, ignoring the background, in the loss 

function, but this modification did not improve the result either. 

 

Figure 3. Example edge maps with ground-truth part segmentations and labelings derived from 3D 
models. 

To generate training data, we render 3D models with part segmentations and labelings1,9 of a 

specific object category to extract edge maps. The 3D models in the database are well aligned 
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with consistent upright orientations. We sample viewpoints (36 ~ 72 for different object catego-

ries) on the upper unit viewing hemisphere, along with two camera-to-object distances (near and 

far), to render normal maps of the 3D models for Canny edge detection. Two types of edge maps 

are generated: with and without depth-testing (Figure 3), corresponding to the drawing styles of 

including or excluding hidden parts users may employ in freehand sketches. To obtain edge 

maps without depth-testing, we render the normal map and detect edges individually for each 

model part. We remove the invisible parts of the detected part edges by depth-testing to generate 

edge maps with depth-testing. Suggestive contours20 are not used here, because the algorithm 

does not perform well on man-made models that are poorly triangulated. 

We implement our semantic sketch segmentation network with Tensorflow. We use Adam (

1 0.9  , 1 0.999  ) for stochastic gradient descent update and set the learning rate to 0.0001. 

The network is trained for 80K steps with batch size = 32 on an NVIDIA GTX 1080Ti GPU. As 

suggested by Isola et al.,19 during testing, we use batch normalization with the statistics of the 

testing data batch (freehand sketches) instead of the accumulated statistics of the training data 

batches (edge maps). 

Post-processing 

Sketches are commonly collected as sequences of strokes, which can be viewed as initial seg-

mentations. However, 2D CNNs can only take images as input for feature extraction and seg-

mentation prediction, and it is still unclear how to effectively integrate the grouping information 

of strokes into the inputs in a principled manner. Although the recently proposed SketchRNN 

uses Recurrent Neural Networks (RNNs) to process point sequences of strokes, yielding a gener-

ative network for human sketches. However, training the RNNs requires a large volume of real 

human sketches that contain semantically valid stroke ordering, which is hard to synthesize for 

polylines extracted from rendered edge maps.  

Instead, we perform a post-processing procedure exploiting the stroke-based representation to 

refine the network results (Figure 1). Specifically, we treat the sketch as a graph ( , )G N E , 

where the nodes N  are the stroke points and the edges E  connect sequentially adjacent points 

in a stroke. We define the following graph cut energy GL  for optimization: 

 ,( , )
( ) ( , )G p p p q p qp N p q E

L D l V l l
 

     .(2) 

The first term is the data term, where ( )p pD l  is the cost of assigning the point p  with part label 

pl . We query the segmentation map estimated by the network and assign a constant cost dc  if 

pl  is not consistent with the label of the corresponding point of p  in the segmentation map, and 

a zero cost otherwise. The second term is the smoothness term, where , ( , )p q p qV l l  assigns a con-

stant cost sc  if pl  and ql  are different, and a zero cost otherwise. (Settings of dc  and sc  will be 

discussed in the evaluation section.) The energy minimization problem can be efficiently solved 

by the algorithm of Kolmogorov and Zabin.10 This post-processing procedure helps to smooth 

out the noisy labelings produced by the network in each single stroke. 

Discussion. A straightforward solution that counts the dominant label of points of each stroke in 

the post-processing would not work well in practice because a single stroke drawn by the user 

may contain segments that belong to different object parts. Our method makes no assumptions 

on dominant labels, thus laying no constraints on how the user draws objects, and can be seen as 

a more general solution to the post-processing step. 

EVALUATION 

To evaluate our proposed semantic sketch segmentation method, we have performed experi-

ments on two existing sketch datasets: Huang'14 dataset (10 object categories, 30 sketches per 

category via observational drawing by three participants)1 and a subset of TU-Berlin dataset (250 

object categories, 80 sketches per category via crowd sourcing).18 Due to different collection 



 

  

procedures, the sketches in the Huang'14 dataset closely resemble real-world objects with more 

complex structures while the sketches in the TU-Berlin dataset are more iconic and abstract. 

Like existing studies,1,2 we report segmentation accuracies using two types of evaluation metrics: 

pixel metric and component metric. For an input sketch, the pixel metric is calculated as the per-

centage of stroke pixels that are predicted with the same part labels as the ground truth. The 

component metric is calculated as the number of strokes with correctly predicted part labels over 

the total number of strokes in a sketch, irrespective of stroke length. A stroke is correctly labeled 

if the percentage of correctly labeled pixels in the stroke is above a certain threshold (75% in the 

experiments).1,2 Figure 4 shows some sketch segmentation and labeling results produced by our 

method. 

Comparisons on Huang'14 Dataset 

We compare our semantic sketch segmentation method with the MIP1, CRF2 and DeepLab17 

methods on the 10 object categories of Huang'14 dataset (Table 2 and Table 3). MIP1 and CRF2 

are the traditional sketch segmentation methods, while DeepLab17 is a state-of-the-art deep learn-

ing model for semantic image segmentation, which combines several techniques (e.g., atrous 

convolution and fully connected CRFs) compared to other deep learning models. The sketches in 

each category are already annotated with ground truth labelings.  

To train our network on a specific category, we used the segmented 3D models provided by 

Huang et al.1 to extract edge maps. However, the number of 3D models in each category is very 

limited (Table 1) and may not be enough for training large networks. Since other existing seg-

mented 3D model datasets9 contain incompatible part annotations with the ones provided by 

Huang et al.1 (i.e., different segmentation granularity), we collected dozens of additional 3D 

models from 3D Warehouse and ShapeNet9 for each category (Table 1) and manually segmented 

the new models with the same part labels used by Huang et al.1 Additionally, we performed a 

simple data augmentation procedure by non-uniformly scaling the 3D models along each axis 

with factors 0.5 and 1.5 before rendering. We validated our network architecture on the chair 

sketches. For values of dc  and sc  used in the post-processing, we performed an exhaustive 

search on the validation data for the optimal setting, resulting in 1dc   and 88sc  . After final-

izing the network architecture and the parameters, we used the same design setting in the experi-

ments for the other nine categories (and the experiments on the following TU-Berlin dataset). 

For completeness, we also include the performance of our method on the chair sketches in Table 

2 and Table 3. 

 

Figure 4. Automatically segmented and labeled sketches using our method. 

Table 2 shows pixel metric accuracy comparisons of MIP-Auto,1 CRF2, DeepLab17 and our 

method, which are fully automatic, and MIP-Manual,1 which requires manually-specified view-

points for input sketches. We simultaneously fed x  sketches ( 1,2,4,6,8,10x  , randomly 

divided) into our network as a batch for segmentation map prediction. For the last batch, we ap-

pended sketches that have already been tested to form a complete batch if necessary. We find 
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that our method generally outperforms the CRF method with improvement of around 7-8% in 

pixel metric. Our method performs better than CRF in all the tested categories. Our method is 

approximately 12-13% higher than MIP-Auto, but requires additional 3D models as training 

data. However, MIP-Auto would not scale well with additional 3D models during testing, requir-

ing even more running time due to its one-by-one iteration paradigm. Our method is even com-

parable to MIP-Manual that requires user assistance. Note that the CRF method used 20 sketches 

of a specific category as training data and the remaining 10 sketches as testing data, while the 

MIP methods were evaluated on all the sketches in each category. For the comparison of deep 

neural networks, the DeepLab17 network, intended for semantic image segmentation, was trained 

with the same data (batch size = 4, 80K training steps) as ours. However, the experiment shows 

that it does not work well on the sketch input, because it focuses more on estimating regions of 

segmentation for the input image, struggling at region boundaries (i.e., thin edges like strokes). 

Table 1. 3D models used for training our network. 

 

Table 2. Pixel metric accuracy (%) on Huang'14 dataset. 

 

Table 3 shows the component metric accuracies. Both MIP and CRF include a pre-processing 

procedure that splits each input stroke into segments at high-curvature or junction points and as-

sume such segments are the basic units (i.e., as components) for assigning labels. As discussed 

by Schneider and Tuytelaars,2 since the two methods may split strokes differently, the pixel met-

ric comparison is more reliable than the component metric comparison. Our method does not re-

quire the pre-processing procedure, instead takes the whole sketch image as input to the network. 

Nevertheless, for comparison, we used the sketches processed and split by Schneider and Tuy-

telaars2 in the experiments to compute the component metric accuracies. Our method generally 

outperforms CRF with improvement of around 6-7% in component metric. Our method again 
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Ours-2 85.2 86.3 77.0 72.2 84.2 79.8 88.2 71.5 79.2 82.6 80.6

Ours-4 85.9 86.2 78.6 74.1 84.5 80.5 87.1 70.9 80.3 81.3 80.9

Ours-6 85.8 86.0 78.5 75.0 84.8 80.3 87.0 71.9 80.6 82.1 81.2

Ours-8 84.9 86.3 79.1 75.4 84.8 81.0 88.0 71.2 79.8 82.0 81.3

Ours-10 85.7 86.2 78.3 75.5 84.9 80.5 87.8 70.6 81.4 82.7 81.4

Note: Ours-NoGC: our method without graph-cut optimization; Ours-x : x  sketches are 

simultaneously fed into our network as a batch.  Best results among MIP-Auto, CRF, 

DeepLab and Ours in each column are in boldface.



 

  

consistently performs better than CRF in all the tested categories. The component metric also 

shows the inferiority of directly applying existing networks (like DeepLab17) of semantic image 

segmentation. From Table 2 and Table 3, it is observed that our method can obtain better results 

in both global (pixel metric) and fine-level (component metric) interpretation. 

Table 3. Component metric accuracy (%) on Huang'14 dataset. 

 

We evaluate the effect of the graph-cut post-processing procedure of our method by removing it 

in experiments (Ours-NoGC). Table 2 and Table 3 show that the accuracies drop both in pixel 

metric and component metric for Ours-NoGC. Additionally, we find that different batch sizes 

(Ours- x ) during testing result in minor difference in the segmentation and labeling accuracies. 

This is due to the batch normalization operations whose statistics are computed only on the test-

ing data batch (freehand sketches), without using the aggregated information from the training 

stage, to accommodate the domain shift. The experiments show that using larger batch sizes on 

the Huang'14 dataset gives slightly better results on average, though in practical applications 

(e.g., our sketch-based modeling), batch size is often set to one. 

Figure 5 shows the qualitative comparisons of segmentation and labeling results among MIP-

Manual, CRF and our method. It is observed that both MIP-Manual and CRF tend to struggle 

with sketch parts that have relatively complex structures (such as the stablizers of the airplane or 

the chain and pedal part of the bicycle). In contrast, our method can better handle such cases ow-

ing to the large capacity of the adopted deep neural networks for both global and local interpreta-

tion. It also shows that our post-processing step with graph cuts helps to alleviate the wrong 

network predictions with the stroke-based representation. 

 

Figure 5. Qualitative comparisons of segmentations and labelings produced by MIP-Manual,1 CRF2 
and our method. (GT is the ground truth segmentation.) 
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MIP-Manual
1 66.2 66.4 56.7 63.1 67.2 64.0 89.3 62.2 69.0 63.1 66.7

MIP-Auto
1 55.8 58.3 47.1 42.4 64.4 47.2 77.6 51.5 56.7 51.8 55.3

CRF
2 48.7 68.6 66.2 61.6 74.2 63.1 77.2 65.1 65.6 79.1 67.0

DeepLab
17 30.4 46.0 44.1 44.5 49.1 55.5 64.8 50.2 51.9 63.6 50.0

Ours-NoGC 65.4 67.9 59.2 60.5 66.5 61.9 78.1 56.3 67.3 71.9 65.5

Ours-1 75.5 76.7 68.0 69.3 75.8 71.9 80.9 67.3 73.1 79.3 73.8

Ours-2 76.2 76.8 68.2 68.1 75.2 72.3 83.1 67.6 74.7 77.1 73.9

Ours-4 76.7 76.9 68.6 69.1 75.4 73.0 83.3 66.5 75.8 76.8 74.2

Ours-6 76.7 76.9 69.4 70.3 75.1 72.9 82.9 67.9 76.4 77.0 74.6

Ours-8 75.7 77.0 70.0 70.2 75.1 73.5 83.8 66.4 75.4 77.4 74.5

Ours-10 76.9 77.1 69.9 70.3 75.5 72.8 83.8 65.7 77.3 78.0 74.7

Note: Best results among MIP-Auto, CRF, DeepLab and Ours in each column are in 

boldface.
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Body Hori. Stab. Vert. Stab. Wing
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We performed the experiments using our Python implementation on a PC with an Intel Core i5 

CPU @ 3.2GHz and 8 GB RAM. We quote the running time performance of the traditional MIP1 

and CRF2 methods, both of which gave no detailed statistics for further comparison. The MIP 

method, implemented in MATLAB with the highly optimized library Gurobi, reported 40 

minutes for interpreting a single sketch. The CRF method, which is the state-of-the-art and 

claims an order of magnitude faster than MIP, reported 2-3 minutes to test a sketch. It is imple-

mented in MATLAB with the UGM library. We speculate their bottleneck might lie in the first 

stage involving dense SIFT feature extraction, GMM-based feature distribution estimation, and 

SVM-based classification for individual stroke segments. For fair comparison of running time, 

our implementation does not utilize GPU acceleration during testing. To process a single sketch, 

our method requires ~0.35s on average for segmentation map prediction and the post-process. In 

short, our method is around two orders of magnitude faster than the state-of-the-art method. 

Table 4. Pixel metric accuracy (%) on TU-Berlin dataset. 

 

Table 5. Component metric accuracy (%) on TU-Berlin dataset. 

 

Evaluation on TU-Berlin Dataset 

To further evaluate the performance of our method, we also performed a similar set of experi-

ments on a subset of the TU-Berlin dataset, which has more freely-drawn (80) sketch instances 

in each object category. We used a 3D model dataset provided by Yi et al.,9 which has large-

scale crowd-sourced segmentations and labelings, for edge map extraction. We selected five ob-

ject categories, namely airplane, chair, guitar, motorbike, and table, by considering the category 

intersection of the two datasets, the number of part labels and the assembly-based modeling ap-

plication. The numbers of 3D models and part labels in each category are listed in Table 1. Note 

that the crowd-sourced segmentation of 3D models provided by Yi et al.9 generally contains 

fewer part labels than the one used by Huang et al.1 Sketches of the same five categories are se-

lected from the TU-Berlin dataset for testing. We manually annotated these sketches accordingly 

with part labels used in the 3D models. 

Table 4 and Table 5 show the segmentation and labeling accuracies of our method on this test set 

using the pixel and component metrics. The full set of chair sketches in the TU-Berlin dataset is 

used as testing data. We find that our graph-cut post-processing procedure consistently improves 

Category Airplane Chair Guitar Motorbike Table Average

Ours-NoGC 77.6 91.7 78.5 66.0 92.0 81.1

Ours-1 82.1 95.7 81.4 70.8 94.0 84.8

Ours-2 78.8 95.0 79.6 70.9 92.9 83.4

Ours-4 78.2 94.8 79.8 71.1 92.7 83.3

Ours-6 78.4 94.8 79.8 71.0 91.6 83.1

Ours-8 79.1 94.5 79.6 71.3 92.6 83.4

Ours-10 79.3 94.8 79.2 71.8 92.7 83.6

Note: Best results in each column are in boldface.

Category Airplane Chair Guitar Motorbike Table Average

Ours-NoGC 63.5 89.5 67.0 47.5 87.3 71.0

Ours-1 72.4 93.5 78.8 61.1 91.1 79.4

Ours-2 70.8 92.9 77.2 61.5 90.5 78.6

Ours-4 69.9 92.4 76.4 61.5 90.0 78.0

Ours-6 70.3 92.8 76.7 61.8 89.4 78.2

Ours-8 70.8 92.4 76.5 62.2 90.2 78.4

Ours-10 70.7 92.7 75.9 62.6 90.3 78.4

Note: Best results in each column are in boldface.



 

  

the performance on the TU-Berlin dataset as well. However, batching more sketches as input to 

the network is not effective on this dataset. We speculate that this may be due to the difference in 

shape variations of sketches in Huang'14 and TU-Berlin datasets. The more freely drawn 

sketches in the TU-Berlin dataset deviate more from the training edge maps, which commonly 

contain regular lines, making the estimation of statistics in the batch normalization operations 

less reliable during testing. 

Limitations 

Figure 6 shows some sketches with poor segmentation and labeling results by our method. Our 

method (mainly the network) may produce flipped segmentations due to the failure of interpret-

ing correct viewpoints for the input sketches (Figure 6-(a)(b)). Although our method shares the 

same goal with CRF, which aims at automatic sketch segmentation algorithms, extra inputs from 

the user could help to address this issue but with slight modification of our network. For in-

stance, similar to MIP,1 the user could interactively manipulate an exemplar 3D model to match 

the viewpoint of the sketched object. This extra viewpoint cue can be injected into the decoder 

network via a second network branch, which can be parallel to the encoder and consist of fully-

connected layers, to improve segmentation map estimation. Besides, certain levels of shape am-

biguity in the inputs (Figure 6-(c), seat and back are of similar shapes) or sketches that are drasti-

cally different from 3D models in the training data (Figure 6-(d), no 3D human model with such 

a pose) may also pose challenges to our method. 

 

Figure 6. Sketches with poor segmentation and labeling results by our method. (GT is the ground 
truth segmentation.) 

APPLICATION 

We demonstrate the efficiency of our semantic sketch segmentation method in a sketch-based 

modeling task that automatically converts input sketches into 3D models by assembling the rec-

ognized parts.6 The efficiency of our method enables users to instantly obtain modeling results 

from freehand sketches and then perform further editing of the results. 

Our sketch-based modeling task on a specific object category comprises an offline stage and an 

online stage. During the offline stage, we extract feature vectors from the rendered edge maps of 

the model parts in the database. The extracted features are then individually stored by part label 

for subsequent sketch-based part retrieval in the online stage. With the trained network for a spe-

cific object category, we use the features produced by the last layer of the encoder sub-network 

to quantify the input edge maps (as described in the Network Architecture section). Note that af-

ter this feature quantization process, a 3D model part is represented by multiple image feature 

vectors, each of which corresponds to a specific rendering viewpoint and can be matched for re-

trieving the 3D part. Other image features (e.g., bag-of-features) may also be employed alterna-

tively.  

During the online stage, a complete user-sketched object is taken as input to our semantic seg-

mentation method. Next, for each segmented and labeled part of the sketch, we again use the en-

coder sub-network to extract a corresponding feature vector, in the same way as above, for 3D 

model part retrieval. To search for similar 3D model parts within the identified part category, 

given the extracted feature vector of a sketch part, we compare the Euclidean distance between 

the feature vector and the ones extracted in the offline stage. The retrieval procedure finally pro-

duces a ranked list of candidate 3D model parts for each sketch part.  

GT Ours

(c)

GT Ours

(a)

GT Ours

(d)

GT Ours

(b) Back Leg Seat

Stile Stretcher

Body Ear Head Leg Tail Arm Body Foot
Hand Head Leg

Barrel Body Butt
Hand grip

Sight Trigger
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We select the highest ranked from each list and assemble them together in a simple way just to 

demonstrate proof of concept as follows. Since 3D models in the database are already aligned 

with the consistent orientation, we simply optimize the bounding boxes of these model parts 

such that their relative position and size relationships satisfy the configuration of 3D models 

from which the parts originated. Specifically, for a pair of retrieved 3D model parts ( , )p qm m  to 

be assembled together, if the source 3D model pM  of pm  contains a part qm  with the same la-

bel as qm , we penalize the differences of the overlapping magnitude (i.e., insertion ratio) of 

bounding boxes between ( , )p qm m  and ( , )p qm m  along each axis, together with the original po-

sitions and sizes as soft constraints, and similarly for the source 3D model qM  of qm . The opti-

mization is solved in a least-squares sense. More advanced assembly methods6 can be used 

alternatively. 

 

Figure 7. Example results of automatic sketch-based modeling by part assembly. 

Figure 7 shows some of our sketch-based modeling results. Please refer to the supplementary 

video for modeling in action and more results. Other applications, such as sketch editing,7 sketch 

captioning8 or fine-grained sketch-based image retrieval, may also benefit from our fast semantic 

sketch segmentation method. 

CONCLUSION 

In this work, we have proposed a fast semantic sketch segmentation method. We build upon 

deep neural networks to transfer segmentations and labelings from 3D models to freehand 

sketches, which is followed by a post-processing procedure with multi-label graph cuts for re-

finement. Experiments show that our proposed method outperforms the state-of-the-art method 

in terms of segmentation and labeling accuracy and is able to process a single sketch within a 

fraction of a second, which is around two orders of magnitude speedup. In the future, we will 

investigate methods that can further alleviate the domain shift problem between edge maps of 3D 

models and freehand sketches, such as incorporating adversarial training to improve the robust-

ness of the segmentation network. Crowd-sourcing large-scale part annotations of freehand 

sketches may also ease the training process of the segmentation network. 
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