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Figure 1: Given a sketched scene consisting of semantically segmented objects as input, our framework produces object cat-

egories with higher contextual compatibility compared to the predictions of the state-of-the-art single-object classification

method (indicated within the parentheses). Our framework can be applied to both sketch co-classification (a)(b) and incre-

mental sketch classification (c). The processing order is indicated next to the categories in (c).

ABSTRACT

We present a novel context-based sketch classification framework

using relations extracted from scene images. Most of existing meth-

ods perform sketch classification by considering individually sketched

objects and often fail to identify their correct categories, due to

the highly abstract nature of sketches. For a sketched scene con-

taining multiple objects, we propose to classify a sketched object

by considering its surrounding context in the scene, which pro-

vides vital cues for alleviating its recognition ambiguity. We learn

such context knowledge from a database of scene images by sum-

marizing the inter-object relations therein, such as co-occurrence,

relative positions and sizes. We show that the context information

can be used for both incremental sketch classification and sketch

co-classification. Our method outperforms a state-of-the-art single-

object classification method, evaluated on a new dataset of sketched

scenes.

CCS CONCEPTS

• Human-centered computing → Human computer interaction

(HCI); • Computing methodologies → Shape analysis;
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1 INTRODUCTION

Freehand sketching is arguably one of the most accessible and

efficient means for communicating ideas. However, semantically

recognizing roughly-sketched objects remains an algorithmic chal-

lenge. Unlike natural images with rich texture details, sketches are

a unique 2D art form that tends to be drawn at different levels

of abstraction and in different styles, commonly with noticeable

distortions. A robust sketch recognition approach capable of accom-

modating variations can facilitate better human-human communi-

cations and human-computer interactions in a high-level language

and empower many practical downstream applications, such as

graphical design, sketch-based retrieval or modeling.

Existing studies have mainly focused on identifying categories

of individually sketched objects by casting the problem as an image

classification task and applying available techniques from the nat-

ural image domain. Classifiers, such as Support Vector Machines

(SVMs), are trained on certain image features that are extracted

from a database of collected sketches [Eitz et al. 2012; Schneider and

Tuytelaars 2014]. Recently, researchers have also employed deep

Convolutional Neural Networks (CNNs) to learn more discriminant

features for single sketched object classification [Sangkloy et al.
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2016; Yu et al. 2017]. Although their accuracies (e.g., close to 80%

on their tested datasets) surpass the performance of traditional

approaches based on hand-crafted features (69%) [Schneider and

Tuytelaars 2014], they still often produce wrong predictions due to

the inherent interpretation ambiguity of individual sketches. Such

a problem deteriorates considerably when the sketches are highly

abstract and created in a short period, like millions of doodles in

the QuickDraw dataset [Ha and Eck 2017].

We observe that users often sketch multiple objects together to

compose a scene that visualizes a complex concept [Chen et al. 2009;

Shin and Igarashi 2007; Xu et al. 2013]. Recognition uncertainty

can be alleviated by considering relations among the objects in

the scene as additional cues. For example, in Fig. 1-(b), it is very

challenging for existing approaches to recognize each object in-

dividually (e.g., keyboard or mouse), since other categories in the

training dataset (e.g., pillow or vase) may also contain sketches

of similar shapes. However, if all the sketched objects are jointly

considered, the compatibility of their predicted categories, in terms

of co-occurrence and spatial relations, can strongly indicate that the

drawing is more likely to be a workplace and that the ambiguous

objects are more likely a keyboard and a mouse.

This motivates us to propose a new sketch classification frame-

work that is endowed with relations of object categories to better

address the above ambiguity issue. To this end, we need to solve

two main challenges. Firstly the extraction of relation priors on

categories of sketched objects requires voluminous sketch data.

Unfortunately, there is a lack of large-scale datasets of sketched

scenes at present. Existing sketch datasets, such as [Eitz et al. 2012;

Ha and Eck 2017; Sangkloy et al. 2016], only comprise drawings of

single objects. We resort to existing image datasets that contain rich

annotations of objects in real-world scenes, and we show that it is

a viable solution to transfer and apply the learned relation priors

across different domains (i.e., image to sketch). The other challenge

is to identify and quantify relations that are effective for ambiguity

resolution, and then to unify them.

Taking a scene sketch composed of semantically segmented ob-

jects as input, we leverage existing CNNs, which are trained for

single-object classification, to produce candidate categories for each

sketched object in the scene. With the relation priors extracted, we

define a compatibility function to evaluate the plausibility of specif-

ically assigned categories of a pair of sketched objects. Then a pri-

oritizing process is designed to select the most probable candidates

that respect the extracted relation priors well so that a semantically

valid scene is formed. Specifically, we present two context-based

sketch classification algorithms that target different sketching sce-

narios: an incremental algorithm (Fig. 1-(c)) for recognizing a new

object given confirmed categories of existing objects as context, and

a co-classification algorithm (Fig. 1-(a)(b)) for jointly identifying

the categories for all the objects in the scene at once. To test the

performance of the proposed algorithms, we collect an evaluation

dataset that contains 332 freehand scene sketches, covering various

object categories and scene types. Overall our incremental classifi-

cation algorithm is 6.7% higher and our co-classification algorithm

is 6.3% higher than the CNN-only method [Sangkloy et al. 2016] in

terms of classification accuracy. We will release this dataset to the

community for future relevant research.

To sum up, our contributions in this work are three-fold: 1) ex-

tracting and transferring relation priors from the image domain to

the sketch domain to alleviate recognition ambiguity in sketches; 2)

a context-based sketch classification framework with two specific

algorithms for different sketching scenarios, each achieving higher

accuracy than the state-of-the-art CNN for single-object classifi-

cation; 3) a new dataset of scene sketches for benchmarking the

performance of relevant recognition algorithms.

2 RELATEDWORK

The seminal work Sketchpad [Sutherland 1964] introduced sketch-

ing as a means of human-computer interaction in the earliest days

of the computer graphics field. Since then, much research effort

has been devoted to low-level understanding of sketches, such as

identifying geometric primitives (e.g., lines or circles) [Paulson and

Hammond 2008; Sezgin et al. 2001] or discovering repetitive pat-

terns for gesture recognition [Donmez and Singh 2012]. Information

like stroke ordering has been used in sketch recognition [Sezgin

and Davis 2005]. Prior knowledge can also be utilized to facilitate

the recognition of domain-specific drawings [Alvarado and Davis

2004], such as mathematical expressions [LaViola and Zeleznik

2004], chemical drawings [Ouyang and Davis 2011], electronic cir-

cuit diagrams [Kara and Stahovich 2004; Sezgin and Davis 2008] or

architectural drawings [Lu et al. 2005].

Recently, high-level semantic understanding of sketches, in terms

of objectness, has received an increasing amount of research atten-

tion. However, due to different levels of abstraction and styles in

freehand drawings, recognizing a single sketched object semanti-

cally is challenging, especially for highly abstract ones. Given a

dataset of sketched objects as training data, a common paradigm

among existing studies is to first extract certain hand-crafted fea-

tures (most of them originally proposed for natural images) from

the sketch images and then to train a classifier (e.g., SVMs) on the

feature representations to predict the categories of unseen sketched

objects. The first work for large-scale recognition analysis of hu-

man sketched objects, by Eitz et al. [2012], used a bag-of-features

representation [Sivic and Zisserman 2003] of sketch images and

trained multi-class SVMs on a dataset of 250 object categories, col-

lected via crowd-sourcing, achieving a recognition accuracy of 56%.

In contrast, humans can recognize on average 73.1% of sketches

in this dataset. Several follow-up studies differ mostly in the use

of feature representations originated from natural images, for in-

stance, by replacing bag-of-features with Fisher Vectors [Schneider

and Tuytelaars 2014] (with the recognition accuracy improved to

68.9%) or by combining several types of local features [Li et al. 2015]

(65.8%).

Visual recognition tasks [Russakovsky et al. 2015], such as object

detection and classification in natural images, have advanced signif-

icantly thanks to the rapid development of deep learning. Similar

approaches have been applied to single sketched object recogni-

tion. Instead of relying on hand-crafted features of sketch images,

Yu et al. [2017] adopted a CNN architecture, matured in visual

recognition tasks, to learn more discriminant hierarchical features

for classifying sketches more robustly. Their carefully-designed

sketch classification network outperforms humans, achieving an

accuracy of 77.95% on the TU-Berlin dataset [Eitz et al. 2012]. To
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address the lack of texture details in sketches, Zhang et al. [2016]

introduced another CNN-based method that uses natural images

as an intermedium for learning shared features of sketches more

effectively. The recent work done by Sangkloy et al. [2016] reported

the state-of-the-art accuracy (80.85%) using GoogLeNet [Szegedy

et al. 2015] on the above dataset.

We reiterate that the aforementioned methods for high-level

semantic recognition of sketches, including the ones with hand-

crafted features and the ones with CNNs, are designed for indi-

vidually sketched objects. In practice, multiple objects are often

drawn together to depict a more complex scene, for example, for the

composition of new images [Chen et al. 2009; Hu and Collomosse

2013], diagrams [Yesilbek and Sezgin 2017] or 3D scenes [Shin

and Igarashi 2007; Xu et al. 2013]. In such scenarios, the relations

among the sketched objects can provide strong cues for alleviating

recognition uncertainty, which is the main focus of our work.

Leveraging object relations has been explored extensively in

scene-object classification tasks in natural images, but rarely in

scene sketches. Galleguillos and Belongie [2010] summarized three

types of relationsmainly used in image classification: co-occurrence,

positions and sizes. Generally, such relation features are utilized

after an independent categorization step to filter out incompatible

results [Felzenszwalb et al. 2010; Rabinovich et al. 2007], or they are

concatenated with other image features for joint classification [Li

et al. 2009; Malisiewicz and Efros 2009; Mottaghi et al. 2014]. The

latter however, requires a larger number of annotated images for

training. As there is a lack of labeled scene-sketch data, we choose

to transfer relations from the image domain to the sketch domain,

and combine them with single sketched object recognition methods.

Thus our work is more similar to the first approach.

Fisher et al. [Fisher and Hanrahan 2010] presented a context-

based 3D model retrieval method, which uses relations between

objects to predict potential candidates for subsequent retrived ob-

jects. Xu et al. [2013] proposed a sketch co-analysis approach, which

is intended for finding semantically more meaningful 3D model

combinations from individually retrieved results for sketch-based

indoor scene modeling. Our work extends their co-analysis idea of

utilizing context information to a more general sketch classification

problem and aims to accommodate various object categories and

scene types beyond indoor scenes. Similar to [Xu et al. 2013], we

assume that an input scene sketch is composed of semantically

segmented objects drawn one by one. Semantic sketch segmenta-

tion [Arandjelović and Sezgin 2011; Huang et al. 2014; Sun et al.

2012] is a challenging problem on its own. In this work, we mainly

focus on the context-based recognition of sketched scene objects,

expecting segmentations from user inputs.

Sketch-based image retrieval (SBIR), another line of studies, is

related to sketch recognition, but generally aims to find visually the

most relevant image content with respect to an input sketch [Cao

et al. 2013; Chen et al. 2009; Eitz et al. 2011; Yu et al. 2016], instead

of attempting on semantic understanding of the sketch. Sketch

recognition, as demonstrated by [Li et al. 2013], can help to reduce

the retrieval space significantly if the category of the input sketch is

robustly identified. Recent works utilize Siamese CNN to minimize

the distance between relevant sketches and images [Bui et al. 2017;

Qi et al. 2016]. Several studies on SBIR, such as [Portenier et al.

2017; Qian et al. 2016], also investigated supplementing existing

SBIR systems with a refinement post-process to group and re-rank

the retrieval results. Despite sharing a similar refinement idea with

our context-based framework for sketch classification, their designs

heavily utilize the content and features of the retrieved real images

while our work strives to use the learned relation priors to prioritize

the candidate categories of input sketches that contain extremely

limited feature information.

3 OVERVIEW

Our task is to take a scene sketch as input, which contains seman-

tically segmented objects drawn one by one, and recognize the

objects therein of unknown categories by considering both each

sketched object itself and its context. We first use a pre-trained CNN

for individual object recognition, which produces a set of candidate

categories for each object. We then employ relation knowledge

learned from a large-scale scene-image dataset, together with the

CNN predictions, and select the most probable candidates by assess-

ing the object category compatibility in the scene, yielding a more

robust and accurate sketch classification framework (see Fig. 2).

Similar to [Sangkloy et al. 2016], we adopt theGoogLeNet [Szegedy

et al. 2015] as the base of our CNN architecture due to its demon-

strated state-of-the-art performance on sketches. Other single-

object classification methods may be used alternatively. This net-

work is pre-trained on ImageNet [Russakovsky et al. 2015] and

then fine-tuned on a sketch dataset with the last layer modified to

produce estimations over our used categories (Section 6.1).

While there is no large dataset of scene-sketches available for

learning the relation knowledge of object categories, we use ex-

isting scene-image datasets that are of large volume and contain

rich annotations [Krishna et al. 2017; Xiao et al. 2010]. We assume

that, when drawing multiple objects, users still loosely follow the

relations found in real scenes. We construct a graph to represent

the extracted relations such as co-occurrence and spatial relations

of object categories (Section 4).

Next we define a relation compatibility function that measures

how well a pair of objects and their assigned categories respect

the learned relation priors. We use this function as a building

block and design context-based incremental classification and co-

classification algorithms for recognizing the sketched objects in a

scene (Section 5), catering two different sketching paradigms. We

show that the proposed algorithms, leveraging both CNNs and the

relation graph, are effective at alleviating recognition ambiguity

existing in freehand sketches.

4 RELATION EXTRACTION

Now we describe the procedure of extracting relation knowledge

from a large-scale scene-image dataset. We use the Visual Genome

dataset [Krishna et al. 2017], which contains rich annotations such

as attributes and relationships of object instances. We aim at con-

structing a directed relation graph G = (V ,E), where the nodes

V denote the set of object categories of interest, and the edges E
denote the set of pairwise relations among the categories. For an

ordered category pair 〈u,v〉 (u,v ∈ V ), if u has certain valid rela-

tions with v (Fig. 3), a link edge euv from u to v is inserted into E,
and in turn, so as is evu for 〈v,u〉. For simplicity, in the following
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Figure 2: Pipeline of our context-based sketch classification

framework.

sections, we use 〈u,v〉 to illustrate the extracted relations; the in-

verse relations can be easily derived according to our computational

rules. To quantify the pairwise relations of 〈u,v〉, we extract two
types of information from the dataset and associate them with euv :
co-occurrence and spatial association. Next we give the detailed

definitions for each type.

4.1 Co-occurrence

Categories u and v are likely to have a strong correlation if object

instances of these two categories often appear together in the used

scene-image dataset. We take advantage of the existing semantic

annotations of objects in the Visual Genome dataset to obtain more

reliable co-occurrence relations. In the dataset, if two objects of

categoriesu andv are annotated with a semantic relation, for exam-

ple, person wearing hat (Fig. 3-(a)(b)), we count them as an object

relation pair. By collecting the statistics of object relation pairs in

the dataset, we define the co-occurrence of 〈u,v〉 as

ηuv =

⎧⎪⎪⎨⎪⎪⎩
0.5 ·

(Λ(u,v)
Λ(u)

+
Λ(u,v)

Λ(v)

)
if Λ(u,v) ≥ 50

0 otherwise
(1)

where Λ(u,v) counts the number of images containing object rela-

tion pairs of u and v , Λ(u) counts the number of images containing

u and so as does Λ(v). Note that ηvu = ηuv . Instead of adopting

an intersection-over-union form, the formulation in Eq. 1 can give

stable results when one of the categories has a large number of

object instances (e.g., person) yet the other category has a small

number of object instances (e.g., backpack).

4.2 Spatial Association

Tomeasure the spatial association of an ordered category pair 〈u,v〉,
we again make use of the object relation pairs in the Visual Genome

dataset and introduce a set of discrete attributes Ruv to describe the

annotations (e.g., person wearing hat) with respect to the bounding

boxes of objects. The attribute set, Ruv , includes relative position,
relative size and overlap ratio of the objects of categories u and v .
Specifically, Ruv includes:

• the objects of u are above (below) the objects of v w.r.t their

bounding box centers;

keyboard

{above, wider, taller}mouse

{wider, taller, near}

{above, wider, taller, near}

computer

computer keyboard

mouse

(d)

person hat {partial overlap, below, wider, taller, near}

(a) (b)

(c)

Figure 3: Example images with object annotations from the

Visual Genome dataset. Images (a) and (b) contribute to the

relations between person and hat, while images (c) and (d)

contribute to the relations among computer, mouse and key-

board.

• the objects of u are near to (far from) the objects of v w.r.t

their bounding box centers;

• the objects of u are wider (narrower) than the objects of v
w.r.t their bounding box widths;

• the objects of u are taller (shorter) than the objects of v w.r.t

their bounding box heights;

• the objects of u have full (partial, no) overlap regions with

the objects of v .

The details of computation and thresholds are provided in the sup-

plementary material. We iterate all the images with object relation

pairs of u and v , and compute the frequencies for all the listed at-

tributes. Only the attributes with high-frequency (≥ 70% in our im-

plementation ) are kept inRuv . For example, as shown in Fig. 3, since

a mouse may appear above or below a keyboard with approximately

equal frequency when being captured from arbitrary viewpoints,

the category pair 〈keyboard, mouse〉 discards the above/below at-

tribute that conveys unreliable vertical position information. We

then associate the filtered attribute set Ruv with edge euv . Note
that for edge evu , the attribute values in Rvu can be easily derived

from Ruv . For example, in Fig. 3, the category pair 〈hat, person〉

has {partial overlap, above, narrower, shorter, near}. Unlike the above

and below attributes, which often stem from physical supporting

constraints, the left and right attributes may be easily affected by

the camera viewpoints and are thus less reliable. Thus, we excluded

the left and right attributes from spatial association.
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Discussions. For a category pair 〈u,v〉, we initially tried a differ-

ent approach to quantifying the spatial association by estimating

continuous probability density functions on relative positions and

sizes of object instances. Specifically, we tried to use kernel density

estimation to capture the distribution of object centers of u with

respect to the object centers of v in the dataset. However, we found

that for many category pairs, it is hard to estimate reliable proba-

bility models, possibly because the supporting samples of relative

positions are often quite noisy. A similar problem was also encoun-

tered during the estimation of probability models for relative sizes.

Our adopted approach based on discrete attributes, as described

above, works well as shown in Section 6.2.

5 CONTEXT-BASED CLASSIFICATION

In this section, we first define a pairwise score function to assess

the relation compatibility of two sketched objects being assigned

with specific candidate categories (Section 5.1). The pairwise score

function is built upon the extracted relation priors from Section 4.

Then we present two context-based sketch classification algorithms

for different scenarios: incremental classification (Section 5.2) and

co-classification (Section 5.3) of sketches, showing the usefulness of

employing relation knowledge to alleviate recognition ambiguity.

5.1 Relation Compatibility Function

Given two sketched objects o1 and o2 and their assigned object

categories u and v as input, the relation compatibility function con-

siders the co-occurrence and spatial association of the categories to

produce a score, indicating the plausibility of 〈o1,o2〉 being labeled

as 〈u,v〉 with respect to the extracted relation priors.

We first define a spatial association score ρ for measuring how

well the bounding boxes of 〈o1,o2〉 satisfy the spatial attributes in

Ruv as follows:

ρ(o1,o2,u,v) =

{
aΔ(o1,o2,Ruv ) · b |Ruv |−Δ(o1,o2,Ruv ) if |Ruv | > 0

1 otherwise

(2)

whereΔ(o1,o2,Ruv ) counts the number of attributes inRuv that are

satisfied by the bounding boxes of o1 and o2, | · | denotes cardinality,
a is a bonus factor and b is a penalty factor. We set a = 1.5 and

b = 0.5. Intuitively, objects o1 and o2 are more compatible to each

other if their bounding boxes satisfy more relation priors.

Next, we define the relation compatibility functionψ as

ψ (o1,o2,u,v) = ηuv · ρ(o1,o2,u,v), (3)

where the first term is the co-occurrence score and the second term

is the spatial association score. In the following, we demonstrate

the usage ofψ in two context-based sketch classification scenarios.

5.2 Incremental Classification

In an interactive scenario, the user may choose to confirm the

category after sketching each object in the scene. Thus, to classify

a newly sketched object, a definite scene context with confirmed

categories of existing objects is given to the algorithm.

Suppose there are n context objects {oi }
n
i=1 with the correspond-

ing known categories {vi }
n
i=1 (vi ∈ V ). Let on+1 denote the newly

sketched object that needs to be recognized. We first feed on+1

into our pre-trained CNN to obtain the ranked top-k candidate

categories {v̄ j }k
j=1. Next, we define a re-ranking score function to

select the most compatible category for on+1 with respect to the

given context as follows:

χ (on+1, v̄
j |{oi }, {vi }) = p(v̄

j |on+1) ·max(m
n∑
i=1

ψ (on+1,oi , v̄
j ,vi ), λ),

(4)

where p(v̄ j |on+1) is the probability of on+1 being of category v̄ j ,
as predicted by the CNN, andm is the number of context objects

whose categories {vi } have valid co-occurrence relations with v̄ j

as defined in Eq. 1. For a candidate category that has zero or little

compatibility with context objects, in order to maintain the influ-

ence of CNN, we assign a fixed value of re-ranking score λ = 0.001

in our implementation to it. By multiplying a factorm, we amplify

the influence of aggregated contexts. In other words, in Eq. 4, we

consider the probability of an object to be assigned with a certain

category by its appearance as well as the relation compatibility

of the whole scene. We iterate all the top-k candidate categories

(see Section 6.2), compute the re-ranking scores, and classify the

sketched object on+1 as the category with the highest score.

We designed a simple user interface for sketching with our in-

cremental classification algorithm. In our UI, we allow the user to

confirm the category of each individually sketched object in a scene

and fix wrong predictions if any. Please refer to the supplementary

video for demos of our UI and algorithm.

5.3 Co-classification

Co-classification of sketched objects shares the same spirit with

co-analysis. Instead of solving problems individually, co-analysis

correlates the problems and aims at achieving a certain degree of

consistency across the results [Sidi et al. 2011; Xu et al. 2013]. Dif-

ferent from incremental classification, with co-classification, all the

objects in the input scene sketch do not have any pre-confirmed la-

belings and are analyzed jointly for their final category predictions.

Such an algorithm allows the user to draw the objects continuously

without interruptions to confirm the categories one by one, and

is particularly useful for recognizing objects in sketched scenes

created offline.

Given a set of n sketched objects {oi }
n
i=1, the top-k candidate

categories {v̄
j
i
}k
j=1 for each object oi are first obtained via the CNN.

Next we define a score function δ to evaluate the plausibility of

assigning each oi with one of its candidates. Suppose one of the

assignment combinations is {v̂i }
n
i=1, where v̂i ∈ {v̄

j
i
}k
j=1. Let

δ ({oi }, {v̂i }) =
n∑
i=1

p(v̂i |oi ) ·max(m
∑
s�i

ψ (oi ,os , v̂i , v̂s ), λ), (5)

where p(v̂i |oi ) is the probability, predicted by the CNN, of cate-

gory v̂i assigned to object oi and λ is a small constant which is

same as that in Eq. 4 to replace the context score when the can-

didate category has no relation with its context. Similar to the

incremental classification method, the formula above aims to max-

imize the category compatibility of the assigned combination for

each object, leaving other objects as context. However, a brute-force

search strategy to maximize the score function δ is in O(n2 · kn ),
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which is computationally prohibitive even for a moderate number

of sketched objects. Instead, we adopt a beam search algorithm

similar to [Xu et al. 2013]. More specifically, we first consider all

possible category pairs for every pair of sketched objects and com-

pute the corresponding scores with δ (i.e., by setting n = 2). Each

category pair is called a size-2 category set. The time complexity

for enumerating all size-2 sets is O(n2k2) and we leave only r sets
with the highest scores for further processing. Next, we iteratively

generate the optimal size-p sub-set via adding one new object to

each size (p − 1) set or adding two new objects to each size (p − 2)

set. At each iteration, the algorithm will produce at most O(nkr )
size p sets for size (p − 1) sets, and O(r2) sets for size (p − 2) sets.

The above steps are repeated until the size of sub-sets reaches n.
Finally, we leave the full-size set with the highest score of δ as our

co-classification result.

6 EVALUATION

To validate our proposed relation-supported sketch classification,

we first collected a scene-sketch evaluation dataset along with

the ground truth labelings (Section 6.1). Then we performed a

series of experiments on the collected dataset, comparing both the

incremental classification and co-classification algorithms with the

state-of-the-art CNN for single sketched object recognition, to show

the effectiveness of incorporating relations for ambiguity resolution

(Section 6.2).

6.1 Data Collection

We used the QuickDraw dataset [Ha and Eck 2017] which contains

345 object categories and 70K individually sketched objects per

category to train the CNN, and used the Visual Genome dataset [Kr-

ishna et al. 2017] which contains 108K scene-images, 80K object cat-

egories, 3.8 million object instances to extract relation knowledge.

Furthermore, to get a set of object categories with less redundancy

and noise, we first obtained the intersection of categories of the

QuickDraw and Visual Genome datasets, and then removed the

categories that have no co-occurrence. We used this filtered set

of categories(in total 70 categories) to construct our sketch scene

dataset. The category selection step allows us to unify the pre-

trained CNN and the extracted relation priors that are used in our

proposed framework. We used a simple sketching interface simi-

lar to the one for incremental classification (Section 5.2) for data

collection.

We recruited 15 participants with basic drawing skills and asked

them to quickly draw simple scene sketches that are semantically

meaningful to humans. There were no strict time limits, though

we found that most participants finished one scene sketch within

three minutes. The participants needed to draw in two different

ways: 1) freely choosing categories from the full set to compose a

scene; 2) choosing categories only from a given subset to compose

a specific type of scene. For the second case, we roughly divided the

used object categories into six subsets, representing different scene

types, which include dining room, home, outdoor activity, outdoor

nature, street view and workplace. The purpose of dividing into

different scene types is to test whether our context-based method

can perform better under specific scene types where the relations

among objects tend to be stronger compared to freely drawn scenes.
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Figure 4: Examples of our collected scene sketches along

with ground truth labelings. Sketches (a)-(d) are kept in the

dataset while sketches (e)-(f), representing invalid scenes,

are discarded from the dataset after a data verification pro-

cess.

More specifically, each participant was asked to draw seven groups

of sketches in total (i.e., one group of the freely composed scene

type and six groups of pre-defined scene types) and three to four

sketches per group, and in each scene sketch, at least three objects

and ground truth labelings were required.

After the data collection, similar to [Eitz et al. 2012; Sangkloy et al.

2016], we manually reviewed all the sketches for verification. One

of the users seemed to have misconceptions of our requirements

and created sketches that mostly do not represent real-world scenes

(Fig. 4-(e)(f)), which violate our assumption that users loosely fol-

low the relations found in real scenes during sketching. We thus

removed the collected data of this user and kept the sketches of

all the remaining 14 users. Fig. 4 shows some examples of our col-

lected data. As a result, we retained 332 out of 354 collected sketches,

which cover all 70 object categories and contain 1,568 individual

objects. We then randomly selected 1/3 sketches from each group

of sketched scenes drawn by each user as the validation set and left

the rest as the test set, resulting in 110 validation samples and 222

test samples. The validation set was used for parameter fine-tuning.

Please refer to the supplementary material for the summarized

statistics of our dataset.

6.2 Experiments

We evaluate the performance of our proposed context-based sketch

classification framework on the test set of the above collected scene-

sketch dataset, and as a baseline, we also compare it with the state-

of-the-art CNN for single sketched object classification [Sangkloy

et al. 2016].
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Table 1 shows the top-1 accuracies of the CNN, our incremental

classification and co-classification algorithms in different scenes.

The accuracy is calculated as the number of objects with correctly

predicted categories over the total number of objects of a specific

scene type in the test set. To evaluate the CNN-only method, we

feed each individually sketched object into the CNN and test the

top-1 prediction against the ground truth. To evaluate our incremen-

tal classification algorithm, we simulate the interactive sketching

scenario, that is, we progressively classify each object in a scene in

the drawing order given by the users during data collection. (See

User Input in Table 1). For the first object in an input scene, only the

CNN is used for prediction and no context computation is involved.

Then for each subsequent object, we assign the ground truth to the

already tested objects that serve as context, and perform predic-

tions as described in Section 5.2. Specifically, we use all the object

categories ranked by the CNN as the candidates, since Eq. 4 can be

evaluated efficiently. To evaluate our co-classification algorithm,

the categories of all the objects in an input scene are jointly pre-

dicted, as described in Section 5.3, without considering the drawing

order. For each object, we use top-10 categories predicted by the

CNN as candidates. Fig. 8 shows the classification results of several

sketched scenes with the above three methods.

Table 1: Top-1 accuracy (%) of each method for each scene.

”User input” means the use of the input order of sketched

objects and ”Random” means the random drawing order of

objects.

CNN
Increment.

Co-class.
User Input Random

Dining room 80.1 88.5 82.4 88.5

Home 69.1 78.1 76.3 75.6

Outdoor activity 65.7 69.7 64.1 70.4

Outdoor nature 69.4 79.1 74.0 78.4

Street view 79.1 83.2 81.0 81.5

Workplace 71.2 79.7 73.9 83.8

Free 81.3 86.7 84.0 85.3

All 74.5 81.2 78.1 80.8

Overall our incremental classification algorithm is 6.7% higher

and our co-classification algorithm is 6.3% higher than the CNN-

only baseline. The one-tail, paired t-tests confirm that both the

incremental classification and the co-classification algorithms sig-

nificantly outperform the CNN-only method (p-value < 0.05). Our

incremental classification and co-classification algorithms have

corrected 26.2% and 25.8% of the wrong predictions by the CNN, re-

spectively, and made mistakes only for 1.1% and 1.5% of the correct

predictions by the CNN.

In terms of improvements for specific scene types, we find that

our incremental classification and co-classification algorithms work

well particularly in home (9.0%, 6.5% higher than the CNN), dining

room (8.4%, 8.4%), outdoor nature (9.7%, 9.0%) and workplace (8.5%,

12.6%), The performance improvement for outdoor activity (4.0%,

4.7%) and street view (4.1%, 2.4%) is relatively smaller. The reason for

the decline is that the selected object categories of these scene types

share fewer relations and that users tend to draw from perspectives

different from photos of these scene types. For the free scene type

where object relations may be less strong, accuracy improvements

(5.4%, 4.0%) are still observed.

Since our incremental classification algorithm re-ranks the cate-

gory candidates predicted by the CNN, we can calculate and com-

pare the top-1 to top-10 accuracies on the dataset, which are plotted

in Fig. 6. (Note that there is no re-ranking of candidate categories

for each object involved in our co-classification algorithm where a

bottom-up greedy search is used.)We can see that our context-based

algorithm also improves the CNN results under such measurement.

In addition, since drawing order is involved in the accuracy compu-

tation of our incremental classification algorithm, we also evaluate

our algorithm with the random drawing order of objects. Specif-

ically, we randomly permute the drawing order of objects in an

input scene and then classify the objects with the new order. We re-

peat this procedure for 10 times and calculate the average accuracy.

Table 1 (Random) shows the experiment results. It is expected that

the accuracy declines with random order. We deduce that this is

because every two objects drawn sequentially tend to have stronger

relations. The randomized drawing order may cut this underlying

connection in the incremental classification scenario.

To validate the effectiveness of our relation formulation, we

disable the spatial association term in Eq. 3 by setting it to 1 and

then calculate the corresponding accuracies of our modified clas-

sification methods. As shown in Table 2, together with Table 1,

the overall accuracy of all the sketches declines by 1.1% and 2.0%

respectively for the incremental classification and co-classification

algorithms without the spatial association term. The t-tests shows

that both the incremental classification and co-classification algo-

rithms outperform the ones without the spatial term with p-value

< 0.05.

Table 2: Top-1 accuracy (%) of our context-based classifica-

tion methods without the spatial association term.

Increment. Co-class.

Dining room 87.0 88.5

Home 77.2 75.6

Outdoor activity 68.4 67.1

Outdoor nature 77.7 75.0

Street view 83.2 79.2

Workplace 77.1 79.6

Free 86.2 84.4

All 80.1 78.8

Different levels of drawing skills of the recruited users result

in varying quality of the collected sketches, which can affect the

recognition performance. In Fig. 5, we show the accuracies of the

three classification methods applied to all the sketched scenes of

a specific user. Among the results, the sketches of User 2 receive

the lowest recognition accuracy with all the three classification

methods. Fig. 7-(U2) shows an example sketch from User 2. Never-

theless, for User 2, our incremental and co-analysis classification

algorithms are still able to perform reasonable context inference



Expressive ’18, August 17–19, 2018, Victoria, BC, Canada J. Zhang et al.

Figure 5: Top-1 Accuracy (%) for sketches drawn by different

users.

to improve the overall classification accuracy (12.4%, 10.4% higher

than the CNN).

The sketches of Users 10, 11 and 14 gain less improvement in

recognition accuracy with our co-classification algorithm. It is par-

tially because the objects in the scenes drawn by these users rarely

appear together in the real world or strongly violate our spatial

term. The drawing intuition of people sometimes disagrees with the

real-world scenes, that is, people may tend to draw objects of simi-

lar categories together, even though they may not usually appear

together in the real world (e.g., the animals shown in Fig. 7-(U14)).

One possible improvement for our algorithms is to manually enrich

our relation graph with such kinds of relations. The example scenes

casually composed by the users without reasonable spatial relations

are shown in Fig. 7-(U10)(U11). Such cases make it hard for our

algorithm to correct the CNN predictions.

In Fig. 8, we demonstrate more results of both our incremental

and co-classification methods. These results show that our algo-

rithm can still work when CNN produces several incorrect predic-

tions.

7 DISCUSSION AND FUTUREWORK

In this work, we have developed a context-based framework for

sketch classification. We propose to co-analyze the objects within a

scene sketch and optimize their compatibility with respect to rela-

tion priors extracted from an existing image dataset. Our approach

can be applied to two scenarios, namely incremental classification

and co-classification. We demonstrate the superior performance of

our approach over the state-of-the-art individual sketch classifica-

tion method through quantitative evaluation on a newly collected

dataset of scene sketches.

Our context-based sketch classification framework will be useful

for various applications. For example, incremental classification

can be seamlessly integrated with interactive drawing systems

to better support human-computer interactions, as shown in the

supplementary video. In addition to labeling, our method will also

facilitate transforming a sketch into other interesting forms, such as

Figure 6: Top-k accuracy (%) of incremental classification.
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Figure 7: Representative sketches from Users 2, 10, 11 and

14, on which our classification algorithms do not perform

as well as expected.

clip-art illustrations. More specifically, given a user-sketched scene,

multiple objects can be more reliably recognized and then replaced

with homogeneous clip-art pieces to synthesize artistic images. Our

approach could also be extended to enable a suggestive interface,

where users can specify a location in the scene with simple gestures

and then compatible objects will be automatically suggested. This

could be achieved by simply ignoring the CNN prediction term in

Eq. 4 and ranking all the available categories in the relation graph

by the computed scores. Such suggestive interfaces would be of

help to design exploration.

We have tried an end-to-end learning approach. The main chal-

lenge is that we do not have sufficient sketch scene data to train

a deep neural network. Therefore, similar to [Lun et al. 2017], we

used the bounding boxes and labels in natural images as templates

and filled in sketched objects to generate scene sketches for train-

ing. For each scene sketch image, we randomly chose an object as

target and the others as context. We then conducted a joint training

method to classify the target object with the context information as

additional input. The result was promising but not competitive to

our work. This is partially because the layouts of natural images are

different from those of sketch images, and it may be challenging for

the neural network to learn transferable relationships directly. In

the future, we will consider to collect a database of sketched scenes
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Figure 8: More classification results. Left column: co-classification results; Right column: incremental classification results.

The labeled text indicates the prediction of our algorithm and the prediction of the CNN within the parentheses. For incre-

mental classification results, the sequence of drawing is indicated before each label. The underlined labels are consistent with

the given ground truth. If none of the predictions are correct, we show the given ground truth at the last.

consisting of various objects and learn the context information

directly from such a database. Another interesting future work is

to unify the object-level sketched scene segmentation and sketch

recognition into a deep learning framework.
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