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Figure 1: Reintroducing folds into captured garments: (left) input video-frames, (center) typical capture result [BPS∗08], and
(right) t-shirt wrinkled by our data-driven method.

Abstract

The presence of characteristic fine folds is important for modeling realistic looking virtual garments. While recent
garment capture techniques are quite successful at capturing the low-frequency garment shape and motion over
time, they often fail to capture the numerous high-frequency folds, reducing the realism of the reconstructed space-
time models. In our work we propose a method for reintroducing fine folds into the captured models using data-
driven dynamic wrinkling. We first estimate the shape and position of folds based on the original video footage
used for capture and then wrinkle the surface based on those estimates using space-time deformation. Both steps
utilize the unique geometric characteristics of garments in general, and garment folds specifically, to facilitate the
modeling of believable folds. We demonstrate the effectiveness of our wrinkling method on a variety of garments
that have been captured using several recent techniques.

1. Introduction
Capturing the geometry of moving garments provides a data-
driven alternative to cloth simulation in much the same
way as motion capture provides an alternative to charac-
ter animation. Recent garment capture techniques [BPS∗08,
VBMP08, dAST∗08] are based on multi-view video capture
and are quite successful at capturing the low-frequency gar-
ment shape and motion over time, and at establishing con-
sistent correspondences across frames. However, as demon-
strated in Figure 1 (center), they often fail to capture the
numerous high-frequency folds characteristic of garments,

reducing the realism of the reconstructed dynamic models.
Folds tend to be very shallow, making them hard to capture
and separate from noise. However, due to large normal vari-
ation they are highly noticeable. Thus, garments that lack
folds look unnatural.

Marker-based capture methods such as [WCF07] capture
folds more accurately, but are restricted to custom made gar-
ments. Active lighting approaches, e.g. [HVB∗07], do rea-
sonably well in capturing fine details in single camera se-
tups. However, in practice, due to interference of the light
sources, such methods do not generalize well to 360◦ acqui-
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sition of moving targets. The use of active lighting also adds
considerably to the complexity, and in some cases, cost, of
the setup.

In our work, we propose a simple, yet effective, method
for reintroducing folds into models captured by any multi-
view video technique using data-driven, dynamic wrinkling
(Figure 1 (right)). To generate believable folds we utilize the
unique geometric properties of garments, most notably the
fact that most garments exhibit very low stretch under nor-
mal wear. This property imposes very strong constraints on
the shape of garment folds, leading to the characteristic fold
shapes we are all familiar with. To generate folds consis-
tent with the captured garment motion we take advantage
of the available video footage and use the video to guide
fold modeling. Our method first analyzes the video capture
to estimate the position and shape of folds, using their dis-
tinguishing shape characteristics (Figure 2 (center)). It then
introduces those folds into the reconstructed models, using
stretch-minimizing deformation, which naturally produces
believable fold shapes (Figure 2 (right)). We use a novel
space-time deformation framework to generate folds which
are consistent across time.

Although we aim to place folds in places where they are
observed in real video footage, we make no claim of re-
producing the exact shape of each fold. That is, our goal is
to generate believable wrinkling with an overall appearance
similar to that of the original garment, instead of attempting
to “measure” the true fold geometry.

2. Previous Work

Cloth & Garment Capture: In recent years several
methods emerged specifically for capturing garment mo-
tion [BPS∗08, WCF07, SSK∗05, PH03], as well as for cap-
ture of moving humans dressed in loose clothing [VBMP08,
dAST∗08]. Marker-based methods such as the work by
White et al. [WCF07] use a custom set of color markers
printed on the surface of the cloth, and then use the markers
combined with the assumption of low fabric stretch to detect
and trace high-resolution folds. As this approach is restricted
to custom made garments, a markerless alternative was re-
cently proposed by Bradley et al. [BPS∗08]. The method
successfully captures off-the-shelf garments correctly recon-
structing the low-frequency shape (see Figure 1, center), but
fails to capture the high-frequency folds.

The template-based methods of Vlasic et al. [VBMP08]
and de Aguiar et al. [dAST∗08] focus on capturing the over-
all performance of actors rather than concentrating specifi-
cally on garments. While these methods also capture an ap-
proximation of the clothing the actor is wearing, the geomet-
ric details present in the reconstructions of these garments
tend to be copied from a high-resolution template scan rather
than represent actual high-frequency per-frame details.

Active lighting approaches such as photometric stereo are
better suited for capturing fine geometric details. However,
such approaches generalize poorly to the full 360◦ acqui-
sition of deformable models. For example, Hernandez et

al. [HVB∗07] use red, green, and blue lights to estimate
surface normals with a photometric stereo approach, mak-
ing use of the three different color channels in a color cam-
era. Generalizing this approach to a full ring of cameras and
light would require at least a dozen light sources that emit
light at different frequencies, as well as specialized multi-
spectral camera hardware that can distinguish between those
light sources. Ahmed et al. [ATD∗08] use calibrated light-
ing and multi-view video to capture normal fields, and aug-
ment garment geometry templates to include wrinkles and
folds. Calibrating the light sources adds complexity to the
system. In addition, this technique requires knowledge of the
reflectance model at each point on the surface.

Modeling Folds and Wrinkles: The presence of folds is
important for garment realism and several approaches exist
for generating folds on simulated virtual garments. To model
the folds, most methods use a physically-based simulation
approach (see [BMF03] and the references therein), which
is time consuming, and requires accurate information about
the motion of the character wearing the garment as well as
numerous physical parameters for the simulation.

Several authors propose alternative, more efficient, ge-
ometric approaches for modeling folds, which work well
on tight, high-stretch garments [HBVMT99, CGW∗07,
CMT05]. Hadap et al. [HBVMT99] utilize a user defined
fold pattern to generate a bump map representation as a solu-
tion. Cutler et al. [CGW∗07] and Cordier et al. [CMT05] use
cloth examples with precomputed, simulated folds to pre-
dict new fold geometry. Decaudin et al. [DJW∗06] suggest
a procedural approach for adding folds to loose garments,
based on an analysis of likely fold shapes. Their results tend
to look very regular and thus somewhat artificial. Like the
physics-based methods above, these geometric approaches
require accurate information about the proportions and mo-
tion of the garment wearer, which might often be unavailable
in a capture setup.

Garment folds share some shape similarities with skin
wrinkles. To capture dynamic facial wrinkles Bickel et al.
[BBA∗07] define a small number of explicit locations on the
surface where wrinkles can occur using face paint and track
those over time. This approach is not feasible for tracking
garment folds since folds can occur anywhere on the surface.
Since no explicit tracking is possible in our inputs we utilize
space-time deformation to ensure temporal coherence.

Adding High-Frequency Motion: Recently, we observed
an emergence of several methods [KA08, SZT∗08, PH08,
SB08] that add realism to animation by introducing sec-
ondary high-frequency motion, which is not fully physically
based, but which increases the realism of the models. Our
method can be seen as a continuation of this trend, increas-
ing the realism of garment capture by introducing believable
high-frequency folds, without the additional costs of a full-
blown physical simulation or a sophisticated capture setup.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Popa et al. / Wrinkling Captured Garments Using Space-Time Data-Driven Deformation

Figure 2: Algorithm overview. From left to right: input video, captured smooth geometry, estimated folds, and wrinkled models
generated by our space-time deformation approach.

3. Background and Overview

To generate realistic looking folds we take advantage of the
unique properties of garments that distinguish them from
general deformable geometries. Most fabrics can undergo
only very limited stretch [GHF∗07]. Thus, from a geome-
try point of view, garments can be seen as piecewise quasi-
developable surfaces, where the pieces correspond to the in-
dividual garment panels cut out of fabric. This observation
imposes very strong constraints on the shapes that garments
can form, and specifically on the shape of garment folds. We
refer the reader to [DJW∗06] for an overview of the common
types of garment folds: sine wave, diamond, and twisted di-
amond (see Figure 3).

Based on the fold classification provided by Decaudin
et al. [DJW∗06], and on our own observations, we note
that most folds are formed from generalized cylinders, with
roughly sinusoidal cross-sections. This observation applies
not only to the regular sine wave folds (Figure 3 (left)), but to
the diamond/twisted diamond folds as well, as those can be
separated into an interior valley region which is nearly flat,
and the surrounding fold ridges formed by a union of gener-
alized cylinders (Figure 3 (center) and (right)). These gener-
alized cylinders tend to be fairly straight, with low-curvature
axes and nearly constant cross-sections. We use these ob-
servations to estimate fold shape and location based on the
input video (Figure 2 (center)) and to model the folds based
on these estimates (Figure 2 (right)).

3.1. Video Based Fold Estimation

Based on the above discussion of fold shape, as well as some
radiometric assumptions, we expect folds to show up in
video frames as very specific edge structures robustly iden-
tifiable using standard edge detection filters. Specifically,
we assume that the fabric of the garment is approximately
Lambertian, and that the illumination is diffuse, i.e. uniform
across all incident directions. For the purposes of this paper,
we also assume garments without strong texture to avoid am-
biguities between shading patterns and texture features.

Under the assumptions outlined above, the ridges of fold

Figure 3: Types of garment folds: sine wave (left), dia-
mond (center), and twisted diamond (right). The diamond
and the twisted diamond are formed by four roughly cylin-
drical ridges each. Top: photos of real folds, bottom: model-
ing similar fold geometry.

structures show up as bright areas, whereas the valleys are
dark, since they receive light from a narrower solid an-
gle. This model for shading of surface features is known as
“dark-equals-deep” (e.g. [LB00, GWM∗08]). As a result of
this photometric model, one expects to observe image edges
roughly corresponding to iso-lines (i.e. elevation contours)
on the fold geometry. Moreover, due to the specific struc-
ture of garment folds, as outlined above, we expect each fold
component (a generalized cylinder) to be observed as a pair
of roughly parallel edges, flanking a ridge (bright) or a val-
ley (dark) area (see Figures 2 (center) and 4). We refer to
edges that fit these criteria as fold edges. Section 4 details
the fold-edge extraction process.

Note that these properties are reasonably robust under
moderate deviations from our idealized radiometric model
(e.g. Figure 3 (top)). The assumption of an approximately
Lambertian material holds well for many common fabrics
including cotton and wool, although it may be violated by
some synthetic fibers. Fortunately, the “dark-equals-deep”
model is only violated for very shiny materials that are very
rare in garments. Deviations from the ideal diffuse illumina-
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(a) (b)

(c) (d)

Figure 4: Fold edge extraction: input image (a), raw edges
(b), and paired fold edges (c) extracted from the image at
a single resolution (edges not projected to the garment are
discarded). (d) Fold edges after combining extraction results
from several image resolutions and filter sizes.

tion scenario introduce a directional component that causes
the brightest and darkest regions to be somewhat offset from
the true ridges and valleys, respectively. In this situation, our
approach will produce a fold that it slightly shifted from the
true location, but has the correct size and orientation. As
such, the overall appearance of the final garment should be
very similar to the original. We also note that uniform dif-
fuse illumination is the preferred lighting setup for movie
shots and many capture setups, as it eliminates strong shad-
ows, which would hinder reconstruction (e.g. [BPS∗08]). So
we expect deviations from the idealized setting to be minor.

The pairing requirement imposes a very strong constraint
on the detection mechanism, which lets us effectively over-
come the simplicity of the photometric model. Furthermore,
the edge pairing requirement also helps eliminate detected
edges that correspond to texture on the garment rather than
to folds. As a result, we have observed very few false pos-
itives in our processing, where non-folds were classified as
folds, or where the edge lines did not faithfully reproduce
the fold geometry. We noticed that even in the case of a false
positive, the resulting wrinkled models appear realistic as the
placed folds satisfy the typical shape characteristics.

Leveraging Temporal Information: While folds typically
persist across a sequence of frames, they can be more recog-
nizable in some than in others. Since edge detection is by its
nature discrete, it can potentially miss folds when they are
less noticeable. Our method overcomes this problem, by uti-
lizing the observation that garment motion is smooth across
time. Our space-time deformation method, described next,
explicitly enforces motion continuity. Thus, if a fold is de-
tected in some, but not all frames of a sequence, the deforma-
tion effectively completes it in the frames where it is miss-

Figure 5: In a frame-by-frame deformation setup (top) one
fold pops up in a single frame (see arrow) while another
vanishes abruptly. Using space-time deformation (bottom)
folds both form and disappear gradually.

ing (Figure 5). This space-time leveraging allows us to use
a conservative set of parameters that avoid false positives
when extracting the fold edges.

3.2. Fold Modeling

We incorporate the detected image folds into the geometry of
the garments using a novel dynamic deformation setup. We
recall that fold edge pairs may correspond to parts of more
complex fold structures. In order to capture such structures,
we solve for a global deformation of a garment shape using
all detected pairs of fold edges at once, rather than adding
them one by one.

To generate the folds we bend the surface along the
edges, using rotation driven deformation. We prefer to use
a rotation-driven approach over the more common posi-
tional controls, since folds are characterized predominantly
by changes in surface normals, and such changes are more
naturally represented by rotations. Moreover, the rotation-
based approach removes the need to detect actual depth and
shape information from images, which could be quite chal-
lenging, as mentioned in our discussion of related work. In-
stead, we use the rotations as inputs to a stretch-minimizing
deformation, which computes the positions of the mesh ver-
tices in a way that conforms with the low-stretch property of
garments, resulting in realistic looking folds.

Most recent deformation approaches minimize changes in
mean curvature rather than stretch and are thus not suitable
for our needs (e.g. [SLCO∗04, LSLCO05]). Existing meth-
ods for stretch-minimizing deformation, such as the work by
Kilian et al. [KMP07] are non-linear and computationally
demanding. Converting them into a setup where we need to
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solve for deformation across multiple frames at once could
be prohibitively expensive.

Hence, to generate realistic dynamic wrinkles we intro-
duce a new space-time quasi-isometric deformation method
(Section 5). Key to our method is the observation that quasi-
isometric deformation implies that as the mesh deforms
the triangles shape is preserved. We therefore search for
as-rigid-as-possible per-triangle transformations and shared
vertex positions that satisfy these transformations. We use
an iterative solution procedure which amounts to solving a
number of very sparse linear systems, allowing us to effi-
ciently wrinkle very large meshes (>100K triangles) simul-
taneously across numerous frames. The high mesh resolu-
tion is necessary to capture the fine fold geometry.

The final result of the algorithm is a sequence of realis-
tic looking wrinkled meshes with the folds consistent across
time (Figure 2 (right)).

4. Video-Based Fold Edge Extraction

To extract likely folds at each time step, we select the best
front and back views of the garment. We then extract likely
folds from each of the two still images separately using the
photometric model described in Section 3.1, by first detect-
ing edges present in the images and then filtering out edges
that do not satisfy our fold edge criteria (Figure 4).

View Selection: For every frame in the given multiview
video input, we automatically select the best front and back
views. As a preprocess, the user selects two mesh vertices,
one on the front and one on the back, in a single frame. Our
method then tracks these vertices across all frames using the
consistent mapping between the frame geometries provided
by the original capture process. It computes per-frame sta-
ble normals at the vertices using a large (eight rings in our
examples) neighborhood and selects the best, most orthogo-
nal views, based on the dot product of the normals with the
camera view vectors.

Edge Extraction: Our method uses the Canny edge detec-
tor [Can86] to extract raw image edges. Recall that fold com-
ponents are expected to have low curvature in the direction
of the fold axis. Since fold edges follow contours of the
fold, they should inherit this property. Hence a fold edge can
be approximated by a low degree polynomial with bounded
curvature. We use quadrics to fit each raw edge, recursively
splitting the edges if the fitting error or the curvature of the
quadric along the edge are too high.

Edge Orientation: We expect fold edges to represent fold
contours, and thus have a darker, i.e. deeper side (recall that
we use the “dark-equals-deep” model). Thus, after extract-
ing the smooth edges, we orient them based on the image
gradient along the edge. We use the convention of select-
ing the orientation such that the darker side of the image is
to the left of the edge. Edges with no clear orientation are
discarded. We also discard edges which exhibit large differ-
ence in hue across the edge, as those typically capture texture
rather than shape.

Merging: Edge detection often tends to break continuous
fold contours into multiple disjoint edges. We recover con-
tinuous contours by merging edges if they are oriented con-
sistently, their end vertices are close to one another, and the
combined edge can still be fitted by a low curvature quadric.

Pairing: The most significant step of our processing is the
pairing, which detects parallel edges with opposite orienta-
tion (Figure 4(c)). As noted earlier, garment folds are formed
by a union of generalized cylinders, thus opposite contours
on these cylinders are expected to be roughly parallel. There-
fore, pairs of edges representing such contours should satisfy
our criteria of parallelism and opposite orientation. We dis-
card all edges that have no pairing as those are not likely to
represent or form realistic folds. To test if two edges can be
paired we check if they are parallel, by comparing tangents
between closest points along the quadric curves. Since folds
are expected to be relatively narrow, we also constrain the
average and maximal distance between the paired edges.

The pairing process must address potential pairing ambi-
guities, as some edges may have multiple pairing choices. To
resolve those, we prioritize pairings that are more likely to be
real and significant folds. We observe that on real garments
there are more ridge than valley folds. This observation leads
us to prefer ridge pairs, namely ones where the area between
the edges is brighter, i.e. the edges are to the right of one
another. We also prioritize pairing of longer edges, as those
indicate more influential folds.

Multi-Resolution Processing: To maximize the number of
folds detected, the detection and filtering steps are done on
several image resolutions and with different Gaussian filter
sizes in the Canny edge detector. The results are then com-
bined together, creating a union of edge pairs (Figure 4(d)).
When pairs from different layers overlap, we select the best
one using the same criteria as for pairing. The resulting set
of pairs represents believable folds in the input images, and
is used as input for wrinkling the garment surface.

5. Space-Time Deformation

We now discuss our space-time deformation method for
smoothly wrinkling the garment surface over time, using the
folds estimated from the video sequence.

5.1. Control Mechanism

The deformation is controlled by the fold edges extracted
from the individual frames, which indicate where the sides
of the newly formed folds should be. To wrinkle the sur-
face we therefore bend it along the edges by rotating the cor-
responding, anchor triangles, counterclockwise around the
edges. This rotation is consistent with the assumption that
the left, darker, side of each fold is expected to be deeper
than the right one, i.e. closer to the body of the wearer. To lo-
cate the anchor triangles we project the computed fold edges
onto the corresponding garment frames, using the available
camera calibration (Figure 6 (left)). We discard fold edge
pairs where one of the edges projects outside the garment or
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Figure 6: Deformation: (left) anchor triangles (fold edges
projected to input garment); (center) vertex positioning re-
sult; (right) garment after stretch reduction. The coloring
(center, right) shows per-triangle stretch. The iterations re-
duce the maximal per-triangle stretch from 8% to 4%.

onto its silhouette. We tested several models for setting the
rotation angle, including using the gradient along the edge
as a measure of the amount of rotation, but found no corre-
lation between the two. In empirical testing we achieve the
best results when setting the rotation angle to be inversely
proportional to the width of the fold edge pairs with the an-
gle varying from 60◦ for narrow folds to 30◦ for wide ones.

5.2. Iterative Space-Time Deformation

To obtain smooth garment motion across time, we solve
for the new shape of the mesh across multiple time frames.
Quasi-isometric deformation implies preserving the shape of
the triangles during deformation, while allowing the dihedral
angles between them to change. Solving simultaneously for
as-rigid-as-possible per-triangle transformations and shared
vertex positions that satisfy these transformations, leads to a
non-linear formulation, which would be prohibitive to opti-
mize in space-time. Therefore, similar to [LSLCO05,SP04],
our formulation decouples the rotation computation from the
vertex positioning. We first compute optimal triangle rota-
tions for all triangles based on the input rotations across all
frames. We then compute vertex positions consistent with
the rotations, obtaining wrinkled meshes that satisfy most
of our requirements, but which can exhibit non-negligible
stretch near the newly formed folds (Figure 6 (center)). We
therefore iteratively update the rotations and the positions to
reduce the stretch to an acceptable level (Figure 6 (right)).
We found that the stretch reduction can be accomplished us-
ing rotations computed per-triangle, without a need for solv-
ing yet another global system to compute them. In other
words, the per-triangle update combined with the vertex
repositioning satisfies the temporal and spatial requirements
we impose on the folds, without explicitly enforcing them.
We now describe the three steps in more detail.

5.3. Space-Time Rotation

Given the specified anchor triangles and the corresponding
rotation angles for each time frame, we solve for the ro-
tations of the mesh triangles in multiple frames simultane-
ously. Recall that since we operate on a space-time captured
mesh, we have the same connectivity in all frames, thus we
can explicitly compute the rotations for all frames at once.

The space-time solution is key to making the rotations and
hence the final deformation consistent across time, enforcing
smooth garment motion (Figure 5).

For the folds to look realistic, in addition to smooth
change across time, rotations have to satisfy two additional
requirements. First, we expect garments to be smooth, thus
adjacent triangles should rotate in roughly the same way.
Second, we expect folds to be fairly local, and thus trian-
gles spatially or temporally distant from the anchors should
rotate very little, if at all.

To propagate the rotations across the meshes we describe
the per-triangle rotations as convex combinations of anchor
rotations and the identity rotation. The inclusion of the iden-
tity mitigates the anchor influence away from the folds. Our
challenge is to compute the per-triangle, convex combination
blending weights wt

i , where i goes over the mesh triangles
and t goes over the time steps. Each weight is a vector with
entries corresponding to the anchors. The sum of the weights
is less or equal to one, with the weight assigned to the iden-
tity rotation completing the sum to be exactly one, thus en-
suring the convex combination property. We solve for the
weights by minimizing the following quadratic functional,

argminw cs ∑
t,e=(i, j)

‖wt
i−wt

j‖2 + ct ∑
i,t
‖wt

i−wt−1
i ‖2 +

ci ∑
(i,t) /∈A

‖wt
i‖2 + ca ∑

(i,t)∈A
‖wt

i− It
i‖2,

where e = (i, j) are the edges shared by triangles i and j, A
is the set of anchor triangles, and It

i is a vector with one in
the entry that corresponds to the anchor (i, t) and zero ev-
erywhere else. The first two terms of the functional ensure
rotation continuity across space and time. The third term
provides for rotation mitigation away from the anchors, and
the last term constrains the anchor rotations. The coefficients
which control the influence of each individual term were set
to cs = 0.9,ct = 0.5,ci = 0.1,ca = 10 in all our examples.
Our input meshes are fairly uniform, thus our formulation
does not weigh triangles or edges differently based on their
area or length. Having uniform weights improves the condi-
tioning of the linear system solved, and thus speeds up con-
vergence. To perform the actual blending, given the weights,
we follow Popa et al. [PJS06], and use the transformation
algebra presented by Alexa [Ale02].

Numerical Solution: Minimizing the above functional
amounts to solving a linear system with multiple right hand
sides, corresponding to the individual entries in the weight
vectors. Our matrix is positive definite and very sparse (ap-
proximately six non-zero entries per row), thus we chose
to use the conjugate gradient solver to compute the solu-
tions. Since we do not need very accurate weights, we use
a fairly lax convergence tolerance of 10−3, resulting in the
solver converging in under ten iterations. The temporal influ-
ence of anchors reduces significantly over time, thus rather
than solving for all time steps at once we use a staggered
approach significantly reducing both memory footprint and
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runtime. We solve for overlapping sequences of ten frames
at a time, with a time shift of seven frames between them
and blend the rotations obtained in the three overlapping
frames, to maintain rotation smoothness. The rotations gen-
erated with this staggered approach are practically identical
to those generated using a global solution.

5.4. Vertex Positioning

Given the new rotations, we solve for vertex positions using
a least-squares solution, which aims to preserve the com-
puted rotations as the per-triangle transformation gradients.
We label the vertices of a given triangle as v1, v2 and v3
and add a virtual vertex v4 computed by offsetting v1 by
the triangle normal. We then define the local triangle frame
Vt

i as Vt
i = (v4 − v1,v4 − v2,v4 − v3). To obtain the ver-

tex positions, we minimize the following quadratic func-
tional [SP04],

argmin
ṽ ∑

i,t
‖Ṽt

i(V
t
i)
−1−Rt

i‖2
F , (1)

where ṽ are the new positions of the vertices, Vt
i and Ṽt

i the
local frames before and after the deformation, and Rt

i are
the previously calculated triangle rotations. Since this objec-
tive functional has no temporal component it can be mini-
mized independently for each frame. We use a direct solver
(SuperLU [DEG∗99]) to solve the corresponding linear sys-
tem, fixing one of the mesh vertices to remove the redundant
translational degrees of freedom.

5.5. Stretch Reduction

After the positioning step, the deformed per-frame meshes
satisfy the anchor rotations (in a least-squares sense) and
are consistent across time. The overall stretch of the out-
put meshes, compared to the inputs, is typically very low, as
the rotation step bends the surface along feasible fold-lines
while the vertex repositioning step attempts to preserve the
rotation-only gradients. A typical example shown in Figure 6
(center) has L2 stretch [SSGH01] of 1.00036 (the optimum is
one). However near the folds the outputs often exhibit local
stretch which is higher than what many fabrics can tolerate,
and one that can interfere with the visual consistency of the
folds across time.

To reduce stretch to an acceptable level, we search for
updated rotation-only gradients, which are more consis-
tent across adjacent triangles, and thus lead to less trian-
gle stretch during vertex repositioning. One way to obtain
new rotations would be to formulate and solve a new space-
time rotation optimization problem with the set of spatial and
temporal requirements listed earlier. However, we found that
such a global solution is unnecessary in our setup. We note
that the rotations implied by the difference between the tri-
angle normals before the deformation n and after ñ are close
enough to our input rotations to maintain the desired prop-
erties. At the same time, these rotations are more feasible to
satisfy in Equation 1, leading to a smaller minimum and thus

less stretch. We therefore simply use them as the new per-
triangle rotations Rt

i (rotation axis is n× ñ and the angle is
arccos(n · ñ)) and reapply the vertex positioning procedure.
We found that one or two iterations of stretch reduction were
sufficient to reduce the maximal per-triangle stretch to under
5%, at which point it becomes visually unnoticeable. In the
example in Figure 6 (right) the maximal per-triangle stretch
in the final model is 4%, and the L2 stretch is 1.00017.

6. Results

We tested our method on a variety of garments gener-
ated by three state-of-the-art capture techniques [BPS∗08,
VBMP08, dAST∗08]. Figures 1 through 8 demonstrate the
method’s behavior on five diverse garment models captured
by Bradley et al. [BPS∗08] using a sixteen camera setup:
two T-shirts, two dresses and a jacket. In all the examples
our method adds believable folds to the models. As demon-
strated in the attached video, the generated folds change
smoothly across time, emulating realistic fold behavior.

We also tested the method on data from Vlasic et
al. [VBMP08] and de Aguiar et al. [dAST∗08] (Figure 9).
Since de Aguilar et al. preserve fine details from the tem-
plate throughout the sequence (Figure 9 (left,middle)) we
smooth those out, prior to applying our dynamic wrinkling
algorithm. Notice how the new folds vary across time, while
the original ones remain fixed (see video for more exam-
ples). The video footage used by these two methods is of
lower resolution than that of Bradley et al., and therefore the
number of folds visible in the footage and captured by our
method is lower. Since both methods heavily rely on silhou-
ettes, they pay less attention to lighting, thus providing con-
ditions that are far from optimal for our approach. Despite
these conditions, our method manages to extract sufficient
fold information to generate believable dynamic folds. Both
setups use only eight cameras, raising a concern of tempo-
ral consistency when the fold extraction switches between
different camera views. Nevertheless, our technique recon-
structs realistic folds even in these sub-optimal conditions
with no noticeable artifacts. In situations where the camera
views are too far apart, temporal inconsistencies can occur.

Runtimes: The most time consuming step of our method
is the space-time rotation computation. For a 100K triangle
mesh we typically have on the order of 2000 anchors per-
frame, so computing the weights for a block of 10 frames
requires solving a linear system of approximately a million
variables 2000 times for each frame. This takes about one
minute per frame on a 27 Intel Xeon 3GHz CPU cluster. The
rest of the computation is done on a single CPU and takes
about two minutes per frame which are split roughly equally
between edge detection and vertex positioning (including the
stretch reduction).

Parameters: Our estimation of fold edges requires a few
parameters that depend on the garment fabric and cut. The
parameters are maximal distance and angle between paired
fold edges, and Canny edge detector radii. In our implemen-
tation those are set by the user once per garment. In all the
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examples the angle was set to 45◦, the other parameters are
listed in Table 1. In the future it might be possible to learn
those from fabric parameters or example inputs.

Pink Blue T-Shirts Red Dancer and
Dress Dress Jacket capoeira kick

Maximal distance ∞ 100 100 100 12
Canny radii 1.5, 2.5, 3.5 1, 2, 3 1, 2, 3 0.5, 2, 4 0.5, 1, 1.5

Table 1: Fold edge parameters

7. Conclusions

We have presented the first, to the best of our knowledge,
method for augmenting the realism of captured garments by
introducing believable dynamic wrinkles. As demonstrated,
our method works robustly on numerous input examples,
generated by different capture methodologies.

Our algorithm does not aim at exact reproduction of fold
shapes observed in the video footage. It might be possible to
increase fold capture accuracy by combining our deforma-
tion approach with a more sophisticated photometric model
using information from multiple cameras simultaneously.

Our current method operates directly on meshes, and thus
the size of the folds it can capture is bounded from below
by the mesh resolution. Since we already use meshes with
around 100K triangles, increasing the resolution further is
not really feasible. One alternative could be to combine geo-
metric deformation with normal space processing, develop-
ing a mixed geometry and bump map modeling approach.
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Figure 7: Wrinkling dresses captured by [BPS∗08], (top) video input, (middle) captured geometry, (bottom) our results.

Figure 8: Wrinkling a t-shirt and a jacket captured by [BPS∗08], (top) video input, (middle) captured geometry, (bottom) our
results.

Figure 9: Wrinkling outfits captured by [dAST∗08] (left) and [VBMP08] (right): (top) video input, (middle) captured geometry,
(bottom) our results. The captured geometry on the left contains template folds which remain constant throughout the sequence.
In contrast, the folds in our outputs change dynamically following the character’s motion.
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