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Bilateral Normal Filtering for Mesh Denoising
Youyi Zheng Hongbo Fu Oscar Kin-Chung Au Chiew-Lan Tai

Abstract—Decoupling local geometric features from the spatial location of a mesh is crucial for feature-preserving mesh denoising.
This paper focuses on first-order features, i.e., facet normals, and presents a simple yet effective anisotropic mesh denoising framework
via normal field denoising. Unlike previous denoising methods based on normal filtering, which process normals defined on the Gauss
sphere, our method considers normals as a surface signal defined over the original mesh. This allows the design of a novel bilateral
normal filter that depends on both spatial distance and signal distance. Our bilateral filter is a more natural extension of the elegant
bilateral filter for image denoising than those used in previous bilateral mesh denoising methods. Besides applying this bilateral normal
filter in a local, iterative scheme, as common in most of previous works, we present for the first time a global, non-iterative scheme
for anisotropic denoising. We show that the former scheme is faster and more effective for denoising extremely noisy meshes while
the latter scheme is more robust to irregular surface sampling. We demonstrate that both our feature-preserving schemes generally
produce visually and numerically better denoising results than previous methods, especially at challenging regions with sharp features
or irregular sampling.

Index Terms—Mesh denoising, bilateral normal filtering, feature preserving, irregular surface sampling
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1 INTRODUCTION

M Esh denoising is a vital preprocessing tool for im-
proving imperfect meshes obtained from scanning de-

vices and digitization processes. Although there already exist
a variety of mesh denoising methods, research on feature-
preserving denoising remains active due to its challenging
nature. On the one hand, local geometric features, either
low-frequency or high-frequency, should be retained or even
recovered during the denoising process. On the other hand,
the features, especially those of high frequency such as sharp
edges and corners, are hard to distinguish from noises, which
themselves are also often of high frequency. Generally, feature-
preserving denoising is achieved by locally adjusting vertex
positions while respecting the underlying features. Anisotropic
treatment is often needed to preserve features such as sharp
edges and corners.

To preserve local geometric features during denoising, the
features must first be identified, either implicitly or explicitly,
and decoupled from the spatial location of a mesh defined in
a global coordinate system. Although high-order differential
properties, such as the shape operator, might contain desirable
anisotropic information of features, they are not well defined
at regions with sharp features and their computation might
become not robust in the presence of noise. Therefore, many
existing techniques rely on only first-order features, i.e., facet
normals. The key idea is to first denoise the normal field and
then evolve the surface to match the denoised normals. Unlike
high-order differential properties, facet normals are usually
well defined anywhere on a surface, especially for triangular
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meshes. However, previous methods [2], [5], [6], [7] simply
work on the normals defined on the Gauss sphere, completely
ignoring the parametrization information of the input mesh.

We show that such parametrization is crucial for effective
denoising of the normal field especially when the input meshes
have highly irregular sampling. Thus we consider the facet nor-
mals as a surface signal defined over the original mesh instead
of over the Gauss sphere. A new bilateral filter is designed
to average the neighboring normals in an anisotropic manner.
The averaging weight is determined by two main factors. One
measures the signal difference, i.e., normal difference, and the
other measures the spatial distance between the neighboring
facets where normals are compared. Our carefully designed
bilateral weighting guarantees that there is little inter-influence
between normals which lie across sharp features or are far
away, thus enabling feature-preserving denoising. We also take
facet sizes into account in weight design, making our bilateral
filter more robust to irregular surface sampling.

Due to the different levels of noise, locally applying a single
step of our bilateral filter to the normal field often does not
lead to satisfactory denoising results. Like most previous mesh
denoising methods, we design a local, iterative scheme and
allow users to control the degree of denoising by adjusting
the number of iterations needed. At each iteration, similar
to traditional convolution filters, our bilateral normal filter is
independently applied to individual normals to obtain a new
normal field as input to the next iteration.

Apart from our local, iterative scheme, we also investigate a
global, non-iterative denoising scheme. Unlike previous global
smoothing techniques [8], [9], [10], which are all isotropic, to
the best of our knowledge, ours is the first global denoising
scheme which is anisotropic and thus able to preserve sharp
features. The bilateral updating is formulated as a global
optimization system which consists of two energy terms, a
smoothness term and a data term. The user adjusts a parameter
for balancing between these two energy terms to control the
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Fig. 1: Our mesh denoising schemes based on bilateral normal filtering produce better results than the state-of-the-art methods at challenging
regions with sharp features or irregular surface sampling. From left to right: an input CAD-like model with random subdivision, denoising
results with bilateral mesh filtering (vertex-based) [1], unilateral normal filtering [2], probabilistic smoothing [3], prescribed mean curvature
flow [4], our local, iterative scheme, and our global, non-iterative scheme. All the meshes in the paper are flat-shaded to show faceting.

Fig. 2: Our method is able to faithfully recover geometric details corrupted by noise (see the corresponding input noisy model in Figure 3).
From left to right: ground truth, denoising results using bilateral mesh filtering [1], unilateral normal filtering [2], probabilistic smoothing [3],
prescribed mean curvature flow [4], our local, iterative scheme, and our global, non-iterative scheme. Our schemes are less influenced by
irregular surface sampling, thus are consistently better at retaining/recovering features at regions with different sampling, e.g., eyes and the
bottom part of the Max-Planck model. Note that the bottom part of the model is not an open boundary and thus is not fixed during denoising.

degree of denoising. Solving this optimization gives a denoised
normal field.

We apply our denoising schemes to a variety of meshes
corrupted by significant noise, which is either synthetic or
arises from imperfect measurement of scanning devices. We
demonstrate that our schemes are able to faithfully retain
geometric details and recover features corrupted by the noise.
We show that our two schemes have their own advantages and
disadvantages. The local, iterative scheme is generally faster
and more effective for recovering the underlying surface from
extremely noisy input meshes. The global, iterative scheme is
more robust to irregular surface sampling. We also compare
our schemes with the state-of-the-art denoising techniques,
demonstrating that both of them consistently produce better
results at challenging regions, e.g., flat regions near sharp
edges/corners or regions with highly irregular sampling (see
comparison examples in Figures 1 and 2).

In summary, the main contributions of this paper are:
• A bilateral filter to process a normal field defined over an

input mesh. The filter is insensitive to surface sampling
and can be easily extended to filter other types of vector
fields defined over a manifold.

• Two practical anisotropic mesh denoising schemes which
are efficient, robust, feature-preserving, and simple to
implement.

2 RELATED WORK

Our review here focuses only on existing works that are
most related to ours. Particularly, we are interested more in
anisotropic mesh denoising than isotropic denoising. Please

refer to an insightful survey by Botsch et al. [11] on the general
mesh smoothing/denoising problem.

Many mesh denoising methods have been extended from
image denoising methods. For example, diffusion-based meth-
ods [12], [13], [14], [15] extend feature-preserving anisotropic
diffusion in image processing to anisotropic geometric diffu-
sion on surfaces. The diffusion process is mainly governed
by the principle of heat transfer, expressed by a discretized
PDE. Diffusion-based methods preserve or even sharpen geo-
metric features during denoising by introducing anisotropic
heat tensors [13], [14], [16], [17], [18]. Such approaches
usually require the computation of energy gradients and Hes-
sians, which typically involve complex implementation and
are computationally expensive. An interesting fact is that
when the diffusion tensor is locally constant, the diffusion
process can be reduced to the mean curvature flow on the
surface [4], [19], thus greatly simplifying implementation
complexity. More specifically, a prescribed anisotropic mean
curvature flow is introduced in [4], which can be seen as an
effective discretization of Clarenz et al.’s anisotropic geometry
diffusion equation [13]. It is also worth mentioning that there
is a fundamental relationship between diffusion and bilateral
filtering [20].

Recently, Ouafdi et al. [3] proposed a probabilistic smooth-
ing method, which performs an anisotropic average of neigh-
boring vertices weighted by the Riemannian distance accord-
ing to a well-designed diffusion tensor. Since its computation
is highly dependent on high-order differential properties, i.e.,
the shape operator, this method often causes denoising artifacts
near regions with sharp features.

In view that facet normals are able to better represent
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local surface geometry than vertex positions, other researchers
first filter the normal field and then reconstruct the denoised
surface from the filtered normal field. For example, Yagou
et al. proposed to use the mean, median [5], and alpha-
trimming filters [7]. Simply averaging the neighboring normals
isotropically, as done in the mean filter, destroys fine features.
Since the sharpness of local features can be roughly measured
by the difference of neighboring facet normals, the median
filter chooses the normal with the median difference value
as the new normal. However, as the new normal is always
copied from the original normal field, it always carries the
original noise to a certain extent, making the median filter
perform poorly for highly noisy meshes. The alpha-trimming
filter, as a compromise between mean and median filters,
also does not guarantee feature-preserving denoising. Shen
and Barner [6] introduce a more effective denoising method
using a fuzzy vector median filter which first computes a
vector median of the neighboring normals and then averages
the neighboring normals weighted by their difference to this
median. However, this method is at the cost of high time
complexity. Instead of computing a vector median to compare,
Sun et al. [2] simply ignore neighboring normals with too large
difference to the current normal during averaging, leading to
a more efficient feature-preserving denoising method. Sun et
al. also present a new method for reconstructing a denoised
mesh from a filtered normal field, which we adopt in our
vertex updating step. Recently, Sun et al. [21] adopt a random
walk model to determine averaging weights. All the above
methods process the normals without considering the original
mesh parametrization. In other words, they essentially handle
the normals defined over the Gauss sphere, making them
unreliable to irregular surface sampling.

The bilateral filter [22] has proved to be a very effec-
tive edge-preserving filter for image processing. It has been
extended to perform feature-preserving mesh denoising by
Fleishman et al. [1] and Jones et al. [23]. The key idea
behind the bilateral filter is to anisotropically average the
signal within a neighborhood, weighted by a monotonously
decreasing function in terms of both spatial difference and
signal difference. Directly applying the bilateral filter to vertex
positions fail to preserve features, since this would mean
using the same set of vertex positions to measure both signal
difference and spatial difference, reducing the bilateral filter
to a unilateral filter. Fleishman et al. apply a bilateral filter
to the signed distances of neighboring vertices to the tangent
plane at a vertex and displace the vertex along its normal with
the computed displacement from the bilateral filter. Jones et
al. use the bilateral filter to average the positions obtained
by projecting a vertex to the tangent planes determined by
its neighboring triangles. Sun et al. [2] showed that Jones et
al.’s method has a close connection to the vertex updating step
used in denoising methods based on normal filtering. These
two bilateral mesh denoising methods are able to effectively
remove moderate noise but fail to recover features that are
significantly corrupted by noise. A possible reason is that
the bilateral filter is independently applied to locally defined
signals at vertices, that is, individual vertices have different
compact-support signals. In contrast, we apply the bilateral

Fig. 3: Contributions of individual weighting terms in Equation 3.
The Max-Planck model is resampled (by decreasing the density of
the right half of the model) and artificially corrupted by Gaussian
noise with standard deviation σ = 0.1 mean edge length (Left). The
denoising comparison results with our local, iterative scheme show
that the filter with both the spatial weighting term Wc and the signal
weighting term Ws (Middle Right) is able to recover fine details better
than the filter with only the signal weighting term Ws (Middle Left).
The further introduction of the sampling weighting term ζi j gives the
best result (Right) and makes the result less influenced by irregular
surface sampling.

filter to a (global) surface signal, i.e., the normal field, defined
over the whole mesh.

Most of the above-mentioned methods are local and it-
erative. In recent years, several global, non-iterative mesh
smoothing methods have been proposed. For example, Nealen
et al. [8] present a global smoothing method by reconstructing
the surface from the vanishing vertex Laplacians constrained
by all the vertex positions. Instead of simply setting the
Laplacians to zero, Su et al. [10] smooth the vertex Laplacians
using a mean filter. Nehab et al. [9] introduce a global
smoothing technique by taking advantage of the common
error characteristics of measured positions and normals. Unlike
the local, iterative methods, most of which do not guarantee
convergence, all these global methods are numerically more
robust. However, all of them are isotropic and easily blur
high-frequency features. In contrast, our global, non-iterative
denoising method is anisotropic and retains all-frequency
geometric features during denoising.

3 BILATERAL NORMAL FILTERING

In this section, we introduce a new bilateral filter for process-
ing a normal field defined over an input mesh. We focus on
triangular meshes and aim to filter the normals defined at every
triangle fi, denoted as ni.

The original bilateral filter for image denoising has the
following form [22]:
g′(p) = K(p) ∑

q∈N(p)
Wc(

∥∥p−q
∥∥) Ws(

∥∥g(q)−g(p)
∥∥) g(q), (1)

where N(p) defines the neighborhood of pixel position p,
K(p) is the normalization factor, and g(p) is the signal to
be processed at p, i.e., the colors defined over a uniform
regular grid in the context of image denoising. The bilateral
filter is essentially a weighted averaging filter with the weight
consisting of two parts: Wc is a monotonically decreasing
function in terms of the distance between p and q, and Ws
is a monotonically decreasing function in terms of the signal
difference at p and q. Gaussian functions are often used to
represent both Wc and Ws in the literature [22].
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As pointed out by Jones et al. [23], when extending the
bilateral filter to mesh denoising, vertex positions cannot
simply be considered as the signal to be processed. Otherwise,
we would have p = g(p), reducing the bilateral filter to a
unilateral filter. Instead, Jones et al. and Fleishman et al. apply
the filter to the signal locally defined at each vertex, which is
obtained by either projecting a vertex to the first-order surface
predictors at its neighbors [23] or projecting its neighboring
vertices to the predictor at the vertex [1]. Although the bilateral
filter itself is robust to outliers, these methods heavily depend
on the approximation of the local predictors and signals, which
is sensitive to noise. The mollification step introduced by Jones
et al. only partially solves this problem, since features might
be blurred in this step and can no longer be recovered [23].

We consider a global discrete signal defined over an input
mesh: n(ci) = ni, where ci is the centroid of triangle fi.
With this configuration, we can directly apply the traditional
bilateral filter to the normal field. Specifically, we formulate
bilateral normal filtering as follows
n′(ci)= K(ci) ∑

j∈N(i)
ζi jWc(

∥∥ci−c j
∥∥)Ws(

∥∥n(ci)−n(c j)
∥∥) n(c j),

(2)
or simply

n′i = Ki ∑
j∈N(i)

ζi j Wc(
∥∥ci− c j

∥∥) Ws(
∥∥ni−n j

∥∥) n j, (3)

where Ki = K(ci) = 1/∑ j∈N(i) ζi jWc(‖ci− c j‖) Ws(‖ni−n j‖)
is the normalization factor, N(i) is the 1-ring face neighbor-
hood of a face fi, and ζi j is the weight to account for the
influence from surface sampling rate. Following [2], we tested
two types of 1-ring face neighborhood. The first type, denoted
by NI(i), is a set of faces that share edges with fi and the
second type, denoted by NII(i), is a set of faces that share
common vertices with fi. The choice of these two types of
neighborhood will be discussed in Section 5.

When the normals at two neighboring facets differ signif-
icantly, it often implies that these two facets lie on different
sides of a sharp edge (e.g., ridge or valley). To avoid blend-
ing sharp features, we use the signal weighting term Ws to
penalize the signal difference, simply measured by ‖ni−n j‖.
Specifically, we define

Ws(
∥∥ni−n j

∥∥) = exp(−
∥∥ni−n j

∥∥2
/2σ

2
s ), (4)

where σs is the standard deviation, with which we adjust
the denoising power (see its detailed setting in Section 5).
Apart from a Gaussian function, we also tested the truncating
weighting function proposed in [2] and found no significantly
noticeable difference in terms of denoising results.

It is natural to assume that the influence of two normals
should be inversely proportional to the distance between their
corresponding facets and gradually vanish with increasing
distance. There are several ways to measure the distance
between two facets, e.g., geodesic distance along the surface
or Euclidian distance. We adopt the Euclidian distance for
simplicity, i.e., ‖ci−c j‖, and define the spatial weighting term
as

Wc(
∥∥ci− c j

∥∥) = exp(−
∥∥ci− c j

∥∥2
/2σ

2
c ). (5)

To reduce the number of user-specified parameters, our al-

gorithm automatically sets the parameter σc. We have tried
several ways to determine a desired value for σc (e.g., as
the average distance of facets in N(i)) and found that using
the average distance of all adjacent facets in an input mesh
generally works the best in our experiments.

Unlike images, which are always defined over uniform
regular grids, meshes are largely irregular in terms of both
connectivity and sampling. Since the normals defined at larger
facets are more likely to be faithful normals of the underlying
surface, those facets demand larger averaging weights. This
is reflected by our sampling weighting term ζi j. We have
experimented different weighting functions for ζi j and found
ζi j = S j is a good choice, where S j is the area of facet f j.

4 MESH DENOISING VIA BILATERAL NORMAL
FILTERING

In this section we present two mesh denoising schemes based
on bilateral normal filtering.

4.1 Local and Iterative Scheme
Like most previous denoising methods, our first scheme is
local and iterative. It is a two-stage iterative scheme. In the
first stage, we iteratively update the normal field; in the second
stage, we iteratively update the vertex positions which reflect
the normals computed in the first stage.

Stage 1: Normal Updating. In a noisy mesh, the facet
normals are corrupted by the noise, though their computation
is well defined. Applying Equation 3 to individual normals
decreases the level of noise in the whole mesh. However, it
also possibly brings the noise from a normal to its neighbors
and vice versa. To some extent it is like an anisotropic
diffusion process. Therefore a straightforward but suitable way
to increase the degree of denoising is to apply Equation 3
multiple iterations in an explicit manner:

nt+1
i = Ki ∑

j∈N(i)
ωi j nt

j, (6)

where ωi j = ζi jWcWs is the averaging weight in Equation 3
measured on the input mesh. We normalize the new normals
after each iteration. Theoretically, we need to update the
weighting terms, ζi j, Wc and Ws, with respect to the newly
denoised normal field at the current iteration. However, we
found that keeping the averaging weight measured on the input
mesh lead to no noticeable visual difference, thus reducing
computational cost.

Multiple iterations of the normal updating increase the
influence of the bilateral filter from a 1-ring neighborhood
to a wider region, leading to a smoother mesh. Since input
meshes often have different levels of noise and automatically
estimating the noise level is an ill-posed problem, like other
denoising methods, we let the user control the number of
iterations to reduce the noise to a desired level.

Stage 2: Vertex Updating. After obtaining the denoised
normal field, we evolve the mesh to match the new normal
field using the iterative vertex updating method proposed by
Sun et al. [2]. Our current implementation does not handle
vertices on open boundaries and simply leaves them fixed
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during denoising. Like [2], we usually perform 10 or 20
iterations of vertex updating in our experiments.

Fig. 4: Left: an noisy input model. The local, iterative scheme, with
both spatial weighting term Wc and signal weighting term Ws (Right)
gives better denoising results than with only signal weighting term
Ws (Middle).

We qualitatively evaluated the contributions of individual
weighting terms in Equation 3. In Figures 3 and 4 we show
different denoising effects with the local, iterative scheme
when some weighting terms are omitted. The comparisons
show that the filter with both the spatial weighting term Wc
and the signal weighting term Ws enables better recovering of
fine details than the filter with Ws only. For example, note the
denoising difference in the left eye of the Max-Planck model
between the middle and middle right images in Figure 3 and in
the mouth and eye regions in Figure 4. Figure 3 also shows that
by introducing the sampling weighting term ζi j, our denoising
result is consistent even at regions with significantly different
sampling rates, e.g., the highlighted bottom part of the Max-
Planck model. The sampling term ζi j also helps to recover
fine details, e.g., the left eye of the Max-Planck model.

4.2 Global and Non-Iterative Scheme

Instead of applying our local bilateral filter iteratively to mimic
a wider filter, an alternative solution is to solve for all the new
normals in a single pass by minimizing

Es = ∑
i

Ai
∥∥n′i−Ki ∑

j∈N(i)
ωi jn′j

∥∥2
, (7)

where n′i are the unknown normals for the denoised mesh.
This can be regarded as an implicit updating compared to
the explicit updating performed in Equation 6 (cf. explicit
diffusion [24] and implicit diffusion [25]). When updating
the normals explicitly using Equation 6, multiplying both
sides of the equation by a constant has no effect on the
solution. However, when solving the normals in a least-squares
sense, which will be described shortly, changing the weight of
each equation (i.e., n′i−Ki ∑ j∈N(i) ωi jn′j = 0) does affect the
solution. To make the optimization avoid bias towards regions
with dense sampling, each equation is weighed by Ai = Si/S̄,
where Si is the area of facet fi and S̄ is the average triangle
area over the entire mesh. Note that ωi j alone (i.e., without
Ai) cannot address the bias problem, since ωi j is only used
to average neighboring normals inside each equation and thus
cannot balance the relative importance of each equation during
optimization.

It can be shown that Equation 7 is closely related to Lapla-
cian optimization over the normal field. By simple derivation,

Fig. 5: Our denoising schemes are more robust to irregular surface
sampling than previous denoising methods like [2] (Left). Our global,
non-iterative scheme (Right) outperforms our local, iterative scheme
(Left) at regions with highly different sampling, thus better preserving
global structures (highlighted by overlaid lines). The noisy input
model is shown in Figure 1.

we have
Es = ∑

i
Ai

∥∥Ki ∑
j∈N(i)

ωi j(n′j−n′i)
∥∥2 = ∑

i
Ai

∥∥L(n′i)
∥∥, (8)

where L is the Laplace operator [8] with our bilateral weight-
ing. The so-called Laplacian coordinates, L(x), have been
extensively used to represent local geometric details in the
literature of differential-based mesh deformation (see [26]
and the references therein). Since minimizing Es leads to
vanishing Laplacian coordinates defined over the normal field,
this process completely removes the geometric details, i.e., the
high-frequency information, from the normal field. Note that
unlike the traditional Laplace operator, where the weighting
schemes (e.g., uniform weighting or cotangent weighting) are
all isotropic, our bilateral weighting makes Es result in an
anisotropic smoothness term.

The minimization of Es alone is under-constrained. More
importantly, we intend to let the user control the degree of
denoising, retaining the signal of the original normal field to
some extent. Therefore, similar to the position-based Laplacian
optimization framework [8], we introduce a data term by using
all the original normals as the soft constraints:

Ed = ∑
i

Ai
∥∥n′i−ni

∥∥2
. (9)

Our final optimization is formulated as
argmin
{n′i}

(1−λ ) Es +λ Ed , (10)

where λ ∈ [0,1] is a parameter to balance the smoothness
and data terms. In other words, the user can adjust λ to
control the degree of denoising: smaller values of λ give
more power to the smoothness term, thus leading to smoother
meshes (see Figure 6). Note that the above optimization
is effectively equivalent to performing one step of implicit
updating of ni with step size related to λ . The resulting
optimization is essentially a linear least-squares optimization
problem, which can be efficiently solved using many standard
numerical solvers [27], e.g., conjugate gradient. Multigrid
algorithms [28] can also be adopted for faster computation.
The differences between our optimization and Laplacian mesh
optimization proposed by Nealen et al. [8] are as follows.
First, our Laplacian optimization is performed over the normal
field instead of the vertex positions. Second, we use bilateral
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Objects Methods Parameters Ev (×10−3) Time
Pyramid BMF (10) 4.949 0.1124s

(|V |= 2,948 UNF (50, 0.8, 100, NII) 4.154 1.2750s
|F |= 5,892) PS (20, 0.001, 0.85) 4.580 0.7374s

Figure 1 PMC (implicit, 20,0.01,0.0059) 4.473 24.766s
Scheme I (50, 0.23, 100, NII) 4.128 2.0185s

Scheme II (0.0001, 0.23, 100, NII) 3.837 1.7220s
Fandisk BMF (5) 2.559 0.1227s

(|V |= 6,475, UNF (10, 0.55, 10, NII) 2.439 0.4806s
|F |= 12,946) PS (5, 0.01, 0.85) 2.500 0.6537s
Gaussian noise PMC (explicit, 10,0.01,0.039) 2.449 12.070s

Figure 11 Scheme I (5, 0.3, 10, NII) 2.364 0.5784s
Scheme II (0.07, 0.3, 10, NII) 2.358 0.6686s

Fandisk BMF (5) 3.642 0.1214s
(|V |= 6,475, UNF (20, 0.55, 30, NII) 3.561 0.8804s
|F |= 12,946) PS (8, 0.001, 0.85) 3.168 0.6223s
impulse noise PMC (explicit, 15,0.01,0.0122) 3.535 17.100s

Figure 11 Scheme I (15, 0.35, 20, NII) 3.136 1.1483s
Scheme II (0.01, 0.4, 20, NII) 3.390 2.4056s

Octa-flower BMF (3) 0.727 0.1025s
(|V |= 7,919 UNF (6, 0.8, 20, NII) 0.651 0.3899s
|F |= 15,834) PS (3, 0.001, 0.7) 0.609 0.8070s

Figure 13 PMC (explicit, 5,0.01,0.0053) 0.676 8.023s
Scheme I (6, 0.25, 20, NII) 0.417 0.6327s

Scheme II (0.1, 0.33, 20, NII) 0.383 2.9237s
Max Planck BMF (3) 0.642 0.3874s

(|V |= 30,942 UNF (3, 0.3, 20, NII) 0.399 1.2120s
|F |= 61,880) PS (3, 0.01, 0.85) 0.674 1.5291s

Figure 2 PMC (explicit, 10,0.01,0.009) 0.381 18.400s
Scheme I (3, 0.35, 20, NII) 0.352 1.5892s

Scheme II (0.15, 0.4, 20, NII) 0.346 24.367s
iH-bunny BMF (5) 2.441 0.7574s

(|V |= 34,834 UNF (5, 0.5, 20, NII) 1.809 1.7722s
|F |= 69,451) PS (3, 0.01, 0.85) 1.960 1.4085s

Figure 12 PMC (explicit, 10,0.01,0.006) 2.103 45.302s
Scheme I (4, 0.5, 20, NII) 1.720 2.9048s

Scheme II (0.1, 0.5, 20, NII) 1.707 28.308s

TABLE 1: Parameter settings and timings.

weighting rather than uniform/cotangent weighting, making
our method faithfully preserve features.

5 RESULTS AND DISCUSSION

We have tested our denoising schemes on a variety of models
with either raw or synthetic noise. Like previous works,
we mostly use models with synthetic noise for quantitative
analysis of the effectiveness of our method. Most of our
synthetic noise is generated by a zero-mean Gaussian function
with standard deviation σ proportional to the mean edge length
of the input mesh. Figures 1-3, 5, 6(Bottom), and 11–13
show some denoising results using our schemes for models
with synthetic noise, and Figures 4, 6(Top), and 14–16 for
models with raw noise. All the models are flat-shaded to show
faceting effect. Observe that both our local and global schemes
effectively remove noise while preserving features, e.g., sharp
features in CAD-type models (Figures 1, 6(Bottom), 11 and
13) or fine details in non-CAD models (Figures 2, 6(Top),
14, 15 and 16).

Parameters. Like previous denoising methods, we fine tune
the parameters to produce the best results. The parameters used
for some denoising examples are listed in Table 1. BMF, UNF,
PS, PMC, Scheme I and Scheme II stand for bilateral mesh fil-
tering [1], unilateral normal filtering [2], probabilistic smooth-
ing [3], prescribed mean curvature flow [4], our local, iterative
scheme and our global, non-iterative scheme, respectively. The
parameter sets for these methods are: BMF (vertex iterations);
UNF (normal updating iterations, feature detection threshold,
vertex updating iterations, neighborhood size NI or NII); PS
(vertex iterations, time step, feature detection threshold); PMC
(integration scheme, number of steps, step width, feature
detection parameter); Scheme I (normal updating iterations,
σs, vertex updating iterations, neighborhood size); Scheme II
(λ , σs, vertex updating iterations, neighborhood size). The
column Ev lists the vertex-based errors between the denoised
meshes and the corresponding ground-truth models, with the

Fig. 6: Top: our local, iterative scheme produces different degrees of
denoising results from an noisy input model (Left) with respect to
different values of σs (Middle: σs = 0.3 and Right: σs = 0.9). Bottom:
our global, non-iterative scheme generates smoother denoising results
with smaller values of λ (Left: input noisy model; Middle: denoising
with λ = 0.15; Right: λ = 0.03).

smallest errors among these methods highlighted. All the
timings are measured on a notebook with Duo CPU 2.2GHz
and 2GB RAM. Note that the implementation we use for
PMC comes with a simple CG-solver for the implicit flow
integration and using direct solvers is expected to bring an
enormous speedup.

Among the parameters, the number of normal updating
iterations for our local, iterative scheme, λ for our global,
non-iterative scheme, and σs for both schemes influence the
degree of denoising the most significantly. Figure 6 shows
that larger values of σs or λ lead to smoother results. In our
experiments, σs typically lies in the range of [0.2-0.6], with
higher values for higher level of noise. We found that the first
type of face neighborhood NI works well for non-CAD models
and NII is more suitable for CAD-like models. We speculate
that more facets involved in NII are able to better characterize
sharp features, especially sharp edges. In addition, given the
same number of normal updating iterations or the same value
of λ , NII generally produces smoother results.

Comparisons with Previous Methods. To demonstrate the
effectiveness of our denoising schemes, we compare with
four exemplary denoising techniques, namely, bilateral mesh
filtering (vertex-based) [1], unilateral normal filtering [2],
probabilistic smoothing [3], and prescribed mean curvature
flow [4]. For all these methods and ours, we chose the
parameters that produce visually the best denoising results, as
summarized in Table 1. Figures 1, 2, and 11–16 show some of
comparison examples, with magnified views clearly showing
the differences. Both our schemes usually outperform the
previous methods at challenging regions with either irregular
surface sampling or sharp features. As seen from these figures,
bilateral mesh filtering often blurs sharp edges, e.g., the blurred
fandisk model (see per-vertex errors visualized in Figure 10).
Unilateral normal filtering consistently does not perform well
at regions with significantly different sampling, as shown in
Figure 5. Since both the probabilistic smoothing method and
the mean curvature flow are highly dependent on the approxi-
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Fig. 7: Normal errors resulting from our schemes and unilateral
normal filtering [2]. Our schemes consistently lead to smaller normal
errors than unilateral normal filter.

Fig. 8: Our local, iterative scheme (σs = 0.2) is applied to a noise-
free model (Left). The colored models show the visualization of errors
measured as the difference of individual vertex positions between the
processed models and the original model.

mation of curvature tensors, whose computation is not robust
at regions with sharp features or irregular tessellations, these
methods perform unreliably near such regions (Figures 1, 11
and 13).

We have also quantitatively analyzed the differences be-
tween our schemes and previous approaches. Specifically, we
measure the L2 vertex-based error Ev between the denoised
mesh and the ground-truth model, as shown in Table 1. Please
refer to [2] for the formulation of Ev (Equation 29 in [2]). Note
that although we did not deliberately adjust the parameters
towards small values of Ev, both our schemes consistently give
lower errors than the compared methods. Since the signal we
are processing is a normal field, we also measure the difference
between the normal field of the original model (before addition
of noise) and the denoised normal field. Following [2], we use
the mean square angular error (MSAE) as the error metric and
compare the normal errors between our local, iterative scheme
and unilateral normal filtering in terms of number of iterations
(Figure 7). For comparison, we also plot the normal errors
resulting from our global scheme in the same diagrams, though
this scheme is non-iterative. It can be seen that the global, non-
iterative scheme generally leads to smaller normal errors. For
iterative methods, including our local, iterative scheme and
unilateral normal filtering, the normal errors generally form
a V-shaped curve with the smallest error usually around at
5 iterations in our experiments. Although our local, iterative
scheme generally does not converge to a noise-free model, by
applying our scheme to a noise-free model (Figure 8) we show
that geometric features can still be well preserved even after
a moderate number of iterations.

Local Scheme vs Global Scheme. Experiments show
that our local and global denoising schemes have their own
advantages and disadvantages. The global scheme is more
robust to irregular surface sampling, as clearly shown by the
denoising example of a CAD-like model in Figure 5. This

model has a very different sampling rate at one of its sharp
corners, making the local scheme behave slightly differently
when recovering the geometry at the highlighted ridge near
that corner. In contrast, our global scheme better retains the
global structure of the ridges, possibly because it distributes
the influence from the irregular sampling to the whole surface
through optimization. In addition, we found that the global
scheme is able to better preserve fine details, as shown in
Figure 2, 12, 13, 14, 15 and 16. However, the better feature-
preservation property of our global scheme may become un-
desirable when denoising high level of noise. Since features in
highly noisy meshes are seriously corrupted, iterative methods
are usually better in recovering the features gradually. Figure 9
shows that our local, iterative scheme recovers the whole shape
of the cylinder model much better than the global, non-iterative
scheme. In terms of computational cost, the local, iterative
scheme is faster and has lower memory consumption (see
Table 1). Similar to previous local, iterative methods, our local
scheme is also highly scalable to models of large size.

Fig. 9: Denoising a noisy cylinder model (Left). Our local scheme
(Middle) better recovers geometric features than the global scheme
(Right) when the level of noise is high.

Limitations. Like most previous denoising methods, our lo-
cal, iterative method cannot guarantee convergence, as shown
in Figure 7. In other words, more iterations lead to smoother
normal fields (i.e., possibly larger normal errors), no matter
what level of noise there is essentially in an input model.
Therefore, the user needs to choose an appropriate number of
iterations (usually around 5 in our experiments) to achieve the
desired results. In contrast, our global, non-iterative scheme
is unconditionally stable. In addition, theoretically both our
schemes cannot guarantee volume preservation, though we did
not observe any noticeable shrinking case in practice. Finally,
our current implementation simply fixes open boundaries dur-
ing denoising, which might be undesirable for some scenarios.

6 CONCLUSION

We have presented two efficient and effective denoising
schemes for irregular triangular meshes. Our denoising
schemes are based on a novel bilateral normal filter. We regard
the facet normals as a surface signal parameterized on an input
mesh and formulate the influence of both spatial difference

Fig. 10: The errors between the denoised results (Figure 11 Top)
and the ground truth, measured as the positional difference between
corresponding vertices.
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Fig. 11: From left to right columns: input noisy model with ground truth highlighted, denoising results with [1], [2], [3], [4], and our local
and global schemes. The top fandisk model is corrupted with 0.1 mean edge length gaussian noise while the bottom one is corrupted with
0.5 mean edge length impulsive random noise.

Fig. 12: From left to right columns: ground truth, input noisy model (by introducing 0.2 mean edge length gaussian noise into the ground
truth), denoising results with [2], [4], and our local and global schemes.

Fig. 13: From left to right columns: ground truth, input noisy model (by introducing 0.1 mean edge length gaussian noise into the ground
truth), denoising results with [1], [3], and our local and global schemes.
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and signal difference into bilateral weighting. Both our local,
iterative scheme and global, non-iterative schemes are robust
to irregular surface sampling and are able to retain/recover
geometric details, achieving better results than the state-of-
the-art methods. Our bilateral normal filtering can be easily
extended to filter other types of vector fields defined over a
manifold, e.g., surface normals from photometric stereo or raw
normals from scanning devices defined over point clouds.
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Fig. 14: Denoising results of raw hand. From left to right columns: original noisy model, denoising results with [1], [3], our local, iterative
scheme, and our global, non-iterative scheme.

Fig. 15: Denoising results of raw vase. From left to right columns: original noisy model, denoising results with [2], [4], our local, iterative
scheme, and our global, non-iterative scheme.

Fig. 16: Denoising results of raw head. From left to right columns: original noisy model, denoising results with [1], [2], [3], [4], our local,
iterative scheme, and our global, non-iterative scheme.

Chiew-Lan Tai is currently an Associate Pro-
fessor of Computer Science at the Hong Kong
University of Science and Technology. Her re-
search interests include geometry modeling and
processing, computer graphics, and character
animations. She received the BSc degree in
mathematics from the University of Malaya, the
MSc in computer & information sciences from
the National University of Singapore, and the
DSc degree in information science from the Uni-
versity of Tokyo.


