
Computational Visual Media
DOI 10.1007/s41095-017-0078-4

Research Article

View suggestion for interactive segmentation of indoor scenes

Sheng Yang1 (), Jie Xu2, Kang Chen1, and Hongbo Fu3

c© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Point cloud segmentation is a fundamental
problem. Due to the complexity of real-world scenes and
the limitations of 3D scanners, interactive segmentation
is currently the only way to cope with all kinds
of point clouds. However, interactively segmenting
complex and large-scale scenes is very time-consuming.
In this paper, we present a novel interactive system
for segmenting point cloud scenes. Our system
automatically suggests a series of camera views, in
which users can conveniently specify segmentation
guidance. In this way, users may focus on specifying
segmentation hints instead of manually searching
for desirable views of unsegmented objects, thus
significantly reducing user effort. To achieve this, we
introduce a novel view preference model, which is based
on a set of dedicated view attributes, with weights
learned from a user study. We also introduce support
relations for both graph-cut-based segmentation and
finding similar objects. Our experiments show that
our segmentation technique helps users quickly segment
various types of scenes, outperforming alternative
methods.

Keywords point cloud segmentation; view suggestion;
interactive segmentation

1 Introduction

With the prevalence of consumer-grade depth
sensors (e.g., Microsoft Kinect), scanning our
living environments is becoming easier. However,

1 Tsinghua University, Beijing, China. E-mail: S.
Yang, shengyang93fs@gmail.com (); K. Chen,
chenkangnobel@hotmail.com.

2 Massachusetts Institute of Technology, Cambridge, USA.
E-mail: eternal answer@126.com.

3 City University of Hong Kong, Hong Kong, China. E-
mail: fuplus@gmail.com.

Manuscript received: 2016-12-02; accepted: 2017-01-12

the resulting 3D point clouds are often noisy,
incomplete, and distorted, posing various challenges
to traditional point cloud processing algorithms.
Thus, in recent years, growing attention has been
paid to low-quality point cloud processing problems.
Amongst them, semantic segmentation, which aims
to provide a decomposition of a 3D point cloud into
semantically meaningful objects, is one of the most
fundamental problems, and is important for many
subsequent tasks such as object detection [1], object
recognition [2], scene understanding [3], etc.

Semantic segmentation of 3D point clouds has
been extensively studied, resulting in various
techniques, based for instance on region growing [4,
5], graph-cut [6–8], learning [9–11], etc. Most of
those approaches attempted to achieve semantic
segmentation with little or even no user intervention.
However, due to the complexity of real-world
scenes and the limitations of 3D scanners, manual
intervention is often inevitable [12].

Previous interactive segmentation work (e.g., Refs.
[13, 14]) typically focuses on improving segmentation
results given the same amount of user input
(e.g., provided by a commonly used stroke-based
interface). We observed that when interactively
segmenting scenes at a moderate or large scale,
finding appropriate views to provide segmentation
hints is very time-consuming. For example, for
a scene with multiple rooms containing objects
of various types, shapes, and sizes, objects can
easily occlude each other, requiring careful selection
of viewpoints for interactive segmentation. In
addition, due to the discrete nature of point clouds,
the distances between viewpoint and objects need
to be carefully chosen to ensure the desired point
density and that contextual information is in view.

Based on these observations, we present a new
interactive system for segmenting cluttered point

1

2 S. Yang, J. Xu, K. Chen, et al.

...

Fig. 1 Given an input scene represented as a 3D point cloud (left), our system automatically suggests a series of reasonable views (middle)
for easily inputting segmentation hints for semantic segmentation of the entire scene (right).

clouds of large real-world scenes. Our system is able
to automatically suggest a series of camera views, in
which users can conveniently specify segmentation
guidance, i.e., 2D strokes in our case. To reduce
user effort, we aim to optimize the suggestions,
i.e., to provide views that both contain plenty of
undetermined objects and can clearly display them.
To achieve this, we introduce a novel view preference
model, which is based on a set of dedicated view
attributes, whose weights are learned from a user
study. Given a new scene, our system uses the
learned view preference model to find the next best
views one by one. In this way, users may focus on
specifying segmentation hints, instead of manually
searching for desired views for segmentation of
unsegmented objects.

To further reduce user effort in interactive
segmentation, we incorporate support relations in
a graph-cut based segmentation framework, to
find similar objects for segmentation propagation.
We have compared the performance of interactive
point cloud segmentation with and without view
suggestion, and interactive segmentation of RGB-D
images. The experiments show that our segmentation
technique with view suggestion helps users quickly
segment various types of scenes, and outperforms
alternative methods.

2 Related work

2.1 Point cloud segmentation

Semantic segmentation of 3D point clouds or RGB-
D images has long been an active research topic in
the communities of computer graphics, vision, and
robotics (see an insightful survey by Nguyen and
Le [12]). Below we discuss the most relevant works,
and categorize them into supervised, unsupervised,
and interactive techniques.

With the growing availability of free 3D datasets

(e.g., the NYU Depth Dataset [11, 15], the
SUN3D dataset [16], and ShapeNet [17]), supervised-
learning-based segmentation algorithms typically
exploit high-level semantic information from labeled
datasets, and use the learned knowledge to help
detect, recognize, and thus semantically separate
object regions from backgrounds. Training data for
supervised methods mainly come from two sources:
CAD models and RGB-D images. High-quality CAD
models are ideal training data as they provide full
3D a priori knowledge about geometric shapes [10,
18] and even contextual relationships [19], but the
number and diversity of high-quality digital models
are far from enough to cover everything; creating
these models is expensive. Since RGB-D images
are much easier to acquire, numerous methods (e.g.,
Refs. [1, 3, 20, 21]) learn various features from
labeled RGB-D images. However, despite ease of
acquisition, the labeling of RGB-D images is still
labor intensive. Our system can be used as a
convenient and robust segmentation tool to help
produce high-quality training data.

Unsupervised semantic segmentation methods
often rely on regular patterns (i.e., symmetry and
repetition) observed from input data itself, and
work extremely effectively on outdoor building
facades [22, 23]. However, interior scenes present
much more complex structures. To simplify the
problem, previous works (e.g., Refs. [9, 24]) focus on
large-scale working environments containing limited
types of objects (e.g., office desk, office chair,
monitor), each repeated many times. However, real-
world scenes often contain unique objects. Thus,
manual intervention is often still required to refine
segmentation results produced by such automatic
methods.

Since automatic segmentation methods are far
from perfect, in practice interactive methods are
more frequently used for segmenting both indoor

View suggestion for interactive segmentation of indoor scenes 3

scenes [13, 25] and outdoor scenes [14]. The most
commonly used interactive scheme is to let users
specify representative foreground and background
regions (typically via a stroke-based interface), which
are then used to construct a probabilistic inference
model (using, e.g., conditional random fields) and
optimized using graph-cut [7, 8], or simply used as
seeds for region growing [4, 5, 26]. However, such
an interactive scheme is designed for segmenting an
individual image frame, and thus requires carefully
selected views of 3D scene contents for projection
to screen space. While the view selection process
is time-consuming, especially for large-scale and
complex scenes, it has gained little attention. Thus,
our work is largely complementary to existing
interactive and automatic segmentation techniques.

2.2 Camera control

Finding feasible views to display 3D graphics on a 2D
screen is a fundamental problem, which in computer
graphics is generally referred to as the camera control
problem [27, 28]. According to the camera mode and
the scale of the 3D contents, existing solutions to
this problem can be divided into two categories: fly-
around and walk-through. We adapt these existing
ideas to a new context for interactive point cloud
segmentation, and tackle unique challenges such as
the handling of cluttered point clouds, and dynamic
selection of a series of good views for easy labeling
of objects.

A fly-around camera allows complete contents
rendered to the screen, and is often used when
displaying single objects or small-scale scenes. The
core problem is best view selection, which aims to
automatically select the most representative view of
a 3D model. Various low-level view attributes (e.g.,
projected area, viewpoint entropy, silhouette length,
and depth distribution) have been proposed [29, 30]
as a basis for solving this problem. The state
of the art is probably the work by Secord et
al. [29], which learns how to combine low-level view
attributes based on an extensive user study of human
preferences. Our work differs from the existing
best view selection techniques in terms of both
inputs (cluttered point clouds versus clean surface or
volume models) and outputs (a series of viewpoints
looking at different parts of a scene versus a set of
independent good views looking at the same target).

Walk-through camera mode is thus more relevant

to our problem; it is often used to navigate within
large-scale virtual scenes [31, 32]. This problem
essentially comprises two sub-problems: viewpoint
selection [30] and path planning [33, 34]. Unlike
the criteria used for fly-around cameras, measuring
the quality of viewpoints within a scene is mainly
based on viewpoint entropy [30]. Path planning is
needed to avoid penetrating objects or walls and
to present smooth scene roaming. In contrast,
our problem demands essentially discrete views
for labeling, although smooth transition is weakly
considered. Again, existing walk-through methods
often take clean scenes as input. Additionally, their
extracted walk-through paths can be pre-generated,
while in our case the selection of the next best view
depends on the segmentation progress and needs to
be determined on the fly. We have also found that
top views are very useful for our application, but they
are seldom used for the walk-through applications.

3 System overview

The main contribution of our work is automatic
suggestion of good views for easy labeling of
objects in indoor scenes represented as 3D point
clouds. We implement view suggestion in an
interactive segmentation system, which takes an
unsegmented scan of an indoor scene as input.
However, our interactive system can be helpful
for interactively refining automatically generated
segmentation results.

As shown in Fig. 2, our system contains three
components: preprocessing, view suggestion, and
interactive segmentation. In the preprocessing step
(Section 4) the system automatically aligns an
input scene with Manhattan directions, extracts
storeys (levels), and clusters the points into patches
which should be treated as indivisible units in
segmentation.

Afterwards our system automatically finds
candidate viewpoints and sample views for
presenting as suggestions (Section 5.1). To evaluate
the quality of a view, we introduce a view preference
model (Section 5.2), which involves several attributes
such as point density, projected area, and viewpoint
entropy. The weights of these attributes are learned
by conducting a user study of human preferences for
views of scenes. At runtime, each view is evaluated
using the learned view preference model, with

4 S. Yang, J. Xu, K. Chen, et al.

Fig. 2 System overview.

segmentation status and smooth transitions taken
into account. The best view is then suggested to
the user for interactive segmentation. The user may
reject the current suggestion, and our system then
updates the strategy for suggesting another view.

Given a view, the user provides segmentation
hints on unsegmented, over-segmented, or under-
segmented objects that are in view, using a classic
stroke-based interface. The patches corresponding
to these strokes are used as seeds to trigger a
graph-cut-based segmentation optimization. We
extract support relations between patches in the
preprocessing step, and incorporate them into the
segmentation optimization (Section 6.1). To further
reduce the amount of user intervention, we find
similar objects to already-segmented objects for
segmentation propagation (Section 6.2). The above
steps of automatic view suggestion and interactive
segmentation of scenes in the selected suggested view
are repeated until all objects have been labeled.
For multi-storey cases, our system provides view
suggestions storey by storey.

4 Preprocessing

In this section we briefly introduce our preprocessing
step, which generates essential information for later
use. Our system takes as input a 3D point cloud
of an indoor scene, which can be acquired using
different types of scanning devices such as LiDAR or
Microsoft Kinect. For example, for RGB-D streams,
they can be registered to form a point cloud using

KinectFusion or its variants [35, 36]. Like many
other point cloud processing pipelines [37], we
downsample the data, estimate point normals,
and transform the input scene into Manhattan
coordinates [38] with the z-axis pointing upwards.
Then we extract horizontal planes (by RANSAC)
as floors and an optional ceiling. As illustrated in
Fig. 3, we decompose a multiple-storey building into
individual storeys, with the ceiling of each storey
removed to achieve top views of rooms.

4.1 Constructing representative patches

Over-segmentation has often been used in existing
works for preprocessing point clouds [7, 14, 24]. We
are interested in over-segmenting an input scene into
semantic patches, instead of patches with similar
sizes but with no semantics [7]. Such patches not
only help reduce computational costs but also serve
as integral semantic units to analyze the importance
of views and support relations.

Fig. 3 Decomposition of one-storey (left) and two-storey (right)
buildings into individual storeys, with the removal of ceilings (if any).

View suggestion for interactive segmentation of indoor scenes 5

Our solution is an extension of the region growing
approach by Ref. [24]. Since the original approach
does not consider any color information, it might
not split objects with similar shape but different
colors (e.g., causing objects on the table in Fig. 4(c)
to disappear). In addition, their approach has
been shown to be effective only on good-quality
scenes acquired by LiDAR devices, and can lead
to numerous tiny patches for point clouds of low
quality (e.g., those acquired by Kinect). To address
these problems, we improve their approach by
appropriately adding a new color condition and
performing two rounds of growing, the first on the
input point cloud and the second on the patches
resulting from the first round.

The first round of region growing is applied to the
input points. Specifically, let G0 = 〈V0, E0〉 denote
a graph, with V0 representing the input points and
E0 the edges generated by k-nearest neighborhoods
(k = 15 in our implementation). As points in
different colors more likely belong to different objects
or parts, as well as the basic normal and position
conditions (with the default parameters t0 and t1) for
patch growing in Ref. [24], we add a color condition
as follows:

max (||RHS
i −RHS

j ||, |CV
i − CV

j |) < t2 (1)

(a)

(b)

(c)

(d)

Fig. 4 Patch construction results. (a) Downsampled point clouds
from different datasets. (b) By Ref. [7]. (c) By Ref. [24]. (d) Our
result.

where i and j are two colors. CH
i ∈ [0, 2π) and

CS
i , C

V
i ∈ [0, 1] denote normalized HSV color values

for i. RHS
i = (CS

i cosCH
i , C

S
i sinCH

i) denotes the
2D coordinate values of i in the Hue–Saturation
color disk. Intuitively, we allow two colors to be
merged when their Euclidean distance in the Hue–
Saturation color disk and intensity value difference
are both within a small threshold t2 (= 0.05 in our
implementation).

This region growing process results in a set of
merged patches. However, in our experiments we
found that by adding the color condition, individual
points might be isolated as individual patches,
especially when the quality of the input point cloud is
poor. To address this problem, we perform a second
round of region growing on the merged patches
from the first pass, but with relatively looser rules.
Like G0 is constructed over points, G1 = 〈V1, E1〉
is constructed over patches. For merging, we sort
the patches in descending order of the number of
contained points. For each patch, we find the
normal of the best-fit plane and its centroid to check
the respective normal and position conditions (the
corresponding parameters are denoted t3, t4). The
color condition is based on the color distribution
and is more specifically defined using the χ-squared
distance [39] between the HSV color histograms of
two patches Pi and Pj in V1:

χ2(Ii, Ij) < t5 (2)
where Ii denotes the normalized HSV color
histogram of points in Pi. Specifically, H, S,
and V channels are discretized into 16, 16, and
8 bins respectively. We discretize V values into
fewer bins to reduce the influence of different
lighting conditions. The threshold t5 is set to 1.6 in
our system. The above patch-based region growing
procedure is repeated multiple times (5 times in our
implementation). After each iteration, the thresholds
are relaxed by 20% to merge small isolated patches
into larger patches. In our system, we set t0 = 0.8,
t1 = 0.05, t3 = 0.75, and t4 = 0.2 for all input scenes.

5 View suggestion

In this section we first discuss view sampling,
then perceptual assessment of views, and finally
how to automatically suggest views for interactive
segmentation.

6 S. Yang, J. Xu, K. Chen, et al.

5.1 View sampling

View sampling simplifies our problem, since it results
in a discrete set of views for assessment. A view is
basically determined by three vectors: the camera
position, view direction, and up direction.

Inspired by previous works on urban city
reconstruction using both airborne and street-borne
data [40], we consider two types of views: interior
perspectives and top views. Top views provide a
good summary of a scene or its parts, since objects
often lie on flat surfaces (e.g., tables, floors) and
are thus easily separable from a top view. In
contrast, interior perspectives enable a more detailed
examination of a scene from a closer distance, and
are useful for dealing with objects of small size or
objects that are blocked in top views (e.g., objects
in bookshelves). Thus these two types of views
are largely complementary to each other. Next we
explain how we sample these two types of views.

For interior perspectives, we fix the orientation
of a view so that its up vector in image space is
aligned with the upright orientation of a scene [29].
An interior perspective can then be characterized by
(x, y, z, θ, φ), where x, y, and z define the camera
position, and θ and φ control the view direction.
A possible viewpoint should meet the following
requirements: it must stay inside a room (above the
floor, away from the walls, below the ceiling if any)
and avoid hitting objects. Objects are approximately
detected as columns using the column representation
proposed by Fisher et al. [41]. We then perform
uniform sampling in the space of a storey excluding
the space occupied by the columns to get possible
camera positions (x, y, z), each of which is associated
with a view sphere parameterized by (θ, φ) (see
Fig. 2). Both θ and φ are sampled every 15◦, resulting
in 266 views at each viewpoint.

For every top view, its view direction is fixed and
always points downward along the negative z-axis.
Lean view directions are not used since objects in
such resulting views would often be severely blocked
by vertical walls. Hence, θ is fixed at π for all top
views in our implementation. We thus use (x, y, z, φ)
for mapping the camera position of a view and its
up direction. We uncover the ceiling of a room
or storey and uniformly sample the viewpoints and
poses inside its bounding box. It can be easily seen
that higher viewpoints produce wider-range views

but fewer details. In the case of a multiple-storey
building, we decompose it into multiple storeys
(Section 4), and sample interior perspectives and top
views for individual storeys.

5.2 View preference model

For simplicity here we assume no object has been
segmented in a view; we discuss how to incorporate
the segmentation status in Section 5.3. The
simplified problem is similar to the problem of best
view selection for a single object; the latter is often
represented as a polygonal mesh. In contrast we
need to deal with scenes of objects, represented as
cluttered point clouds. We observe that good views
have at least the following properties. First, objects
in such views should be easy to recognize. Second,
such views should contain as many unsegmented
objects as possible so that only a small set of
views are needed to cover every object in a scene.
These two properties are somewhat conflicting. For
example, a bird’s eye view of a scene might include
many objects in the view, but individual objects
might not be easily recognizable. Thus there is no
single definition to describe whether a given view is
good or not.

We explored various attributes to describe the
quality of a view from different perspectives; some
are based on previous work while others were
designed by us. A key challenge is to evaluate
the impact of each attribute when combining them
together into a unified view preference model. This is
achieved by learning from view preferences of human
viewers in a user study. Below we first describe the
important attributes indicated by the user study and
then give the details of the study itself.

In a preprocessing step, we pre-compute a
supplementary mesh from the point cloud using
a greedy projection triangulation algorithm [42].
This supplementary mesh greatly facilitates visibility
checking. In addition, observing that people tend to
focus more on objects located at the center of a view,
we add weights to pixels in the supplementary mesh
view: each pixel pi corresponds to a projected point;
its weight is defined as wi = 1 − λwd2

i , where di is
the normalized Euclidean distance between pi and
the center of the view, while λw is a small factor to
help emphasize the central areas (λw = 0.2 in our
system).

View suggestion for interactive segmentation of indoor scenes 7

Our attributes are:
Apa: projected area. This is a rather basic

attribute and has been proved effective in previous
works like Ref. [29]. Let P = {Pn} denote the set
of visible patches in a view. Visibility is checked
using the pre-computed supplementary mesh. Apa,
the sum of the projected areas of visible patches in
view, is then defined as

Apa = SP =
∑
Pn∈P

Sn, with Sn =
∑
pi∈Pn

wi (3)

where Sn is the projected area of a visible patch,
where each pixel is weighted by the focus-attention
weight wi.
Ave: viewpoint entropy. To estimate the richness

of a view, we follow Vázquez et al. [30], and calculate
view entropy on the supplementary mesh.
Apd: point density. Due to the discrete nature

of our point clouds, the distance between viewpoint
and objects must be carefully set to provide the
desired point density and contextual information in
the view. We perform such a view-related density
measurement by comparing the difference of views
between the point cloud and the supplementary
mesh. Let p′i be a pixel of the point cloud view,
and S′i be the weighted areas that the pixels in the
point cloud view and the mesh view belong to, for the
same patch i. Apd representing the average density
of patches in view is then defined as

Apd =

∑
Pn∈P

Ω(S′n/Sn)Sn

SP
, with S′n =

∑
p′

i=pi, p′
i∈Pn

wi

(4)
where Ω(x) = 1/(1 + e−λΩ·(x−t6)) is a sigmoid
function for evaluating the density of one patch.
Intuitively, if S′n/Sn exceeds a threshold t6, the
density is acceptable and allows users to recognize
objects. In our system, we set λΩ = 16 and t6 = 0.3.

Besides the attributes listed above, we also
explored additional attributes considering aesthetic
perception, including: depth information (Add, Adc),
object layout (Aop, Aod, Aov), and radial patches
(Arp). Please refer to the Electronic Supplementary
Material (ESM) for detailed formulations of these
attributes. However, according to the user study,
they are relatively dispensable.

User study. In order to analyze the importance
of these attributes to our view preference model,
we conducted a user study. We chose three scenes
captured by different types of devices (Kinect V2 and

LiDAR) to alleviate the influence of different input
qualities. For each scene, we randomly sampled
60 views (using the sampling approach described
in Section 5.1), including both top views (5%) and
interior perspectives (95%). 16 participants with
basic knowledge of computer graphics were recruited
to manually evaluate the quality of each view. To
ensure a proper comparative evaluation, each time,
each participant was given a group of views from the
same scene (6 views per group, randomly selected
from 60 views) and was asked to rate each view on
a scale from 1 (worst) to 5 (best). They were also
told that views containing easily recognizable and
multiple objects without severe occlusion should be
given high scores. Representative views are shown in
Fig. 5. Please refer to the ESM for other scenes and
results.

Learning weights of attributes. After
collecting the scores for each view, we studied
the importance of attributes. We normalized the
observed attributes and adopted lasso regression [43]
to determine the weights βi of the attributes: it is

(e) 1.000

(c) 3.563

(f) 1.563

(a) 4.813

(d) 2.688

(b) 4.250

Fig. 5 Representative views from the user study. (a) High-score
top view. (b, c) High-score interior views. (d) Low-score interior
view (the tree seriously blocks the objects behind). (e, f) Low-score
interior views.

8 S. Yang, J. Xu, K. Chen, et al.

able to perform variable selection in order to enhance
the accuracy of the predictions by the statistical
model it produces. The learned model by lasso
regression is simply formulated as

Ŷ =
∑
i

βiÂi + β0 (5)

where Âi is the normalized attribute of a view, βi is
the learned weight for each attribute, and Ŷ is the
average score for the view.

Lasso regression shows that among all the
attributes included in the regression testing, view
entropy and point density played the most significant
roles, while other attributes were dispensable. Thus,
we discarded these other attributes and performed
lasso regression again. The final weights provided
for view entropy and point density were 2.11 and
3.05, respectively. Detailed information about the
regression process can be found in the ESM.
5.3 View suggestion

Given an input scene, we first sample views (see
Section 5.1) in the preprocessing step. At runtime,
we use the learned view preference model (Eq. (5))
to automatically suggest views. Specifically, we
generate a set of candidate views, denoted by V, by
picking views with Apa > 0.6. The view in V with
the highest score (V0 = argmax

Vi∈V
Yi) is suggested as

the first view.
Given a suggested view, the user may perform

interactive segmentation (see Section 6) and
then request another view. To avoid repetitive
suggestions, each time a view is suggested, we lower
its score by a scale factor 0.7. We also allow users
to reject a current view. In this case our system will
suggest new views. We suggest new views according
to the following principles:
• View suggestions should respect the current

segmentation status. Views with many already-
segmented objects should have lower priority.
• A smooth transition between the current and the

new views is preferred.
• View suggestion should take into account user

rejection of suggested views.
To satisfy the first guideline, we update the

score of each candidate view according to the
current segmentation status. More specifically, we
replace Ave with the residual entropy A′ve, which
is calculated by removing the terms corresponding
to already-labeled patches in Ave, since such labeled

patches provide little information. In contrast, Apd
remains unchanged because intuitively this term is
used to clearly display point clouds to the screen,
and thus is somewhat independent of labeling.

To encourage a smooth transition from Vn to Vn+1,
we pick Vn+1 according to the following rule:

Vn+1 = argmax
Vi∈V

Y ′i e−D(Ki,Kn) (6)

where Y ′x is the online score of view Vx, and
D(Ki,Kn) is the horizontal Euclidean distance
between the current camera position Kn and the
candidate position Ki. We use an exponential decay
of preference to favor nearby rather than distant view
candidates.

If a user rejects a suggested view, it generally
means that unlabeled patches in this view are less
important, and thus, their priority should be lowered
when assessing subsequent suggestions. To do so, we
lower the residual entropy Ave of unlabeled patches
in rejected views by a scale factor 0.8.

For multi-storey cases, our system begins with
the highest storey and suggests views related to
the current storey until the labeling progress of the
current storey surpasses 90%. Once surpassed, our
system will suggest the best view for the next lower
storey and continue.

6 Interactive segmentation

We adopt a stroke-based interface similar to that
in Ref. [14] for interactive segmentation. Given a
view, users draw different strokes on unsegmented
regions to indicate different objects (see Fig. 6(left)).
Graph-cut-based optimization [44] is then used to
achieve the desired segmentation results. Our work
contributes to this paradigm by introducing support
relations into graph-cut, and finding similar objects
to further reduce the amount of user intervention.

6.1 Support relations for graph-cut

Previous graph-cut-based point cloud segmentation
techniques (e.g., Refs. [7, 14]) mainly focus on the

Fig. 6 Graph-cut without (middle) and with (right) support
relations. Left: input strokes on unsegmented objects in a given view.

View suggestion for interactive segmentation of indoor scenes 9

use of low-level geometric features (e.g., position,
normal, color) to propagate the segmentation
information from the user-specified seeds to the
rest of the scene. Since man-made objects often
exhibit box-like shapes, due to the sharp change
in normal between different faces of such objects,
multiple strokes (one for each face) may be needed
to segment a single object (e.g., a desk or monitor in
Fig. 6(middle)).

To reduce the amount of user intervention,
we introduce support relations as an additional
measurement of distance between patches in the
graph-cut formulation. This helps the reduction
of both the number of user-specified strokes and
the number of needed views. For example, with our
support relations considered (see Fig. 6(right)), the
user only needs to input strokes on the top faces of
a desk and monitor in a top view to segment the
objects. Without, the user would need to switch to
different views to input further strokes.

Support relations are common in indoor scenes
because of the influence of gravity. There are
two levels of support relations: support between
objects and support between primitive shapes which
constitute an object. The former requires the
availability of object-level segmentation (the output
of our system) [11]. Our focus is on the second type of
support relations to guide object-level segmentation.

We take the patches constructed in Section 4.1
as input. First we classify all patches into two
types: quasi-vertical Qv and quasi-horizontal Qh
according to the angles between the planes fitted
to them and the ground plane (relative to 45◦).
Then we concentrate on two common relationships:
a quasi-vertical patch supporting an quasi-horizontal
patch Qvh above it, and a quasi-vertical patch being
supported by a quasi-horizontal patch Qhv below it,
as shown in Fig. 7.

For each pair of an adjacent quasi-vertical patch
Pi and a quasi-horizontal patch Pj (above Pi),
the likelihood that patches Pi and Pj have a Qvh

Fig. 7 Automatically detected support relations. Left: the quasi-
vertical patches co-support the top quasi-horizontal patches.

relationship is defined as follows:
Qvh〈Pi, Pj〉 = 1− λU(Pi,Pj)

Q (7)
where U(Pi, Pj) is the number of quasi-vertical
patches within the neighborhood of Pi (including
Pi) which have Pj as an upper patch and λQ = 0.2
is a fixed parameter. Intuitively, more quasi-vertical
patches supporting the same quasi-horizontal patch
lead to higher likelihood of having the Qvh
relationship.

Similarly, for each pair of an adjacent quasi-
vertical patch Pi and a quasi-horizontal patch Pj
(below Pi), the likelihood that patches Pi and Pj
have a Qhv relationship is defined as follows:

Qhv〈Pi, Pj〉 =
{

0, U(Pi, Pk) = 0, Pk ∈ Qh
min (Wi,Wj)
max (Wi,Wj) , otherwise

(8)
where Wi is the area of the convex hull of points
in patch Pi. We consider a Qhv relationship for a
quasi-vertical patch Pi only when there is no Qvh
relationship involving Pi. Consider Fig. 7(middle):
the laptop lid has Qhv relationship with the table,
the laptop base, and the keyboard, while the laptop
base leads to the highest likelihood since they have
about the same size.

Then we define TS(Pi, Pj), the likelihood for
patches Pi and Pj to belong to the same object using
inference from the support map, as follows:
TS(Pi, Pj) =
Qx〈Pi, Pj〉, Pi ∈ Qv, Pj ∈ Qh

Qx〈Pj , Pi〉, Pi ∈ Qh, Pj ∈ Qv

max
k

(Qx〈Pi, Pk〉 ·Qx〈Pj , Pk〉), Pi,j ∈ Qv, Pk ∈ Qh

(9)
where Qx can be either Qvh or Qhv, decided by
the spatial relationship between two concerning
patches. The top two conditions are essentially
Qvh or Qhv, respectively, and the third indicates co-
support relations between patches in Qv, which exist
if and only if two vertical patches have the same type
of support relations (Qx) with the same horizontal
patch (see the example in Fig. 7(left)). Since
support relations between patches are irrelevant to
the segmentation status, in our system, they are
computed during the preprocessing step.

Graph-cut. Given a set of user-specified strokes,
only pixels with the same patch indices on both
the point cloud view and the supplementary mesh
view are regarded as valid, to avoid penetration

10 S. Yang, J. Xu, K. Chen, et al.

labeling. We then formulate support relations as well
as distances, colors, and normals in the graph-cut
formulation. Please refer to the ESM for details.

6.2 Finding similar objects

Duplicate objects often exist in a scene. It is
redundant for a user to label them one by one. Our
system employs a simple algorithm to automatically
retrieve candidate objects similar to a given object in
the scene. If the found objects are in fact not similar,
users can delete the automatically generated labels.

Several methods for finding similar objects in
point cloud scenes have already been proposed. For
example, Kim et al. [9] introduced a method by first
learning models of frequently occurring objects and
then performing real-time matching. Mattausch et
al. [24] took patch similarity and spatial consistency
into account and automatically found all similar
objects in a scene by clustering, which, however,
takes dozens of seconds for large-scale indoor scenes.

We aim for a simple and efficient tool that can
perform in real time, without pre-trained models
or clustering. Our approach is based on the key
assumption that similar objects should contain
similar support structures, i.e., both the support
relations and the accompanying patches should be
similar. This assumption allows us to identify similar
objects by straightforwardly comparing all unlabeled
candidate support structures with a given object,
based on patch similarity and support relations.

More specifically, given an already segmented
object, denoted by C0, we first identify all candidate
patches which have not been segmented and have a
high similarity (t7 = 0.3 in our implementation) to
at least one patch in C0. For efficiency, we slightly
change the similarity metric in Ref. [24] to define our
similarity Ai,j for a given pair of patches Pi and Pj
(see the ESM).

Then we group these candidate patches by
connectedness to form patch constellations. For each
pair of patches 〈Pi, Pj〉 in each constellation Cn, we
search for a corresponding pair 〈Pk, Pl〉 ∈ C0 with
the same type of support relation. Based on our
key assumption, we compute the similarity likelihood
Sim(Cn, C0) between Cn and C0 as follows:

Sim(Cn, C0) = 1−
∏

Pi,Pj∈Cn

(1− Ii,j) (10)

where Ii,j is the isomorphism likelihood of the
support structure between 〈Pi, Pj〉 and 〈Pk, Pl〉,

calculated as Ii,j = (min
k,l
Ai,k)Aj,lTS(Pi, Pj)TS(Pk, Pl).

Here Ai,k and Aj,l represent the similarity between
Pi and Pk and between Pj and Pl respectively.

If the similarity likelihood Sim(Cn, C0) exceeds a
threshold t8 (= 0.25 in our implementation), we take
it as a candidate similar object. We then use all
patches in the found isomorphic support structures
as seeds for a new object to perform another round
of graph-cut.

As shown in Fig. 8 our algorithm manages to
find several similar objects in two cases. In the
left example, each chair is composed of different
numbers of patches, but the algorithm is still
able to find such similar isomorphic parts and
perform graph-cut. The right example shows our
ability to find different types of objects: tables
(green), monitors (cyan), telephones (yellow), and
keyboards (purple). Note that objects adjacent
to some keyboards are mistaken by graph-cut,
demanding additional strokes for refinement.

7 Results and evaluation

We have tested our system on different qualities of
datasets from different sources. We also performed
a user study to evaluate the performance of view
suggestion. Please see the accompanying video in
the ESM for interactive demos. Some representative
suggested views and segmentation results are shown
in Fig. 9.

Datasets. In order to test our performance
of view suggestion and segmentation, we chose
middle- or large-scale scenes with rich sets of objects.
Specifically, we used 2 out of 3 scenes (office2,
office3) in the room detection datasets of UZH [24],
1 of 5 scenes (office1) in the Floored Panorama
Dataset [37], and 2 of 2 synthetic scenes (office-
room, living-room) with ground-truth trajectory in
the ICL-NUIM dataset [45]. The ICL-NIUM data
was generated by sampling point on surfaces of

Fig. 8 Results of finding similar objects (shown in the same color).

View suggestion for interactive segmentation of indoor scenes 11

1

2

3

4

1

2

3,4

1

23

4

1

2

3

4

1

4

3

2

1

2

3,4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

A

B

C

D

E

F

Fig. 9 Examples of results of our system. Left: view score map. Right: high score examples when no objects are labeled.

12 S. Yang, J. Xu, K. Chen, et al.

Fig. 10 Results of user study. Top, left: scenes with pre-defined target segmentations. (a) Acceptance rate of suggestions and hypothesis
test results. The p-values are from paired sample t-tests between our method and no suggestion (n) or RGB-D (d), giving full time (T), the
time spent on manual navigation (N), the counts of minimap navigation (M) and used views (V). Right: average and standard deviation of
the means of observed values. (b) Time spent on the whole process in second. (c) Time spent on manual navigation in second. (d) The count
of used views.

existing 3D mesh-based models, while others
were acquired with LiDAR (with color
information). Figure 9 illustrates all scenes
tested. We additionally collected a scene captured
by Microsoft Kinect2 to test for poor-quality scans.

7.1 Validity of view suggestion

To evaluate the effectiveness of view suggestion,
we compared the performance of interactive
segmentation with and without view suggestion. We
also compared to stroke-based segmentation directly
on RGB-D frames if available. These three methods,
denoted as M-S, M-N, and M-D, were compared
in a user study. Please refer to the accompanying
video in the ESM to see how each method works.

Interfaces. For each of the methods compared,
we provided a minimap for easy navigation. For
M-D, while interactive segmentation was done
on RGB-D images, we provided an additional
point cloud viewer for examining the segmentation
status. The only difference between M-S and M-
N was the availability of view suggestion. For M-
S, we encouraged the participants to use the view
suggestion feature as much as possible, though
minimap navigation and common 3D browsing were
still allowed. All methods were tested in full-
screen mode (1080 p) to eliminate the influence of
window size. For fair comparison, we used the same
preprocessing, graph-cut, and similar-object-finding
algorithms for all methods.

Participants and apparatus. We recruited
12 university students, who had basic knowledge
of graphics but different levels of experience in 3D
browsing. In a training session, which lasted nearly
15 minutes on average, each participant was briefed
and trained how to use the three methods. The entire
user study was conducted on the same PC with

i7 2.10 GHz CPU, a GTX 660Ti GPU, and 16 GB
RAM.

Tasks. We prepared 3 scenes with target
segmentations. Scene A in Fig. 10(a) came from
the ICL-NUIM dataset with 42 objects and 35
RGB-D key-frames. Scene B was our own recorded
Kinect2 data, including 22 objects and 33 key-
frames. Scene C was a large-scale multiple-room
scene with 21 objects but no associated RGB-
D images. These scenes are given in rows 1–3,
respectively, in Fig. 9. The participants were asked
to interactively segment these scenes using the three
methods, whose presentation was counterbalanced to
alleviate bias due to familiarity with the scenes. For
Scene C, we tested M-S and M-N only, due to its
lack of RGB-D frames. We pre-defined a ground-
truth segmentation for each scene with manually
labeled objects and required the participants to
reproduce the ground-truth segmentations (shown
on another monitor simultaneously) as closely as
possible. Since it was difficult to reproduce the
segmentations exactly, each scene was considered as
completed if the similarity (ratio of patches) between
the current and target segmentations reached 90%.

Measures. Our system recorded the following
information for comparison: time spent on manual
navigation, processing, and the whole progress
(including planning, drawing, processing, and
navigation); number of uses of view suggestion
and minimap navigation operations; number of
views used; number of executions of graph-cut
and similar-object-finding algorithms; number and
total length of input strokes. Additionally, we also
recorded the acceptance ratio of view suggestion. We
conducted a questionnaire survey at the end of the
study.

Results. The acceptance rates of our suggested

View suggestion for interactive segmentation of indoor scenes 13

views for Scenes A, B, and C were 83.9%, 85.8%,
and 93.1%, respectively, indicating the good quality
of suggested views. Figures 10(b)–10(d) show the
statistics of some observed values. The table in
Fig. 10(a) gives evaluation and hypothesis testing
results, where p is the p-value calculated through
student’s t-test [46], which is helpful for evaluating
statistically significant differences among small-scale
paired-samples.

Using one-way analysis of variance (ANOVA), we
found a significant difference in the average total
time between the tested methods (p = 0.0288 for
all methods on Scenes A and B, p = 0.0058 for
M-S and M-N on all the scenes). In all tested
scenes, our method significantly outperformed M-D
(p < 0.005 from t-test) in both the number of views
used and the total time. In Scene C, our method
was significantly faster than M-N (p < 0.001),
although they achieved comparable performance on
minimap navigation (p = 0.0527). We observed
that minimap navigation is crucial for large-scale
scenes. In Scenes A and B, compared to M-N, our
method significantly reduced the time for camera
manipulation (p < 0.005) and the usage of minimap
navigation (p < 0.03), but achieved comparable
performance in total time (p > 0.05). This might
be because the expense of manual navigation in such
single-room scenes is relatively low. Our method also
used significantly fewer views than M-N (p < 0.02)
when segmenting all the tested scenes.

Our participants reported that with M-D, the
RGB-D image views were more useful for object
recognition due to their dense views, but (re-
)checking the labeled objects, either through back-
and-forth traversal or with the help of the auxiliary
point cloud view, was not convenient. Worse,
the number of RGB-D key-frames can significantly
increase as scenes get bigger. Some participants also
reported that they subconsciously referred to the
good RGB-D views or results of view suggestion to
improve labeling efficiency when using M-N. In fact,
the performance of interactive segmentation without
view suggestion can be easily affected by familiarity
with the scenes and the proficiency of 3D browsing.

7.2 Robustness and efficiency

Parameters. In the preprocessing step for
extracting storeys and sampling viewpoints, we used
different sets of parameters for different datasets

due to their different data quality and scene scale.
The other parameters for patch construction, view
suggestions, and interactive segmentation, remained
unchanged for all the tested scenes.

Timing. On the same machine used in the user
study, the preprocessing stage can cost dozens of
minutes for the tested scenes. For a 140 m2 one-
floor room with 16 million points, it took about 1
minute per viewpoint to traverse through scenes to
get the descriptors and 30 minutes in total; this could
potentially be made faster by switching to quicker
rendering tools. Since the score of each view can be
calculated separately, we can also easily accelerate
the method by parallelization. In the online stage,
it only cost 50 ms to suggest an appropriate view,
the graph-cut process only took 100 ms, and finding
similar objects took 200 ms with respect to a labeled
object. In summary, the online processing costs meet
the requirement of real-time response.

Limitations. In some scenes with complicated
objects such as plants or trees, our system may
“prefer” to suggest views involving such objects
(Fig. 11 (Left)), since they are taken as fragmentary
patches (each including several leaves or stems) in
patch construction, leading to high residual entropy
on these views. However, once such objects are
labeled, their influence will disappear. Since patches
are indivisible in our implementation, if two or more
objects are gathered into one patch (e.g., due to
similar color and depth), it is impossible to segment
the individual objects. Also the boundaries of objects
may not be accurate if the points on boundaries are
ambiguous. This might be addressed by introducing
an interactive repair tool for boundary refinement.
In addition, our proposed support relations and
the algorithm for finding similar objects may
fail if objects are combined as multiple discrete
components (see Fig. 11(right)). Fortunately, users
can modify the labeling by providing additional

Fig. 11 Less successful cases. Left: an example view with a tree
with a high score. Right: failure to find similar objects in isolated
patches (the chair in red).

14 S. Yang, J. Xu, K. Chen, et al.

inputs for segmentation.

8 Conclusions and future work

We have presented a novel system for interactive
segmentation of large-scale indoor scenes,
represented as cluttered point clouds. The key
contributions of our work are the problem and
solution of automatic view suggestion for interactive
segmentation. Other contributions include support
relations for graph-cut-based segmentation and
finding similar objects. Our extensive evaluations
show the advantages of our approach over alternative
methods. In future, besides addressing the discussed
limitations, we are also interested in applying a
similar idea of view suggestion for other applications,
e.g., interactive editing of large-scale scenes.

Acknowledgements

This work was supported by the Joint NSFC–ISF
Research Program (Project No. 61561146393),
the National Natural Science Foundation of China
(Project No. 61521002), the Research Grant of
Beijing Higher Institution Engineering Research
Center, and the Tsinghua–Tencent Joint Laboratory
for Internet Innovation Technology.

Electronic Supplementary Material Supplementary
material is available in the online version of this article at
http://dx.doi.org/10.1007/s41095-017-0078-4.

References

[1] Lai, K.; Bo, L.; Ren, X.; Fox, D. Detection-based
object labeling in 3D scenes. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, 1330–1337, 2012.

[2] Johnson, A. E.; Hebert, M. Using spin images for
efficient object recognition in cluttered 3D scenes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. 21, No. 5, 433–449, 1999.

[3] Zheng, B.; Zhao, Y.; Yu, J. C.; Ikeuchi, K.; Zhu,
S. C. Beyond point clouds: Scene understanding by
reasoning geometry and physics. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 3127–3134, 2013.

[4] Holz, D.; Behnke, S. Fast range image segmentation
and smoothing using approximate surface
reconstruction and region growing. In: Intelligent
Autonomous Systems 12. Lee, S.; Cho, H.; Yoon,
K.-J.; Lee, J. Eds. Springer Berlin Heidelberg, 61–73,
2013.

[5] Rabbani, T.; van den Heuvel, F. A.; Vosselmann,
G. Segmentation of point clouds using smoothness
constraint. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences Vol.
36, No. 5, 248–253, 2006.

[6] Boykov, Y.; Funka-Lea, G. Graph cuts and efficient
N-D image segmentation. International Journal of
Computer Vision Vol. 70, No. 2, 109–131, 2006.

[7] Golovinskiy, A.; Funkhouser, T. Min-cut based
segmentation of point clouds. In: Proceedings of the
IEEE 12th International Conference on Computer
Vision Workshops, 39–46, 2009.

[8] Sedlacek, D.; Zara, J. Graph cut based point-
cloud segmentation for polygonal reconstruction. In:
Advances in Visual Computing. Bebis, G.; Boyle, R.;
Parvin, B.; Koracin, D. et al. Eds. Springer Berlin
Heidelberg, 218–227, 2009.

[9] Kim, Y. M.; Mitra, N. J.; Yan, D.-M.; Guibas, L.
Acquiring 3D indoor environments with variability and
repetition. ACM Transactions on Graphics Vol. 31,
No. 6, Article No. 138, 2012.

[10] Nan, L.; Xie, K.; Sharf, A. A search-classify
approach for cluttered indoor scene understanding.
ACM Transactions on Graphics Vol. 31, No. 6, Article
No. 137, 2012.

[11] Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R.
Indoor segmentation and support inference from
RGBD images. In: Computer Vision–ECCV 2012.
Fitzgibbon, A.; Lazebnik, S.; Perona, P.; Sato, Y.;
Schmid, C. Eds. Springer Berlin Heidelberg, 746–760,
2012.

[12] Nguyen, A.; Le, B. 3D point cloud segmentation: A
survey. In: Proceedings of the 6th IEEE Conference
on Robotics, Automation and Mechatronics, 225–230,
2013.

[13] Shao, T.; Xu, W.; Zhou, K.; Wang, J.; Li, D.;
Guo, B. An interactive approach to semantic modeling
of indoor scenes with an RGBD camera. ACM
Transactions on Graphics Vol. 31, No. 6, Article No.
136, 2012.

[14] Yuan, X.; Xu, H.; Nguyen, M. X.; Shesh, A.;
Chen, B. Sketch-based segmentation of scanned
outdoor environment models. In: Proceedings of the
Eurographics Workshop on Sketch-Based Interfaces
and Modeling, 19–26, 2005.

[15] Silberman, N.; Fergus, R. Indoor scene segmentation
using a structured light sensor. In: Proceedings of the
IEEE International Conference on Computer Vision
Workshops, 601–608, 2011.

[16] Xiao, J.; Owens, A.; Torralba, A. SUN3D: A database
of big spaces reconstructed using SfM and object
labels. In: Proceedings of the IEEE International
Conference on Computer Vision, 1625–1632, 2013.

[17] Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan,
P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song,
S.; Su, H.; Xiao, J.; Yi, L.; Yu, F. ShapeNet: An

View suggestion for interactive segmentation of indoor scenes 15

information-rich 3D model repository. arXiv preprint
arXiv:1512.03012, 2015.

[18] Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.;
Bradski, G. R.; Konolige, K.; Navab, N. Model based
training, detection and pose estimation of texture-less
3D objects in heavily cluttered scenes. In: Computer
Vision–ACCV 2012. Lee, K. M.; Matsushita, Y.; Rehg,
J. M.; Hu, Z. Eds. Springer Berlin Heidelberg, 548–
562, 2012.

[19] Chen, K.; Lai, Y.-K.; Wu, Y.-X.; Martin, R.; Hu, S.-
M. Automatic semantic modeling of indoor scenes from
low-quality RGB-D data using contextual information.
ACM Transactions on Graphics Vol. 33, No. 6, Article
No. 208, 2014.

[20] Silberman, N.; Sontag, D.; Fergus, R. Instance
segmentation of indoor scenes using a coverage loss. In:
Computer Vision–ECCV 2014. Fleet, D.; Pajdla, T.;
Schiele, B.; Tuytelaars, T. Eds. Springer International
Publishing, 616–631, 2014.

[21] Chen, K.; Lai, Y. K.; Hu, S.-M. 3D indoor scene
modeling from RGB-D data: a survey. Computational
Visual Media Vol. 1, No. 4, 267–278, 2015.

[22] Shen, C.-H.; Huang, S.-S.; Fu, H.; Hu, S.-M. Adaptive
partitioning of urban facades. ACM Transactions on
Graphics Vol. 30, No. 6, Article No. 184, 2011.

[23] Zhang, H.; Xu, K.; Jiang, W.; Lin, J.; Cohen-Or,
D.; Chen, B. Layered analysis of irregular facades
via symmetry maximization. ACM Transactions on
Graphics Vol. 32, No. 4, Article No. 121, 2013.

[24] Mattausch, O.; Panozzo, D.; Mura, C.; Sorkine-
Hornung, O.; Pajarola, R. Object detection and
classification from large-scale cluttered indoor scans.
Computer Graphics Forum Vol. 33, No. 2, 11–21, 2014.

[25] Valentin, J.; Vineet, V.; Cheng, M.-M.; Kim, D.;
Shotton, J.; Kohli, P.; Nießner, M.; Criminisi,
A.; Izadi, S.; Torr, P. SemanticPaint: Interactive
3D labeling and learning at your fingertips. ACM
Transactions on Graphics Vol. 34, No. 5, Article No.
154, 2015.

[26] Wong, Y.-S.; Chu, H.-K.; Mitra, N. J. SmartAnnotator
an interactive tool for annotating indoor RGBD
images. Computer Graphics Forum Vol. 34, No. 2, 447–
457, 2015.

[27] Christie, M.; Olivier, P. Camera control in computer
graphics: Models, techniques and applications. In:
Proceedings of the ACM SIGGRAPH ASIA 2009
Courses, Article No. 3, 2009.

[28] Scott, W. R.; Roth, G.; Rivest, J.-F. View planning
for automated three-dimensional object reconstruction
and inspection. ACM Computing Surveys Vol. 35, No.
1, 64–96, 2003.

[29] Secord, A.; Lu, J.; Finkelstein, A.; Singh, M.; Nealen,
A. Perceptual models of viewpoint preference. ACM
Transactions on Graphics Vol. 30, No. 5, Article No.
109, 2011.

[30] Vázquez, P.-P.; Feixas, M.; Sbert, M.; Heidrich, W.
Viewpoint selection using viewpoint entropy. In:

Proceedings of the Vision Modeling and Visualization
Conference, 273–280, 2001.

[31] Andújar, C.; Vázquez, P.; Fairén, M. Way-Finder:
Guided tours through complex walkthrough models.
Computer Graphics Forum Vol. 23, No. 3, 499–508,
2004.

[32] Li, T.-Y.; Lien, J.-M.; Chiu, S.-Y.; Yu, T.-H.
Automatically generating virtual guided tours. In:
Proceedings of the Computer Animation, 99–106,
1999.

[33] Christie, M.; Languénou, E. A constraint-based
approach to camera path planning. In: Smart
Graphics. Butz, A.; Krüger, A.; Olivier, P. Eds.
Springer Berlin Heidelberg, 172–181, 2003.

[34] Salomon, B.; Garber, M.; Lin, M. C.; Manocha, D.
Interactive navigation in complex environments using
path planning. In: Proceedings of the Symposium on
Interactive 3D Graphics, 41–50, 2003.

[35] Choi, S.; Zhou, Q.-Y.; Koltun, V. Robust
reconstruction of indoor scenes. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 5556–5565, 2015.

[36] Newcombe, R. A.; Izadi, S.; Hilliges, O.; Molyneaux,
D.; Kim, D.; Davison, A. J.; Kohli, P.; Shotton, J.;
Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time
dense surface mapping and tracking. In: Proceedings
of the 10th IEEE International Symposium on Mixed
and Augmented Reality, 127–136, 2011.

[37] Ikehata, S.; Yang, H.; Furukawa, Y. Structured indoor
modeling. In: Proceedings of the IEEE International
Conference on Computer Vision, 1323–1331, 2015.

[38] Furukawa, Y.; Curless, B.; Seitz, S. M.; Szeliski,
R. Manhattan-world stereo. In: Proceeding of the
IEEE Conference on Computer Vision and Pattern
Recognition, 1422–1429, 2009.

[39] Asha, V.; Bhajantri, N. U.; Nagabhushan, P.
GLCM-based chi-square histogram distance for
automatic detection of defects on patterned textures.
International Journal of Computational Vision and
Robotics Vol. 2, No. 4, 302–313, 2011.

[40] Früh, C.; Zakhor, A. Constructing 3D city models
by merging aerial and ground views. IEEE Computer
Graphics and Applications Vol. 23, No. 6, 52–61, 2003.

[41] Fisher, M.; Savva, M.; Li, Y.; Hanrahan, P.; Nießner,
M. Activity-centric scene synthesis for functional 3D
scene modeling. ACM Transactions on Graphics Vol.
34, No. 6, Article No. 179, 2015.

[42] Marton, Z. C.; Rusu, R. B.; Beet, M. On fast surface
reconstruction methods for large and noisy point
clouds. In: Proceedings of the IEEE International
Conference on Robotics and Automation, 3218–3223,
2009.

[43] Tibshirani, R. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society Vol.
58, No. 1, 267–288, 1996.

16 S. Yang, J. Xu, K. Chen, et al.

[44] Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate
energy minimization via graph cuts. IEEE
Transactions on Pattern Analysis and Machine
Intelligence Vol. 23, No. 11, 1222–1239, 2001.

[45] Handa, A.; Whelan, T.; McDonald, J.; Davison,
A. J. A benchmark for RGB-D visual odometry,
3D reconstruction and SLAM. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, 1524–1531, 2014.

[46] Gosset, W. S. The probable error of a mean.
Biometrika Vol. 6, No. 1, 1–25, 1908.

Sheng Yang received his B.S. degree
in computer science from Wuhan
University in 2014. He is currently a
Ph.D. candidate in computer science
in Tsinghua University. His research
interests include computer graphics and
point cloud processing.

Jie Xu is a Ph.D. student
at the Computer Science and
Artificial Intelligence Laboratory in
Massachusetts Institute of Technology.
His research interests include computer
graphics and geometric processing.radar
radar radar radar radar

Kang Chen received his B.S. degree
in computer science from Nanjing
University in 2012. He is currently a
Ph.D. candidate in the Institute for
Interdisciplinary Information Sciences,
Tsinghua University. His research
interests include computer graphics,
geometric modeling and processing.

Hongbo Fu is an associate professor
in the School of Creative Media, City
University of Hong Kong. He received
his Ph.D. degree in computer science
from the Hong Kong University of
Science and Technology in 2007 and
B.S. degree in information sciences from
Peking University in 2002. His primary

research interests fall in the fields of computer graphics and
human computer interaction. He has served as an associate
editor of The Visual Computer, Computers & Graphics, and
Computer Graphics Forum.

Open Access The articles published in this journal
are distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the
original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were
made.

Other papers from this open access journal are available free
of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

