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Abstract1

3D reconstruction of human body has wide applications for example for customized design of2

clothes and digital avatar production. Existing vision-based systems for 3D body reconstruction3

require users to wear minimal or extreme-tight clothes in front of cameras, and thus suffer from4

privacy problems. In this work we explore a novel solution based on a sparse number of soft5

sensors on a standard garment, and use it for capturing 3D upper body shape. We utilize the6

maximal stretching range by modeling the nonlinear performance profile for individual sensors.7

The body shape can be dynamically reconstructed by analyzing the relationship between mesh8

deformation and sensor reading, with a learning-based approach. The wearability and flexibility9

of our prototype allow its use in indoor/outdoor environments and for long-term breath moni-10

toring. Our prototype has been extensively evaluated by multiple users with different body sizes11

and the same user for multiple days. The results show that our garment prototype is comfort-12

able to wear, and achieves the state-of-the-art reconstruction performance with the advantages13

in privacy projection and application scenarios.14

1 Introduction15

3D human body reconstruction is the task of recovering the 3D geometry of a real human. It has16

wide applications for example in producing customized clothes for the textile industry and gener-17

ating personalized avatars in 3D telepresence and interactive media. Most of the existing solutions18

(e.g.,1,2, 3, 4) for 3D body reconstructions are vision-based, and require the use of RGB/RGBD/laser19

cameras. Although such vision-based solutions already achieve reasonably high reconstruction ac-20

curacy, they suffer from several limitations. First, due to the incapability of laser/RGB/RGBD21

cameras in penetrating textiles, the existing solutions often require users to wear minimal or tight22

clothes in front of a camera. This procedure not only requires additional efforts and but also causes23

privacy concerns. Additionally, the requirement of camera setup also limits their use in arbitrary24

(in particular outdoor) environments.25

We tackle this problem by building a fully-wearable system, using a sparse network of soft26

sensors on a standard garment. Benefited from the recent advances in material science and sensor27

fabrication, the sensors are yarn-like, ultra-light-weight and highly stretchable. The value of sensor28
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Figure 1: Upper body reconstruction (Bottom) using our wearable garment prototype (Top) with
a sparse set of soft sensors.

resistance changes as it is being stretched, leading to a sensing functionality. With such intelligent29

sensors, our garment is capable of reconstructing 3D human body shape without causing discomfort30

for users wearing it. We perform 3D body reconstruction by leveraging a learning-based model to31

analyze the relationship between sensor reading and mesh deformation embedded in a large database32

of 3D human models. More specifically, we make the following contributions:33

� We developed a working prototype, a wearable garment with a small number of soft sensors,34

and show its applications 3D upper body reconstruction and dynamic breath monitoring.35

Our prototype is fully stretchable and wearable, ultimately allowing users to wear it for an36

extended period without interfering with their daily tasks.37

� Our method fully leveraged the nonlinear performance profile for individual sensors in order38

to utilize the maximal stretching range of sensor profile. A Long Short-Term Memory model39

is trained to take the sensor signal as input and accurately predicts the body girths. The body40

girth is then translated into the displaced vertex positions for the 3D model, thus creating a41

personalized human shape.42

� We conducted comprehensive usability studies to evaluate our system, including testing its43

ability to handle various body sizes, repeated attempts of dressing for the same individual, and44

long-duration dressing in everyday use. The comparison between our method, existing vision-45

based methods and ground truth for 3D upper body reconstruction shows that our method46

achieves state-of-the-art performance with the advantages in privacy protection, application47

scenarios and user comfortableness.48
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2 Related Work49

2.1 Smart Clothes with Soft Sensors50

Smart clothes feature soft electronics and interconnections woven into the fabrics. To achieve the51

ultimate goal of fabricating smart clothes, researchers explored the relevant domains of scalable52

textile materials, design software, and machine knitting techniques. Project Jacquard5 presented53

novel interactive textile materials and the corresponding manufacturing technologies for large-54

scale production. In addition to material fabrication, researchers also developed a variety of design55

software6,7 and machine knitting techniques.8,9 These recent works foresee future electronic systems56

to be an integral part of our everyday outfits. Before fabricating smart clothes for consumers,57

obtaining the information of their body shape is critical in order to guarantee the correct size and58

body-fitting. However, we found that there still lacks a convenient method to reconstruct human59

body shape for non-professional customers. Our work addresses this problem by building a sparse60

network of sensors on a garment and reconstructing human body shape in a user-friendly approach.61

The emergence of smart clothes attributes to the rapid development of soft sensors in recent62

years. Compared with existing wearable sensors (e.g., inertial measurement units), soft sensors63

demonstrate advantages in terms of flexibility and comfortableness. These features are particularly64

important for implementing wearable devices. The composition of a soft sensor generally consists65

of two parts: one for the core conductive material and the other for the flexible support material.1066

The selected materials and fabrication methods are critical factors in determining the performance67

of a soft sensor. The stretchable sensor in our work chooses polyurethane fiber as the supporting68

material and silver-plated polyamide yarn as the conductive material.11 Polyurethane is widely69

used in the textile industry and recognized for its stretchability and air permeability. The silver-70

plated polyamide yarn is helically wrapped around the polyurethane core fiber. This yarn-like71

sensor seamlessly fits onto the standard garment and introduces minimal discomfort to users.72

Soft sensors often exhibit nonlinear time-variant behaviors, which make it difficult to accurately73

monitor their states.12 Existing works explored the application of deep neural networks (DNNs)74

to interpret the information of strain sensors and monitor body kinematics. The choices of DNNs75

include convolutional neural network (CNN),13 recurrent neural network14 and long short-term76

memory model (LSTM).12,15 A semi-supervised approach14 achieved a higher performance with a77

smaller calibration dataset compared to supervised methods. CNN is popular for tasks of image78

understanding (e.g., object recognition) and suitable for processing the signals of a sensor array.79

As the CNN input, the resistance or capacitive value of a sensor is equivalent to the color value80

of an image pixel. Our system uses only a sparse network of five sensors. This sparsity imposes81

challenges for the down-sampling operation of CNN, indicating that CNN is not appropriate for82

our task. Since LSTM is known for its capability in processing temporal data, our work chooses83

LSTM to tackle the challenges of sensor hysteresis and nonlinearity, and to dynamically predict84

the body girths when users are breathing.85

The majority of existing works in smart clothes focus on posture monitoring,15,13,14 contact86

sensing16,17 and gesture classification.18,19,20 The monitored body parts include fingers,20 ankle,2187

lower body13,14 and full body.15 Monitoring joint rotation can be accomplished by tracking an indi-88

vidual joint with a single sensor, which is placed at the exact location with maximal deformation.1589

To capture the contact with external objects, pressure sensors are placed at specific body parts on90

the clothes.17 Different from the purposes of existing methods, our work aims to reconstruct the 3D91

shape of human upper body. However, the reconstruction of 3D body shape requires the analytic92
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understanding of human shape as a whole model. Our work tackles this challenge by deriving the93

underlying pattern of human shape with a deep-learning approach.94

2.2 Human Shape Reconstruction95

Human shape reconstruction has been a long-standing problem in the domains of computer vision96

and graphics. The Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that97

accurately represents a wide variety of body shapes in natural human poses.2 The model parameters98

are learned from the captured data, including the rest pose template, blend weights, pose-dependent99

blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations.100

Researchers learned the model of soft-tissue deformations from examples using a high-resolution101

4D capture system and a method that accurately registers a template mesh to sequences of 3D102

scans.22 Vision-based methods have made significant advances in terms of accuracy and time cost,103

but still face challenges when applying to the outdoor environment where the problems of visual104

occlusion, over-exposure or lack of illumination may frequently occur. These methods also require105

setting up specialized camera systems, which are not feasible for non-professional users. The images106

captured by RGB cameras when users are wearing minimal or tight clothes often cause the privacy107

concern of image leakage. The goal of our work is to alleviate these limitations and allow long-term108

wearing and mobility.109

Recent works to reconstruct human body shape aimed to tackle the issue of privacy and recon-110

struct human shape when users are wearing the clothes.23,24,25 The choice of sensor input includes111

a monocular video,23,26 a depth camera,25 laser scan sequences,24 a single color image.27 These112

methods are generally data-driven and parameterize the human shape and/or motion based on a113

template shape (e.g., the aforementioned SMPL model). This strategy is capable of producing114

detailed 3D mesh results, while requiring estimation only of a small number of parameters, making115

it friendly for direct network prediction. However, these vision-based methods regard clothes as116

the blocking factor to access the information of human shape. Unlike these methods, our method117

takes advantage of the clothes as the perfect medium to reconstruct the human body shape. From118

the aspect of methodology, we parameterized the human shape with a small set of characteristic119

girths and built a regression model to map the sensor signal to the 3D human mesh.120

3 Methodology Overview121

Our work builds a sparse network of soft sensors on a garment and reconstructs the 3D human122

upper body of a user wearing this garment based on the collected sensor reading. The workflow of123

our method is illustrated in Figure 2. We divide the complete task as two sub-tasks: 1) mapping124

from sensor signals to body girths; 2) mesh reconstruction from girth prediction. We observe the125

nonlinear sensor resistance-length relationship and model it by obtaining a large collection of sensor126

profiles. The pattern analysis of sensor profiles leads to the accurate prediction of the stretched127

length. We further build a regression model between the characteristic body girths and the vertex128

displacement of 3D mesh. The predicted length is translated into the vertex displacement position129

and completes the 3D body reconstruction with the learned model.130
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Figure 2: The pipeline of our work.

4 Hardware Development131

4.1 Sensor Background132

The fabricated sensor in our work is shown as Figure 3(a). The stretchable soft sensor in our133

work chooses polyurethane fiber as the supporting material and silver-plated polyamide yarn as134

the conductive material11 (Figure 3(b)). The silver-plated polyamide yarn is helically wrapped135

around the polyurethane core fiber. Polyurethane is an ideal material for textile fabrication given136

its characteristic stretchability and air permeability. Figure 4 shows the relationship of resistance137

value-sensor length after 1000 cycles of 30% stretching. The results do not show a significant effect138

of plastic deformation. A previous work28 showed that polyurethane can stretch up to 300% and139

could be cycled nearly 300,000 times under 40% stretch without noticeable breakage.140

The silkworm fiber is processed with the technique of meso-functionalization,29 by coating with141

sensing materials (Ag nanowires in our case). The sensor is further coated with the protection142

or dielectric layers to minimize the effect of direct contact with the human body. Silkworm is143

an ideal material for wearable sensors, given its biocompatible and biodegradable properties. It144

offers the advantages of comfortableness and air permeability, leading to the potential of long-term145

wearability. For detailed information on sensor material and fabrication, please refer to.11146

When the sensor is stretched, the resistance increases due to an increasing distance between the147

wrapped silkworm fibers. Figure 4(b) shows the relationship between the resistance variance rate148

and the sensor’s stretch length. The horizontal ‘Length’ axis refer to the distance between grips in149

the stretching apparatus. The static length between the grippers is 10cm in this case. This figure150

explains the challenges when dealing the sensor signal: hysteresis and nonlinearity. The solid curves151
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Figure 3: (a) Close-up view of the completed sensor. (b) Illustration of the sensor components.

are the average resistance value and sensor length when the sensor is being stretched (red) and152

released (blue). The shadowed areas demonstrate the resistance value range at different attempts153

with varying stretching speeds. The difference between the curves of stretch and release stages154

show the characteristic challenge of hysteresis. This inspires the use of the long short-term memory155

(LSTM) model to obtain an accurate length prediction of sensors at the chest and waist during156

dynamic breathing. The resistance-length curve shows exceptional merits of high sensitivity and157

approximately linear performance when the sensor is being stretched within 10%. The sensitivity158

decreases to a smaller value with approximately linear performance for the stretching range of [10%,159

30%]. When the stretch length exceeds the threshold (30%), the resistance value changes with a160

very small ratio. In our work, we thus use the stretch range within 30% and ignore the scenarios161

with larger stretching. We also embed the capability of modeling this nonlinear relationship with162

the proposed LSTM model.163

Figure 4: (a) Sensor resistance values for 1000 cycles of stretching. (b) Sensor resistance values in
both the extension and release stages.
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4.2 Sensor Placement on a Garment164

Since it is intuitive to predict the length of our sensors based on their resistance values, we reckon165

that our problem is similar to the measurement of the body girths for cloth tailoring. Therefore, we166

consider using the measurement positions of cloth design as a reference for our sensor placement. To167

this end, we discussed extensively with professional tailors and experts in 3D reconstruction. Finally168

we decided to follow the 3D Measurement Standard published by the International Organization169

for Standardization.30,31 It defines the anatomical landmarks on the human body used to measure170

its 3D shape.171

As a balance between the system complexity and accuracy, we choose five girths for 3D upper172

body reconstruction, as illustrated in Figure 5:173

� Sensor 1: this sensor measures half of the belly girth covering the lowest ribs and the navel.174

The two ends of this sensor connect from the navel point on the front and the spine area on175

the back.176

� Sensor 2: this sensor measures the body girth circulating the mesosternale. The sensor starts177

from the middle chest on the front and terminates at the spine area on the back.178

� Sensor 3: this sensor measures half of the shoulder width. It starts from the cervical vertebra,179

and ends at the acromion (the shoulder joint).180

� Sensor 4: this sensor circumvents the elbow and measures the elbow size.181

� Sensor 5: this sensor circumvents the wrist and measures the wrist size.182

Figure 5: The placement of sensors on a garment according to anthropometry. The bottom right
image shows one sensor after being sewed to the garment.
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Throughout the experiments, the garments we used were tight sportswear, and each part was183

tight-fitting to the body. The composition of the garment fabric includes 80% polyester and 20%184

polyurethane.185

We manually sewed sensors to the marked positions with the flat stitching. Each sensor, like a186

yarn, is sewed by following the needle through the fabric from the front to the back and then from187

the back to the front. This creates running stitches. One sensor on the garment is illustrated in188

the bottom right of Figure 5. The length of each stitch segment was small (<1cm), so that the189

slipping of the sensor on the garment was negligible.190

4.3 Circuit Board Development191

Figure 6: The design diagram (left) and the real circuit board (right) to collect the sensor resistance
signals.

We design a circuit board (Figure 6) to collect the sensor resistance signals. The circuit supports192

a maximum number of 16 channels. The sampling channel is selected by a multiplexing voltage193

divider at a frequency of 20 Hz. The two electrodes of each sensor are connected to the two194

welding spots of each channel on the spot. One spot is grounded, and the voltage of the other195

spot is measured with a Wheatstone bridge circuit. We measure the difference between the voltage196

across each sensor and the reference voltage Vref = VCC/2, where VCC (Volt Current Condenser)197

represents the access voltage of the circuit. VCC = 3.3V. Voltage measurements at both ends of198

the sensor are processed by a low-pass filter with a bandwidth of 300Hz. The input voltage to the199

analog–digital conversion V adcin is defined as (ignoring the effect of the low-pass filter):200

V adcin = (
VCC ∗Rsensori
Ri +Rsensori

− VCC/2) ∗Gain. (1)

where Rsensori indicates the resistance of the ith soft sensor. Ri denotes the divider resistor with a201

similar resistance value to Rsensori, and Gain=50 denotes the magnification factor of the amplifier202

unit.203

The circuit board is of size 3.5cm x 4.5cm, and is attached to the garment at the hip-level204

position on the left part of the body. The signal of each sensor is transmitted to the server/mobile205
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phone with the implementation based on low-energy Bluetooth (Nrf51822). The single sensor206

measurement of voltage at the two ends is converted to a digital signal. The original voltage range207

(0-5V) is now encoded in the range of [0, 1023]. The battery capacity is 600mAh and lasts for 30208

hours for non-stop use. It is chargeable via a mini-USB port.209

5 Shape Reconstruction210

5.1 Signal De-noising211

Figure 7: Sensor resistance values before and after smoothing. (a) The original signals. (b) The
de-noised signals by the Gaussian smoothing method.

The original sensor signals are mixed with noise (Figure 7(a)). We use the method of Gaussian212

de-noising to effectively suppress noise and smooth the signals. The principle of action is similar213

to the averaging filter, which takes the average of the points of each signal in the filter window as214

the output.215

5.2 Mapping from Sensor Signals to Body Girths216

Accurate prediction of body girths from sensor signals is a challenging task. From the previous217

experimental results(Figure 4(b)), it can be seen that the relationship between resistance and218

tension of the sensor is non-linear, while different segments of the curve exhibit varying levels of219

linearity. This is particularly true for segments in small ([0, 5%]) and large ([10%, 30%]) stretching220

ranges. It is worth pointing out that a sensor may have the issue of hysteresis, indicating that221

the sensor corresponds to different resistance-length curves when it is being stretched or released.222

Therefore, we propose the use of Long Short-Term Memory (LSTM)32 to accomplish the task223

of girth prediction of the waist and chest under breathing condition based on the sensor signals.224

And other body parts are measured under static conditions, we directly obtain the girths using225

Second-Order Polynomial Regression.226
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LSTM is an artificial recurrent neural network (RNN), which can efficiently deal with temporal227

data. Our network model has 3 LSTM layers, each of 64 hidden units, with 1 softmax layer as the228

output. The input of the network is a vector:229

~S = {St−(Np−1)δt, · · · , St−δt, St}, (2)

where St is the sensor resistance at a specific time t, δt is the time step for sensor signal reading,230

and NP is the number of sample points. In our current implementation, δt and Np are set to 0.1231

second and 50, respectively. The output of the LSTM network is the estimated sensor length. By232

training the network model, we approach an accurate prediction of the sensor length considering233

the latent characteristics of nonlinearity and hysteresis.234

To build the training dataset, we collected 20 sensors and stretched each sensor for 1000 times.235

For each stretching attempt, the sensor starts from its static length, and is stretched until its236

elongation reaches 30% and released to its original length. The stretching rate is dynamically237

and randomly adjusted. The sensor is stretched by a controlled mechanical motor, therefore we238

can compute the current sensor length given the historical stretching rate. The resistance value239

and the length are simultaneously measured and recorded at a fixed time-step of 0.15 seconds.240

A complete stretching cycle is composed of around 180 sample points (90 for either stretching or241

releasing stages). We divide the collected recording sequences into segments of a fixed duration242

(δt × Np). For each segment, the vector of sensor resistance is re-sampled to make its length as243

consistent of Np. The predicted output of the network is designed to minimize its deviation from244

the measured sensor length. We define the loss function as the squared sum of the two, and use245

the Adam Optimizer with the learning rate of 0.001 and the batch size of 500.246

5.3 Mesh Reconstruction from Girth Prediction247

We use the CAESAR human body models33 to calculate the girth of each position which we choose248

to measure on each 3D body mesh, including ankle, knee, thigh, waist, chest, shoulder, elbow, wrist249

and height. By calculating the sum of the cross section of each key position and the intersection250

line of each triangular mesh on each 3D human body mesh, we can get the girth. The height251

can be obtained by directly calculating the height of the model. Inspired by,34 we compute the252

deformation of each triangle facet, and then learn a linear regression between the anthropometric253

parameters and the deformation of each triangle of each human body mesh.254

First, we denote the deformation of each facet in each body mesh as a 3 × 3 transformation
matrix D. Let vi and ṽi, i ∈ 1...3, be the undeformed and deformed vertexes of the i-th triangle,
respectively. To establish how the space perpendicular to the triangle deforms and fully determine
the affine transformation, we compute a fourth undeformed vertex as:

D =

 d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3


Let vi and ṽi, i ∈ 1...3, be the undeformed and deformed vertexes of the triangle, respectively.255

To establish how the space perpendicular to the triangle deforms and fully determine the affine256

transformation, we compute a fourth undeformed vertex as:257

v4 = v1 + (v2 − v1)× (v3 − v1) /
√
| (v2 − v1)× (v3 − v1) |
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We denote the matrix of anthropometric parameters for n body meshes as:258

G =

 p1,1 · · · p1,9
... · · ·

...
pn,1 · · · pn,9


A closed form expression for D is then given by D = ṼV−1, where V = [v2−v1 v3−v1 v4−v1]259

and Ṽ = [ṽ2 − ṽ1 ṽ3 − ṽ1 ṽ4 − ṽ1] .260

We denote the matrix of anthropometric parameters for n body meshes as G = (pij) ∈ Rn×9,261

where pi,j means the j-th (j ∈ 1, · · · , 9) parameter of body i (i ∈ 1, · · · , n, n is the number of human262

body meshes). Then we perform a linear regression between D and G of each facet of body mesh.263

The regression model can take an input of nine new anthropometric values and produce the
deformation Dk (k ∈ 1, · · · ,m, m is the number of triangles in a body mesh) of each triangle
on the new body mesh. Let N denote the triangular deformation of the new body mesh: N =
[D1 D2 · · · Dm]T . The deformation of the triangles informs the position of each vertex by the
following equation:

ATAx̃ = ATN,

where x̃ represents the vertex positions of our final body mesh. The matrix A is derived from264

the construction of V.34 The above system is essentially a sparse linear system and can be solved265

efficiently.266

6 Results267

6.1 Implementation and Performance268

Our algorithm has been implemented in the Python environment. All source codes and datasets269

will be released to the public. We tested our algorithm on a standard PC (CPU: Intel i7 9700,270

GPU: RTX1080Ti, RAM:16G). The offline training of the LSTM-based mapping between sensor271

resistance and body girths costed 4.6 hours. The offline learning between the body girths and the272

3D human body mesh costed 1.3 hours. Fortunately, these two processes need to be performed only273

once. Predicting the girth with a value of sensor resistance took 0.013 seconds on average. Given274

a set of girth values as input, the trained model produced the corresponding body mesh within 0.5275

seconds on average. In total, it took less than one second to recover a 3D human body mesh from276

the acquisition of the resistance signal.277

6.2 Mapping from Sensor Signal to Length278

We compare our method and other polynomial regression (PR) methods (First-Order PR/Third-279

Order PR/Fifth-Order PR) for the purpose of mapping sensor signals to length. The results are280

shown in Figure 8. The LSTM method produces smaller error in terms of the predicted sensor281

length with respect to the ground truth, compared with other methods.282

Figure 8 shows that when the sensor is stretched or released, our LSTM model can predict the283

sensor length with minimal error. A higher degree of error appears when the sensor state transitions284

from stretching to releasing.285
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Figure 8: Results of sensor length prediction via our method and comparison methods.

6.3 User Experiment 1286

This experiment evaluated our system both quantitatively and qualitatively. We demonstrated287

the reconstruction accuracy among a group of users and also compared with vision-based methods.288

User surveys revealed that our system received high scores in terms of comfortableness, convenience289

and accuracy.290

Participants. 25 participants (20 male and 5 female) were recruited in this experiment. They291

were all students and faculties in a local university. They joined the experiment for free. The average292

and standard deviation of their age, height and weight were 24.3±4.2, 172.0±6.3 cm, 66.2±10.6 kg293

and 26.2±2.2, 162.3±5.4 cm, 53.9±5.2 kg for the male and female groups, respectively.294

Procedures. The procedure was divided into pre-experiment, main-experiment, meta-experiment295

and post-experiment.296

� Pre-experiment : The participants were first informed of the experiment purpose and signed297

their written agreement to join this study. They first filled in a pre-experiment questionnaire298

to inform their age, height, weight, and cloth size (XS/S/M/L/XL). This stage costed around299

5 minutes.300

� Main-experiment : They were instructed to put on our garment prototype with only under-301

wear. Unlike vision-based methods, our technique does not suffer from the privacy issue. The302

participants adjusted the garment to fit their body. The complete measuring process includes303

three steps: 1) The arm part is stretched so that the feature point aligns with the wrist bone.304

2) The sensor No. 1 is aligned with the dot on the belly. 3) The stretched parts are released305

and the garment returns to its normal mode. For Steps 1) and 2), the participants were306

instructed to maintain the posture for a duration of 3 seconds. We continuously recorded the307

sensor reading throughout the whole process and the time for individual steps. The collected308
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data of sensor signals from above steps were considered simultaneously to reconstruct the 3D309

model, from which we obtained the body girths. This stage costed around 10-15 minutes.310

� Meta-experiment : After this, the body girths of each participant were measured by a human311

instructor with a soft ruler. We also recorded the time cost for this process of manual312

measuring. On average it took 3-5 minutes for each participant. We randomly chose three313

subjects to conduct the comparative experiment against vision-based methods for the task314

of human shape reconstruction. the chosen participants were then captured with a RGBD315

camera (Kinect V2) when standing on a rotating platform in the T posture. The captured316

depth and color images were fed into two state-of-the-art methods (RGB,23 RGBD35) to317

produce the 3D reconstruction results for the purpose of comparison. The time cost for the318

participants involved in the comparative study varied significantly (see the details in the319

following section on time cost analysis).320

� Post-experiment : Finally the participants were shown with the reconstructed models by our321

method (and two vision-based methods for the participants chosen for the comparative study)322

and visually evaluated reconstruction accuracy. They filled in a 5-scale Likert questionnaire323

to rate their perception of comfortableness, convenience, and accuracy for the three methods.324

The participants were also interviewed to provide their subjective comments to explain their325

rating. This stage costed around 10-15 minutes.326

Figure 9: Results from Experiment 1. (a) Quantitative evaluation of the reconstruction errors for
five body girths. (b) Qualitative evaluation using comfortableness, convenience and accuracy scores
from the post-study survey.

Quantitative Analysis: Girth Prediction. Figure 9 (a) plots the error distribution of our re-327

construction results. The average and standard deviation for waist, chest, shoulder, elbow and wrist328

were -2.55%±2.96%, 0.95%±2.30%,4.03%±2.33%,-5.50%±1.31%,-0.91%±3.84%. Interestingly, we329
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SID Unit(mm) waist error
relative
error

chest error
relative
error

shoulder error
relative
error

Subject1

Ground Truth 743 858 1060

RGB 1006 263 35.40% 1051.5 193.5 22.55% 810.6 -249.4 -23.53%

RGBD 880.8 137.8 18.55% 857.8 -0.2 -0.02% 885.25 -174.75 -16.49%

Ours 803.04 60.04 8.08% 884.24 26.24 3.06% 1014.21 -45.79 -4.32%

Subject2

Ground Truth 824 927 1022

RGB 894.6 70.6 8.57% 1078.3 151.3 16.32% 885.3 -136.7 -13.38%

RGBD 956.85 132.85 16.12% 903.06 -23.94 -2.58% 878.87 -143.13 -14.00%

Ours 851.32 27.32 3.32% 929.5 2.5 0.27% 1044.4 22.4 2.19%

Subject3

Ground Truth 877 984 1120

RGB 1145.5 268.5 30.62% 1107.8 123.8 12.58% 920 -200 -17.86%

RGBD 1015.6 138.6 15.80% 971.5 -12.5 -1.27% 983.1 -136.9 -12.22%

Ours 871.23 -5.77 -0.66% 982.07 -1.93 -0.20% 1108.8 -11.2 -1.00%

Table 1: Comparison of the reconstruction errors between our method, and the vision-based meth-
ods using RGB23 and RGBD35 sensors.

found that for the waist, elbow and wrist parts, the measurements tended to under-estimate the330

body girths, while the measurements tended to over-estimate the chest and shoulder parts. The331

under-estimation might be potentially caused by the minor displacement of the sensors, with rela-332

tive to the exact positions. The over-estimation could be caused by the breathing or other subtle333

movement. From the comparison of the final reconstruction results and the actual values of various334

parts of the human body, we can see that most of the results were still relatively accurate. However,335

it can also be seen that the errors of some parts were relatively big, especially for the shoulder part.336

Measuring the shoulder girth is particularly challenging as we do not actively adjust the sensor337

position to ensure its accurate position. This opens up research problems for future directions.338

Table 1 presents the ground truth of the human body girths and their corresponding predictions339

by three methods. The results show that our method outperformed vision-based methods using340

RGB and RGBD sensors in all body girths and for all subjects. This confirms the usability of341

our method as an alternative solution to existing vision-based systems. In addition, we inherently342

resolve the privacy concern of users by avoiding using the user-facing cameras.343

Qualitative Analysis with Questionnaire Feedback. The comfortableness, convenience and344

accuracy scores were 3.92±0.91, 3.96±0.79 and 3.92±0.40, respectively (Figure 9 (b)). The partic-345

ipants mentioned that it was convenient to use our prototype. One said that, “this is like a normal346

garment, and I cannot feel much difference after wearing it”. However there were a couple of par-347

ticipants who mentioned that, “it takes some caution to wear the garment”. This is possibly due348

to the user awareness of the circuit board, which most users took special caution and avoided large349

movements. One participant who had previous experience of vision-based 3D systems mentioned350

that our tool solved her concern of the picture leakage, while still obtaining satisfactory modeling351

results.352
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Quantitative Analysis: Comparison of Time Cost. The time cost to put on our garment353

was 2.06±0.25 minutes on average. As mentioned previously, the algorithm reconstructs a 3D354

body mesh in less than one second after receiving the sensor signals. Therefore, the reconstruction355

process can be regarded as real time, since users can view their 3D body shape before they finish356

taking off the garment. They can also observe their dynamic shape changing when inhaling and357

exhaling. In contrast, the reconstruction using the RGBD camera costed 3.26±0.98 on average,358

and it easily failed when moving the RGBD camera at a fast speed. The reconstruction using the359

RGB camera costed 18.63±5.69 on average, depending on the rotation speed of users. However,360

the reconstruction took more than 5 hours for posture estimation and 10 minutes for mesh recon-361

struction. The reconstruction with RGB images requires iterative optimization to fit the mesh with362

the extracted human masks and thus is time-consuming. This comparison confirms the advantages363

of our method in efficiency during user interaction.364

6.4 User Experiment 2 - Cross-session Consistency365

A common challenge for wearable systems is to consistently maintain high accuracy across worn366

sessions, each of which is defined as one attempt in which a user puts on and then takes off the367

wearable system. For each session, the location of sensor placement may vary slightly, since the368

garment cannot be exactly worn in the same configuration for repeated attempts. Therefore we369

conducted further experiments to evaluate the cross-session consistency of our system.370

Participants. Five participants (students and faculties in the university) were recruited in this371

experiment. They were different from those in Experiment 1. The average and standard deviation372

of their age, height and weight were 22.4±1.6, 173.0±4.8 cm, 71.9±15.3 kg, respectively. They373

joined this study for free.374

Procedures. The participants first underwent the same pre-experiment procedure as Experiment375

1 (Sec. 6.3) to receive the experiment instructions, sign their written agreement and fill in the pre-376

experiment questionnaire. Each participant was invited to wear the same garment system for 10377

sessions. And they took off and then put back on the garment between each session. For each378

session, we repeated the same main-procedure as in Experiment 1. Since this study was specifically379

designed to verify the cross-session consistency, we did not conduct the meta-experiment to collect380

data for comparison studies or post-experiment to collect user preferences and subjective comments.381

382

Findings. We compared the sensor readings for individuals across different sessions. For five383

subjects, the distribution of the maximal (inhaling) resistance value was 5.79±0.03, 6.69±0.05,384

5.47±0.03, 6.83±0.05 and 6.65±0.05 (Unit: kΩ). In addition, the distribution of the minimal385

(exhaling) resistance value was 5.13±0.02, 5.76±0.04, 5.29±0.03, 5.84±0.05 and 5.48±0.03 (Unit:386

kΩ). For the same individual, the standard deviation was 3.81%. Repositioning the sensors between387

different instances of putting on the shirt would cause the variation between different trials, even388

on the same wearer. While as shown in Figure 5, the manually sewing is another cause of variation389

between different trials. The metrics show that the the cross-session data for the same individual is390

focused within a small range. This confirms the robustness of our system to reconstruct 3D human391

body across different sessions.392
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Figure 10: (a) Results from Experiment 2 to validate the cross-session consistency. Five participants
repeatedly wore the garment for 10 sessions. This plot shows the maximal and minimal values of
the sensor resistance when inhaling (in blue) and exhaling (in red), respectively. (b) Quantitative
evaluation of the reconstruction errors for waist girths of five subjects.

6.5 User Experiment 3 - Long-term Wearability393

We conducted another experiment to evaluate the performance of our system when a user wears394

for a long period. The purposes are at least two folds: 1) the usability of users wearing for a long395

duration. 2) the sensor consistency over a long duration.396

Participants. We recruited 1 subject (the student in the university), different from the previous397

experiments, to join this experiment. His age, height and weight are 25, 165 cm, 65 kg, respectively.398

Procedures. The participant received the experiment instruction, signed the written agreement399

and filled in the pre-experiment questionnaire, as similarly done in Experiments 1 and 2. The400

subject was asked to wear the garment system continuously from 8 am to 18 pm everyday for401

7 days. During the experiment, he conducted his daily routines, including office work and home402

activities. The battery life was sufficiently large so there was no interruption for battery charging403

during this experiment. We recorded the maximum and minimum values for every 10 seconds to404

evaluate the consistency of our sensor. At the end of the everyday session, the participant filled405

in a 5-scale Likert questionnaire to rate his perception of comfortableness of our prototype. After406

receiving the daily questionnaire, we also conducted a short semi-structured interview with the407

participant and collected his feedback.408

Quantitative Analysis. For a consecutive of seven days, the distribution of minimal (exhal-409

ing) resistance values was 4.62±0.06, 4.64±0.09, 4.57±0.04, 4.61±0.04, 4.66±0.04, 4.67±0.02 and410

4.69±0.01 (Unit: kΩ), respectively. Correspondingly, the distribution of maximal (inhaling) resis-411

tance values was 5.52±0.07, 5.52±0.11, 5.55±0.08, 5.59±0.06, 5.59±0.06, 5.61±0.05 and 5.67±0.01412

(Unit: kΩ), respectively. Figure 11 shows the statistical results for Sensor 1. Figure 11 shows a413

slight upward drift in the sensor’s resistance over time. When we fixed a sensor to the garment414
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Figure 11: Results from Experiment 3 to validate the long-term wearability by asking a participant
to wear our system for a consecutive period of seven days. This plot shows the maximal and
minimal resistance value distributions of Sensor 1 for seven days.

(Figure 5), the sewing interval was relatively small (<1cm), and the slipping of the sensor on the415

garment was almost negligible. The main reason for this slight upward drift of the sensor resis-416

tance is attributed to the sewing structure of the sensor. The technique of flat stitching essentially417

divides the sensor into segments of running stitches, and connects these segments at cross-points418

between the sensor and the garment. When the sensor stretches and returns to its original length,419

the contact at these cross-points imposes additional friction preventing the sensor from returning420

to its original length.421

Qualitative Analysis with Questionnaire Feedback. At the beginning of the experiment422

(Day 1), the participant explicitly expressed the discomfort experience of wearing our garment. The423

main factor mentioned by the participant is that the wiring and the circuit board for signal collection424

constantly raised his awareness about the wearable electronics. As a user, he was concerned about425

whether large movements could lead to the physical damage to the electronics. He mentioned426

particularly about the try-on and take-off procedures, which involve entangling and stretching427

wires. However, as the experiment continued, the system proved to be robust and he felt more428

comfortable with the garment. By the last day of the experiment, he felt fully comfortable with429

the garment and mentioned that “it is acceptable to try on the cloth as an everyday task”.430

6.6 Dynamic Capture of Breathing431

We explicitly annotated the curves in Figure 7 by dividing them into cycles of belly and chest432

breathing. The participant mainly used the approach of belly breathing, so the waist-part sensor433

(the black curve) demonstrated cyclic variation (highlighted with blue-shadowed frames). During434

the time interval highlighted by the yellow-shadowed frame, the participant was taking a deep chest435

breathing. Signal variations of the shoulder-part sensor were caused by the secondary movement436

of the shoulder when the participant was taking breaths.437

We segmented a short sequence (two breathing cycles) from Experiment 3 and reconstructed438
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Figure 12: Breathing movement captured by our method in two breathing cycles. (a) Changes of
the resistance during breathing. (b) Belly inhaling. (c) Belly exhaling. (d) Chest inhaling. (e)
Chest exhaling.

3D human body mesh during breathing. Two cycles demonstrate two modes of breathing: using439

either chest or belly. Figure 12 showed the curves of the sensor resistance and the reconstructed440

mesh at multiple points in time. The color highlighted the vertex displacement at the current time441

point from the initial state. The color in red indicates a larger displacement, while the color in442

blue indicates a smaller one. We chose an initial state in which the resistance value of Sensor 1443

reaches its minimal value, which indicates that the user finishes exhaling and starts to inhale in444

the new cycle of breathing. As shown in Figure 12(b), when inhaling, the value of Sensor 1 on445

waist increased dramatically, and the reconstructed human body changed most in its corresponding446

position. In contrast, when exhaling, each part of the reconstructed human body restored to its447

original shape, and the difference between the reconstructed human body and that at the initial448

state was very small, as shown in Figure 12(c). This can be observed from the resistance diagram449

(Figure 12 (a)), marked at Time-point c. In the second breathing cycle, the user mostly use the450

mode of chest breathing; at this time, the vertexes at the chest region demonstrate the largest451

displacement (Figure 12(d)). When the user exhaled again, the body returns to its original state,452

but the chest is not fully deflated, as shown in Figure 12(e).453

6.7 Production Cost454

The scalability of our work is critically related with the production cost of the complete system.455

The total price of the capture system costs 20 USD. The detailed breakdown is listed as follows.456

The average cost of the sensor is 1 USD/meter. The total length of the sensors on our prototype457

garment is 4 meters. The fabrication of circuit board costs 8 USD per each. The average cost458

of the wire is 0.01 USD/meter. The total length of the wire is 5 meters. A standard sport suit459

costs 10 USD. The lithium battery is 600mAh at a price of 2 USD. This low-cost device is suitable460
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for consumer-level production. The sensors and connecting wires are all yarn-like materials, which461

can be seamlessly integrated into existing pipeline of textile manufacture, which is automatic and462

efficient compared with the lab set-up. Large scale production could further reduce the production463

cost. This further guarantees the scalability of our work.464

6.8 Limitations465

Currently, the system prototype only supports a small range of body sizes. The experimental results466

show that the accuracy is most accurate at the height of 175 cm, and the weight of 66 kg. Users467

whose body shapes are significantly different from this are expected to produce a larger reconstruc-468

tion error. Constructing a customized system, with a number of size variations (S/M/L/XL, etc),469

may offer an improved solution for this limitation.470

Our method relies on the use of a large 3D human model library. The current library which is471

publicly accessible is CAESAR,33 but it contains mostly the shape models captured from American472

and European subjects. The differences between different ethnic groups may potentially affect the473

reconstruction accuracy. One of the future works is to deliver this prototype to a large number of474

subjects and build a human body shape covering a wide range of ethnics groups/ages/physiological475

states etc.476

7 Conclusions477

Our work explores the use of stretchable sensors for the purpose of dynamically monitoring 3D body478

shape. With a sparse set of stretchable sensors, our method is capable of reconstructing an upper479

body shape, with an average error rate of 2.79%±2.55% at the characteristic body girths. The480

stretchable sensors are soft and offer users with significant advantages in comfortable experiences.481

We only require a small number (N=5) of sensors, creating a low-cost and scalable system for482

consumer-level products. We conducted the across-session experiments to verify the consistency of483

our method. We conducted the pilot study to prove that users can wear the clothes for a relatively484

long period without interfering their daily tasks. Our work receives favorable user preferences over485

vision-based methods since there is no need of image capture with minimal on-body clothing. In486

contrast, with our approach, users are allowed to wear additional clothes on top of our garment487

prototype.488

This work leads to a few directions for our future efforts. First, our current prototype focuses489

on the task of shape reconstruction of an upper body. It can be easily to capture the whole body490

by making pants integrated with the sensors. Another foreseeable application is to capture human491

movement, by placing the sensors at the specific joint locations. Combining both the shape and492

motion information of a captured subject allows us to create an identical virtual avatar. This493

opens up interesting applications for social networking in virtual environments. Second, another494

direction is to explore the capability to sense secondary deformation caused by muscle contraction.495

To achieve this goal, a dense sensor array is required to detect the small skin deformation. This496

can be integrated with other advanced sensors (e.g., to collect the electromyography signal) which497

collectively may offer an ideal solution to analyze the muscle activity and ultimately be applied to498

the scenarios of muscle rehabilitation.499
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