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Text2Face: Text-based Face Generation with
Geometry and Appearance Control

Zhaoyang Zhang, Junliang Chen, Hongbo Fu, Jianjun Zhao, Shu-Yu Chen, and Lin Gao

Abstract—Recent years have witnessed the emergence of various techniques proposed for text-based human face generation and
manipulation. Such methods, targeting bridging the semantic gap between text and visual contents, provide users with a deft hand to
turn ideas into visuals via text interface and enable more diversified multimedia applications. However, due to the flexibility of linguistic
expressiveness, the mapping from sentences to desired facial images is clearly many-to-many, causing ambiguities during text-to-face
generation. To alleviate these ambiguities, we introduce a local-to-global framework with two graph neural networks (one for geometry
and the other for appearance) embedded to model the inter-dependency among facial parts. This is based upon our key observation
that the geometry and appearance attributes among different facial components are not mutually independent, i.e., the combinations of
part-level facial features are not arbitrary and thus do not conform to a uniform distribution. By learning from the dataset distribution
and enabling recommendations given partial descriptions of human faces, these networks are highly suitable for our text-to-face task.
Our method is capable of generating high-quality attribute-conditioned facial images from text. Extensive experiments have confirmed
the superiority and usability of our method over the prior art.

Index Terms—Image Generation, Face Editing, Sketching Interface, Text-based User Interaction

✦

1 INTRODUCTION

H OW does a certain character in a novel look like visually?
This is a common question raised by readers when they are

immersed in the content of a novel and wonder about more details
behind the text. Can we reconstruct the faces in the novel simply
from textual descriptions [1]? Although it sounds impossible in
the past, this depiction-to-visualization procedure has the potential
to become a reality now, enabled by the fascinating progress
of human face generation and manipulation methods as well
as natural language processing techniques. However, sometimes
textual descriptions are incomplete for describing every detail of
desired faces, i.e. one sentence may not cover detailed description
of every facial part at once. This is due to the fact that the
users may not want to specify every detail of the face at the
very beginning. For example, a user may start with describing
the desired face as ”An oval face with blonde hair”, then adding
more facial descriptions such as ”smiling mouth” and ”big nose”,
etc. Thus how to generate satisfying human faces from partial
descriptions becomes a challenging problem. In this work, we
aim to visualize the text-to-face depiction process by building an
interface for converting the textual descriptions to realistic human
faces, where we introduce a recommendation mechanism with
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graph neural networks (GNNs) for proposing coherent faces given
partial descriptions. Also, when detailed descriptions are provided,
our model is able to generate facial images corresponding to
the given texts, and our proposed GNNs will optimize over the
generated faical parts and achieve higher fidelity and consistency.

Efforts have been devoted to text-based image generation in
previous years, but not until recently do such methods begin
to apply to facial images. Thanks to the visual-linguistic joint
representation ability of CLIP [2], a series of works (e.g., [3],
[4]) derive in this domain. By attempting to bridge the semantic
gap between the visual-linguistic joint latent space of CLIP and
the latent space of the state-of-the-art face generation model,
StyleGAN [5], such methods are capable of generating and editing
face images with specific attributes that are semantically consistent
with the given text prompts (e.g., glasses, hairstyle, emotions, and
expressions), and have achieved impressive results. A concurrent
study from [6] also provides a powerful tool for interactive editing
of face images using text as hints. They model the mapping from
the textual editing instructions to the editing directions in the
StyleGAN latent space as a semantic field.

Different from previous works, our work sheds light on a text-
guided face generation process rather than using texts to guide
the editing process of human faces, and we explicitly model the
geometry and appearance features in the pipeline in a disentangled
way, rather than an entangled representation as a StyleGAN latent
feature, bringing more flexibility for part-level control. Moreover,
we are enabling more attributes to be controlled via text, while
previous methods only generate poor editing results on these at-
tributes, as illustrated in our experiments. To this end, we propose
a multi-stage framework comprising four parts, namely Text Pars-
ing Module, Feature Extraction Module, Graph Recommendation
Module, and Global Generation Module. The Text Parsing Module
maps sentence inputs into attribute-value pairs, thus providing
a simple yet accurate way of finding key textual hints. The
Feature Extraction Module is responsible for disentangling each
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        …… It was impossible to see more charm in 
beauty than in that of Marguerite...Set, in an 
oval of indescribable grace, two black eyes, sur-
mounted by eyebrows of so pure a curve that it 
seemed as if painted; veil these eyes with lovely 
lashes, which, when drooped, cast their shadow 
on the rosy hue of the cheeks; trace a delicate, 
straight nose, the nostrils a little open, in an 
ardent aspiration toward the life of the senses; 
design a regular mouth, with lips parted gra-
ciously over teeth as white as milk; colour the 
skin with the down of a peach that no hand has 
touched, and you will have the general aspect of 
that charming countenance. The hair, black as 
jet, waving naturally or not, was parted on the 
forehead in two large folds and draped back 
over the head, leaving in sight just the tip of the 
ears, in which there glittered two diamonds, 
worth four to five thousand francs each. ……

/   oval face   / /   straight nose   //   arch eyebrows   / /   parted mouth   / /   black hair   /

La dame aux camélias
( Alexandre Dumas fils, 1848) END-TO-END

SEQUENTIAL

TEXT INPUT

She has oval face, arch eyebrows, straight nose, parted mouth and black hair.

Fig. 1: We present a novel pipeline for text-driven face generation, supporting intuitive control over the part-level geometry and
appearance of generated facial images using text as the only input (Right-top, manually simplified from a novel paragraph on the Left.).
Our pipeline inherently supports both end-to-end text-to-face generation (Right-middle) and sequential generation (Right-bottom), as
illustrated here.

facial component’s geometry and appearance features, followed
by a Graph Recommendation Module, which learns the inference
relationship among facial components. Finally, the geometry and
appearance features optimized by the Graph Recommendation
Module are transformed into photo-realistic images by the Global
Generation Module.

We summarize our main contributions as follows:

• We enable detailed part-level attribute-conditioned face
generation from textual descriptions, which enables more
controllable attributes than previous methods.

• We incorporate graph neural networks (GNN) into the gen-
eration process of face images, which enables geometry
and appearance recommendation upon given conditions
from the text.

2 RELATED WORKS

2.1 Neural Face Generation and Editing

The prosperity of deep neural networks has demonstrated their
capability in human face generation and editing literature. To
generate face images with high fidelity, Karras et al. [5] propose
StyleGAN and a series of its variants [7], [8]. These models
are capable of generating high-resolution photo-realistic faces by
randomly sampling from a latent distribution pZ(z). They are
robust to noisy inputs, thus inducing an abundance of follow-
up works (e.g., [9], [10], [11]), which explore the properties of
its intermediate latent space W to implement conditional face
generation and editing. While StyleGAN-based methods could
benefit from the unprecedented generation ability of StyleGAN
and generate photo-realistic human faces, non-StyleGAN-based
methods are also deft in this domain. For example, Chen et al.
[12] propose a structural framework to disentangle the geometry
features from the appearance features, using the sketch as an
intermediary. Lee et al. [13] adopt semantic masks as an inter-
mediary for flexible face manipulation while preserving identity
and fidelity.

Although these methods are promising in generating and/or
manipulating human face images, they do not explicitly take
into account the inherent coherence among the appearances and
geometric features of facial components, thus being incapable of
understanding high-level semantics and structures of human faces,
let alone recommending and generating faces with geometrically
coherent and appearance-consistent human faces. In contrast, our
work explicitly models the relationship among facial part geometry
and appearance (respectively) using graphs and achieves easier
control over the geometry and appearance features.

2.2 Text-based Multimodal Generation

Text enjoys wide applications in human-computer interaction, with
recent advances in vision and graphics having integrated text as an
interface for image generation and manipulation. Previously, text-
based image generation methods [14], [15], [16], [17] focus on
generating simple-structured images like birds, using the CUB200
dataset [18], and flowers, using the Oxford-Flower-102 dataset
[15], etc. These methods generally lack thorough analysis over
the target data distribution (in their cases, birds and flowers, etc.;
in our case, human faces), therefore being unable to improve the
quality of the generated images. Based on large pretrained models,
DALLE/DALLE2 [19], [20] are able to generate complex and
semantically abundant images from pure text inputs, achieving
phenomenal effects on text-based image generation. Another track
of works on text-based audio generation also grasps attention
within the community [?], [21], [22], [23]. For example, MusicLM
[21] models the music generation process in a hierarchical manner,
which is proved efficient in previous arts. Our work also models
the generation of facial images in a local-to-global manner.

Recent progresses in text-guided graphics and vision are
largely facilitated by CLIP’s strong visual-linguistic representation
ability. CLIPasso [24] utilizes a CLIP image encoder to measure
the semantic and geometric similarity between input real images
and abstracted sketches, benefiting from the rich semantics within
the CLIP text-image joint latent space. CLIPstyler [25] incorpo-
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TEXT INPUT
She has an oval face, with arch 
eyebrows, straight nose, parted 
mouth and black hair.
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Fig. 2: Overview of our pipeline. Our pipeline follows a local-to-global manner. The Text Parsing Module parses one or multiple
sentences s describing the same face into a set of keywords, which are used for conditionally sampling features for face generation
from a property pool. The features in the property pool are extracted in advance using the Feature Extraction Module, which is
trained to disentangle geometry from appearance for each facial component. The Graph Recommendation Module contains two
graphs, Appearance Graph and Geometry Graph. They learn the coherence among facial components from appearance and geometry
perspectives, respectively, and thus can propose recommendations for unspecified facial parts in s. Finally, the Global Generation
Module fuses the part-level feature maps into a generated face image Ifinal. During inference, the input sentence s is parsed into
keywords indexing into the property pool to get corresponding part features. The part features are optimized by the Appearance Graph
and Geometry Graph , after which the optimized features are sent into the part-level decoders ({Decr}) in the Feature Extraction
Module to get the feature maps. The feature maps are fused at fixed positions and translated into real image Ireal by the Global
Generation Module.

rates CLIP for image style transfer, where the desired style is
specified via text inputs. Sangkloy et al. [26] design an image
retrieving system using both text and sketch as a query. With the
help of this system, users could conduct fine-grained retrieval,
which could not be achieved using any of the two modalities alone.
3D content creation field also benefits from CLIP, with Text2Mesh
[27] being a representative work. The proposed method predicts
per-vertex color and positional offsets from the input template
mesh and uses a differentiable render to propagate the CLIP 2D
semantic supervision to 3D.

Specifically within the face generation and manipulation com-
munity, Patashnik et al. [3] introduce three CLIP-based approaches
under this direction, all targeting manipulating inverted StyleGAN
images. Xia et al. [28] yet map multi-modal inputs, including text
into the fixed W space of StyleGAN, forcing the embeddings
of multiple modalities to be as close as possible to the inverted
w ∈ W of their corresponding real face image. Jiang et al. [6]
model the mapping between text features and StyleGAN latent
editing directions using an MLP, by which they attempt to solicit
the most salient editing direction corresponding to the textual
hints. AnyFace [29] first defines the problem of free-style text-
to-image face as well as proposes a two-stream architecture that
utilizes CLIP and StyleGAN to achieve open-world human face
generation and manipulation. Different from their method which
depends on StyleGAN to generate facial images as a whole,
our method relies on partial generators to generate facial parts
separately, together with two GNNs to ensure the fidelity and
consistency of facial images. Very recently, diffusion models [30],
[31], [32], [33], [34], [35] have elevated text-to-image generation
to a new level, where text-to-face generation becomes a natural
subtask. These approaches are deft at editing global attributes such

as age, beard, smiling emotion, etc., instead of editing part-level
geometry and appearance features as we do.

The above-mentioned text-based facial image generation
methods, while having achieved impressive results in manipulating
human faces, often rely too much on the representation ability of
large pretrained models such as CLIP and StyleGAN. Thus they
compromise detailed semantic control over each component of
human faces, i.e., some attributes in the StyleGAN latent space
are highly entangled (as mentioned in [28]). Our work, built
upon a local-to-global framework, is able to translate semantic
descriptions to part-level visuals with geometry and appearance
compatibility, thus supporting disentangled control for each part
while also considering the overall coherence. Also to note that
most of the controllable facial attributes enabled by our method
do not overlap with those enabled by previous works, and edit-
ing/generating these attributes using previous methods yields less
satisfying results, as shown in Sec. 4.

3 METHODOLOGY

Given an input sentence s describing a human face, we aim
to generate a photo-realistic facial image Ifinal with details in
accordance with the descriptions in s. To eliminate potential
abuse of our work, the input adjectives used to describe the
face are restricted within a range (see more discussions in the
supplementary materials). Due to the diversity of linguistic
descriptions, the mapping from sentences to faces is clearly many-
to-many, bringing about more ambiguities when s contains fewer
detailed specifications for each facial part. Therefore, we suggest
a recommendation mechanism to infer the features of facial parts
that are not specified in s from specified ones, aiming at a seamless
combination of part features during global generation. Note that
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the input sentence s could also be several separate sentences, as
long as they describe the same face together.

This requires us to learn the inter-dependency and intrinsic
compatibility among facial parts, from both geometry and appear-
ance perspectives. This requirement in turn leads us to design our
whole pipeline in a local-to-global manner. Specifically, during
training and inference, we divide a facial image into five parts,
namely P := (leye, reye, nose, mouth, bg), where bg stands
for background. See Fig. 2 for more details. Network details are
included in the supplementary materials.

3.1 Pipeline
3.1.1 Text Parsing Module
By assumption, the input sentences contain certain patterns suit-
able for extracting attribute-value pairs directly using a regular
parser [36]. As previously mentioned, the parser is used to acquire
semantic descriptions for each facial part, including geometry and
appearance descriptions. Specifically, given the input sentence(s)
s, the parser P will produce a set of attributes P(s) that are used
to index into the database for finding the corresponding geometry
and appearance features for the subsequent generation process.
In our implementation, we parse the sentence s using the off-the-
shelf spaCy [37] library by analyzing the dependency tree and part
of speech of the words.

3.1.2 Feature Extraction Module
This module serves for local geometry and appearance disentan-
glement. It takes as input real images of facial components Irp (r
standing for real) belonging to a whole image I , and outputs their
corresponding geometry features fgeo

p and appearance features
fapp
p , where p ∈ P is in short of part. We omit all the subscript p

in the rest of this section when there is no ambiguity. We propose
our Feature Extraction Module for explicitly disentangling geom-
etry and appearance features of facial images, using sketches as in-
termediary [12]. For each facial part, we first train an auto-encoder
consisting of Es,Rs (s standing for sketch) over the sketch do-
main using L1 reconstruction loss as supervision, after which we
get the part-level sketch feature defined as fs := Es(Is) ∈ R512.
Serving as the geometry features, these part-level sketch features
are further utilized to guide the disentanglement of the geometry
and appearance features of real image Ir . Such disentanglement is
done by another auto-encoder Er, Rr . This auto-encoder learns to
extract geometry and appearance features from Ir simultaneously,
enabling us to formulate fapp and fgeo as two vectors, rather
than the feature maps used in [12]. Using vectors rather than
feature maps is a necessary formulation since the graph networks
in Graph Recommendation Module could not take feature maps
as input. The geometry feature of Ir is defined as the latent
vector fgeo ∈ R512 acquired by the fully connected layer after the
last encoding block, and the appearance feature of Ir is defined
as the linear combination of IN parameters of encoding blocks.
Formally, fapp =

∑
i wi(µi ⊕ σi), where ⊕ represents vector

concatenation, µi and σi are the mean and standard deviation of
the i-th layer’s feature map, and wi are learnable weights. To
achieve disentanglement, we force fgeo to be aligned with fs,
which is encoded by the pretrained sketch encoder Es.

3.1.3 Graph Recommendation Module
With the disentangled geometry and appearance features, we
propose two graph neural networks, one for recommending com-
patible geometry features for unspecified parts (Geometry Graph),

and the other for unifying the appearance of generated face image
from part-level (Appearance Graph). Please refer to Sec. 3.2 for
the inference procedure.

Geometry Graph. Our key observation here is that the ge-
ometry features of different facial parts should share an intrinsic
coherence, i.e. not all the combinations of facial geometry form
compatible faces [38]. For example, the eyes of the same face
should be largely symmetric, while the size of the mouth and the
shape of the jaw will both influence the contour of the whole face,
etc. We formulate the recommendation problem as a conditional
sampling and prediction of unspecified facial parts and model the
inter-dependency of geometry features among different facial parts
as a 5-node (one node represents one facial part) bipartite graph
Ggeo := (V geo, Egeo) during each step of inference, where V geo

contains the geometry features of 5 nodes and Egeo comprises the
edges from every node of specified/predicted parts to every node
of unspecified/unpredicted ones. Formally, let Ps denote the text-
specified/predicted subset of P , we have

V geo := {fgeo
p | p ∈ P} (1)

Egeo := {egeox→y : fgeo
x 7→ fgeo

y |x ∈ Ps, y ∈ P\Ps} (2)

where each edge egeoxy in Egeo is implemented as an MLP. We
denote the output of Geometry Graph as {f ′geo}.

Appearance Graph. With this appearance graph, we aim to
achieve controllable style fusing for appearance features from
different source images. We observe that the appearance of one
facial part may largely tell what other parts look like. That is, for
example, if we know that the eyes of a face have a light/dark skin
color, we will have enough confidence to reason that the whole
face has a light/dark color. This inter-dependency of appearance
features among different parts is modeled using a 5-node complete
graph Gapp := (V app, Eapp), formally,

V app := {fapp
p | p ∈ P} (3)

Eapp := {eappx→y : fapp
x 7→ fapp

y | x, y ∈ P, x ̸= y} (4)

We model every edge eappxy ∈ Eapp as a unified EdgeConv [39]
function, which is shared across different edges to update the node
features during every propagation. The outputs of Appearance
Graph are denoted as {f ′app}.

3.1.4 Global Generation Module
We base our Global Generation Module on the commonly adopted
image-to-image translation model pix2pixHD [40], which takes
as input the optimized appearance feature {f ′app} and the part-
level geometry features {f ′geo}, and outputs the final synthesized
image Ifinal. {f ′app} and {f ′geo} are first sent through the {Rr}
mentioned in Sec. 3.1.2, after which we spatially combine the
feature map of the second-last layer of {Rr} as indicated in Fig.
2. The combined feature map is then fused into a photo-realistic
image Ifinal using Rglobal consisting of a sequence of ResBlocks
[41].

3.2 Graph Recommendation Mechanism

We formalize the inference logic of Graph Recommendation
Module in this subsection.

3.2.1 Geometry Graph
The inference procedure of Geometry Graph follows a step-by-
step manner, where we start by deciding the geometry feature for



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JUNE 2023 5

Graph Recommend

GEOMETRY GRAPH
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Fig. 3: Illustration of the graph recommendation for Geome-
try Graph. We iteratively perform attribute-conditioned manifold
projection to generate compatible geometry features for the whole
face.

bg. If fgeo
bg is specified in the input sentence s, we conditionally

sample a geometry feature from our property pool using the
specified attributes as the condition. If fgeo

bg cannot be directly
inferred from the input sentence s, i.e. no key in P(s) is relevant
with the face contour, we randomly sample a geometry feature
for fgeo

bg from our property pool. Then fgeo
bg is used to predict

compatible geometry features for all the other parts. Generally, the
predicted feature for an unspecified part is forwarded as follows,

f̂geo
p =

1

|Ps|
∑
x∈Vs

egeox→p(f
geo
x ), p ∈ P\Ps (5)

where Ps is the specified/predicted subset of P as mentioned
in Sec. 3.1.3. When deciding the next part geometry feature,
for example fgeo

nose, we already have a predicted one from fgeo
bg ,

which we denote as f̂geo
nose. Therefore, if nose is not specified, we

directly use f̂geo
nose as fgeo

nose. Otherwise, we could sample from all
the geometry features in our database which satisfy the specified
attributes for nose, and apply manifold projection to f̂geo

nose over
the sampled subset of the database. We call this process attribute-
conditioned manifold projection, abbreviated as A. Formally, the
prediction logic for fgeo

nose can be formulated as follows,

fgeo
nose =

{
f̂geo
nose, if nose is not specified

A(f̂geo
nose), if nose is specified

(6)

After the two iterations above, fgeo
nose and fgeo

bg have been decided,
which will be fixed and used to predict the rest undecided part
geometry features like what has been done for predicting fgeo

nose.
Iterations terminate until all the part-level geometry features have
been decided. We denote the output of Geometry Graph as
{f ′geo}.

3.2.2 Appearance Graph

The Appearance Graph learns the relationship among the appear-
ance features of different facial parts. Since the appearance fea-
tures of different parts do not lie on the same manifold, we extend
each fapp ∈ R512 to f̂app ∈ R2560 during both training and
inference to expect {f̂app} belong to the same space. Intuitively,
one could interpret f̂app as a vector belonging to the direct sum of
five part-level appearance feature space. The extended dimensions
and missing part-level appearance features are padded with zeros
as default. {f̂app} are used to perform message-passing updates,
during which process the data flow between every pair of nodes

Left Eye

Right Eye
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Mouth

Remain

1x512

Left Eye  Right Eye  Nose    Mouth   Remain

App Feature
(n x 512)

Part Feature x 5
(n x n x  512)

?

?

?

Global Feature
(n x 512)

Combine

APPEARANCE GRAPH

Graph Recommend

Fig. 4: Illustration of the graph recommendation for Appear-
ance Graph. Missing appearance features could be deduced from
known ones. Known appearance features would unify with each
other to achieve coherent facial appearances.

unifies the appearance features from different facial parts. For each
round of message passing, we perform

f̂app
p =

1

|P | − 1

∑
x∈P\{p}

eappx→p(f̂
app
x , f̂app

p ) (7)

Finally, after several rounds (5 in our implementation) of message-
passing, we acquire the optimized appearance features for each
part: {f ′app}, f ′app ∈ R512 by extracting the corresponding
slices of {f̂ ′app}, which are optimized by Appearance Graph from
{f̂app}. To be more specific, we have

f̂app
p [i× 512 : (i+ 1)× 512] = fapp

p (8)

f ′app
p = f̂ ′app

p [i× 512 : (i+ 1)× 512], (9)

where i is the index of part p in P .

3.3 Training Stages

The training process of the entire pipeline contains three stages.
We introduce them respectively in this subsection. The training
process is independent of any attribute label.

Stage I: Training the Feature Extraction Module. As de-
scribed in Sec 3.1.2, (fgeo, fapp) = Er(Ir). During training,
we force the decoder Rr to reconstruct the original image, i.e.,
forcing Irecon = Rr(fgeo, fapp) to be as close to Ir as possible.
Therefore we have the first loss term Lrecon defined as follows,

Llocal
recon = ∥Ir − Irecon∥1. (10)

To eliminate the interdependence of geometry and appearance
features, we align the geometry feature space of real images
({fgeo}) with that of sketches ({fs}), where fs is extracted via
the pre-trained Es. Thus, the second loss term Lalign comes as
follows,

Lalign = ∥fgeo − fs∥2. (11)

Further, we utilize the third loss term – adversarial loss Ladv , in a
similar way as [42] do, by employing a discriminator Dr , x

LE,R
adv = E[(Dr(Irecon)− 1)2], (12)

LD
adv = E[(Dr(Ir)− 1))2] + E[(Dr(Irecon)2]. (13)

In summary, the training objective for Stage I is formulated as a
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minimax game as follows,

min
E,R

Llocal
recon + λalignLalign + λadvLE,R

adv , (14)

min
D

LD
adv. (15)

In our implementation, we set λalign = 0.01, and λadv = 0.005.
Stage II: Training the Geometry Graph. The Geometry

Graph models the geometric coherence among facial parts. This
is enabled by learning a set of MLP-based mappings between the
latent spaces of every pair of facial components. For each pair of
facial components x, y ∈ V geo, x ̸= y, we force the MLP exy to
map fgeo

x to fgeo
y . Therefore the loss is simply defined as an L2

loss between the predicted y geometry feature f ′geo
y := exy(f

geo
x )

and the fgeo
y :

min
exy

∥fgeo
y − f ′geo

y ∥2. (16)

Stage III: Joint Training of the Global Generation Module
and the Appearance Graph. The Appearance Graph learns the
style inter-dependency among facial components, with which we
want to achieve appearance reasoning when observing the partial
appearance of a face, and appearance fusing when combining
facial components from different sources. Therefore, we train our
Appearance Graph together with the Global Generation Module
using the reconstruction loss as main supervision. Given the
original geometry features {fgeo} and partial appearance features
{Dropout(fapp, p)}, where Dropout represents Dropout function
operating on every part-level appearance feature and p is the
Dropout probability (p = 0.1 in our implementation), we first
compute the optimized appearance features {f ′app} by calling
Gapp. Then {fgeo} and {f ′app} are used to compute the local
feature maps for each part, which are further combined into
F ∈ R32×512×512. Finally, we have Ifinal = Rglobal(F ). The
first loss is L1 reconstruction loss,

Lglobal
recon = ∥Ifinal − I∥1. (17)

We further employ VGG loss [45] and Lab loss [46] to constrain
on the visual accuracy of generated images. Therefore, the training
objective for this stage is as follows,

min
Gapp,Rglobal

Lglobal
recon + λvggLvgg + λLabLLab. (18)

We set λvgg = 0.2, λLab = 0.001 in our experiments.

4 EXPERIMENTS

4.1 Data Preparation

Using text as the interface of interaction requires us to prepare
a dataset with high-quality facial images and accurate semantic
annotations for each of them. For facial images, we generate
a dataset with a capacity of 40K images using the attribute-
conditioned sampling method provided by StyleFlow [10], where
we impose constraints on the yaw and pitch during the generation
process but randomize other attributes. This eliminates the impact
of extreme poses and background since we desire the facial images
to be as frontal as possible, enabling us to capture and model
the geometry patterns of faces more accurately. Also, we use
the StyleGAN generators provided by [47], which are trained
on various other datasets. For training the Feature Extraction
Module, we prepare the corresponding sketches for these images
used during feature disentanglement following the method in [12].

Attr Face Brows Eyes Nose Mouth
Ours 0.84 0.92 0.87 0.86 0.76

Acc AttnGAN 0.16 0.16 0.24 0.30 0.20
DM-GAN 0.17 0.14 0.22 0.28 .0.22

TABLE 1: Text-image correspondence accuracy. During the
evaluation, we change and set the type for each attribute and
calculate the accuracy of this attribute after generation. Results
show that our method generates face images satisfying the seman-
tic designations of the input text and surpasses the accuracy of
previous arts [14], [51].

For facial attribute annotations, we use APIs from Face++ [48],
Microsoft Azure [49], and Alibaba [50] since the detection of
some desired attributes is only provided by one of these APIs.
Unless otherwise specified, we set the resolution of generated
images to 512× 512 in all our experiments.

When generating the training dataset (as well as our database),
we only generate frontal faces to eliminate the negative impacts
of occlusion and pose, i.e., we reasonably use the a priori of face
layout and pose. Here, we briefly explain why we only use frontal
and occlusion-free faces:

• Non-frontal faces bring about difficulties for the graph
recommendation module to infer the accurate geome-
try/appearance correlation. For example, an apparent ge-
ometry relation within the human face is the symmetry of
two eyes. If a face has a big yaw, the symmetry would not
exist in the image space because this 3D symmetry is not
preserved when projected to 2D.

• Non-frontal faces and occlusions would make it difficult
for the detection API to make accurate judgments. Intu-
itively, for example, if the face has a big yaw/pitch, the
arched eyebrow may look like a straight eyebrow, leading
to misjudgment of the API.

4.2 Results and Evaluations
We conduct extensive experiments to demonstrate the effective-
ness and usability of our system. We evaluate our method from
four aspects: attribute accuracy of the generated images (Sec.
4.2.1), comparison with the state-of-the-art text-based image gen-
eration techniques on human faces (Sec. 4.2.2), ablation study
(Sec. 4.2.3), and perceptual study (Sec. 4.2.6). We also present
more generated results in Fig. 6.

4.2.1 Attribute Accuracy of the Generated Faces
To test the accuracy of text-image correspondence of the generated
images (i.e. do the attributes in the generated images match the
descriptions?), for each attribute, we generate a batch of 100
images by specifying only one attribute in the input sentence.
Then, these generated images are sent to the facial attribute
detection APIs [48], [49], [50] for re-detection. We calculate the
accuracy for each attribute, as shown in Table 1.

4.2.2 Comparison with State-of-the-Arts
Existing text-based works that are relevant to our work can be
categorized into two tracks: text-based image generation [14],
[16], [51], and text-guided face manipulation [3], [28]. Since
our work can be adapted to support face manipulation, we make
comparisons for the two tasks.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JUNE 2023 7

Original
Image

TediGAN

StyleCLIP

Ours

Inversion/
Reconstruction

Edited
Results

He has arch eyebrows. She has open mouth. He has thin nose.
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Fig. 5: Editing comparisons with state-of-the-art methods. We perform single-attribute editing for each example. In all three
examples, TediGAN [28] fails to produce changes corresponding to the text-specified facial attributes. For StyleCLIP [3], it succeeds
in turning a closed mouth into an opened one, while it also fails in the other two cases. We speculate from an empirical perspective
that the success of editing an opened mouth and the failure of editing eyebrows/nose shape may both ascribe to the entangled nature of
the StyleGAN latent space, as prior arts [6], [10], [43], [44] have already managed to change the mouth openness via StyleGAN latent
manipulation but none (to our knowledge) have succeeded in editing eyebrows/nose in the same way. Overall, our method yields the
most satisfying results from both reconstruction quality and editing effectiveness.

Input Sentence: She has oval face, small eyes, arch eyebrows.

Input Sentence: He has arch eyebrows, square face and grey hair.

Fig. 6: More end-to-end generated results. Given the input sentences, our method can generate diverse faces conditioned on the
prompts in the text.

For the generation task, we compare our method with At-
tnGAN [14] and DM-GAN [51] by retraining their models using
the official implementations but with our dataset and setting the
same sentence as the input to all three works. Since the original
implementations of AttnGAN and DM-GAN set the maximum
resolution to 256 × 256, we directly use their results under this
resolution for comparison with our results which have a resolution
of 512×512. Specifically, for each image in our generated dataset,
we randomly generate 10 sentences describing each face using
the detected facial attributes, and retrain their model under the
original resolution with our generated sentences. This is deemed
as a fair comparison by us since generating images with a higher
resolution is often considered to be more difficult. Please note
that their models are not specifically designed for text-to-face
generation but rather for a more general text-to-image generation
task. In contrast, our model is specifically designed for generating
human faces. Although we explicitly take into account the prior

of human face layout into our model architecture, we argue
that this comparison is better than nothing since there do not
exist relevant works under the same settings as ours: text-to-face
generation with disentangled feature control. As shown in Fig.
9, our method’s generation results are visually high-quality and
semantically accurate. In contrast, results from previous text-to-
image generation methods could not reach such a high resolution
while also being deficient in satisfying the conditions in the input
texts.

For the manipulation tasks, we adapt our pipeline as follows
to support manipulation given an input image I: We encode I to
get {fgeo} and {fapp} using Er , and then substitute the features
of specified editing attributes and perform graph recommendation
upon the modified features. Here we compare our method with the
two existing open-world-text-based editing methods [28], [52] for
editing functionality and only compare the results of editing single
attribute, because it is intuitive to perform multi-attribute editing
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w w/oAppearanceGeometry Paste

Fig. 7: Ablation study of the Appearance Graph. Editing the
appearance of the source image (Geometry) using part-level ref-
erence images (Appearance). The Paste column shows the pasted
appearance reference over the source image. As shown in the right-
most two columns, the edited results with Appearance Graphare
much more color-consistent than the rightmost column where the
results are generated without incorporating the Appearance Graph.

by serializing the editing processes of single-attribute editing.
We use the standard optimization-based method in [28] and the
Global Direction method in [3] for comparison. As shown in Fig.
5, editing results from TediGAN [28] often fail to convey the
semantics indicated in the input texts. Obvious artifacts exist in
those results as well. StyleCLIP [3] synthesizes more meaningful
editing results, as shown in the middle example in Fig. 5. However,
in the left and right examples, it fails to generate apparent editing
effects, i.e.the eyebrows in the left example are not “arch” and the
nose in the right example is not “thin”. Our method, on the other
hand, generates semantically consistent and visually meaningful
results for all examples shown in Fig. 5.

4.2.3 Ablation Study

Graph Recommendation Module is an essential part of our frame-
work to ensure the quality and realism of the generated results. To
demonstrate its validity for geometry or appearance recommenda-
tion, we conduct an ablation study with/without the graph. Since
the Appearance Graph and Geometry Graph operate separately,
we perform the ablation study in two ways. First, we randomly edit
one part of the face and observe the generated images with/without
the Geometry Graph. Specifically, as illustrated in Fig. 10, we
fix fgeo

bg and keep changing fgeo
eye1 and fgeo

eye2. In this way, the
Geometry Graph is expected to predict fgeo

nose and fgeo
mouth to form

a compatible face. Second, we testify the effectiveness of our
Appearance Graph by swapping the appearance features of several
facial parts from two faces. We replace the appearance features of
the source person with those of the target person. With Appearance
Graph, such a swapping operation is expected not to produce any
sharp boundaries on the faces, as shown in Fig. 7. While without
Appearance Graph, the swapping operation produces images with
inconsistent color.

Swapping All

except BG
Swapping BG Swapping AllRecon TargetSource

Fig. 8: Results of partial appearance morphing with Appear-
ance Graph. The third column shows results generated from
the geometry features from the source image (shown on the
leftmost column), bg appearance feature from the source image,
and other partial appearance features from the target image on
the rightmost column. It keeps the background appearance nearly
intact while shifting the facial color toward that of the target image
as much as possible. The fourth column is the opposite, where
the bg appearance feature comes from the target image while
the rest appearance features inherit from the source image. The
corresponding effect is the maintenance of facial appearance and
swapping of the background appearance. Note that the background
appearance here includes the hair color feature.

4.2.4 Geometry and Appearance Morphing

The encoder network Er of our framework could extract the
geometry and appearance respectively from a real image. The rep-
resentations of those two features are both 1× 512 latent vectors.
Our method could do interpolation in each feature domain. As
shown in Fig. 11, the upper left and the lower right are the given
images. Along the vertical axis is to interpolate the appearance,
while along the horizontal axis is to interpolate the geometry. The
intermediate images between the two corners are the interpolation
results, where the geometry and appearance features smoothly
change.
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nose and round 
face.
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nose and oval 
face.

AttnGAN DM-GAN Ours

Fig. 9: Generation comparisons with state-of-the-art methods.
Given the same input sentence (leftmost in each example), our
result is significantly better than the other two methods in terms
of both image quality and attribute accuracy.

4.2.5 Partial Appearance Morphing with Appearance
Graph
In Fig. 8, we demonstrate the potential capability of the Appear-
ance Graph in the Graph Recommendation Module, where by
substituting some of the appearance features of the input image
with those of the target image, we could get face images with
blending appearances. Specifically, if we swap the part-level ap-
pearance features of {nose,mouth, leye, reye}, the Appearance
Graph could propagate the appearance features it infers from these
nodes to the whole face while maintaining the appearance of bg
intact. On the other hand, by swapping the appearance feature of
only bg, we get the skin color maintained while the hair color
changed.

4.2.6 Perceptual Study
To evaluate the faithfulness of the synthesized results with respect
to the given sentence, we prepared two user studies and asked
human users to judge the effectiveness of our method in com-
parison with the existing solutions from two aspects: text-image
correspondence and quality of generated images. The box plots of
these two user study statistics are illustrated in Fig. 12.

The evaluation was done via an online questionnaire to eval-
uate the correspondence between the given sentence and the syn-
thesized results according to user perception. For each sample, we
show a sentence depicting a portrait and 5 images synthesized by
the compared methods, including AttnGAN [14], DM-GAN [51],
TediGAN [28] and StyleCLIP [3], and ours. To avoid bias and
ensure the score fairness, we place those images randomly. Each
participant is asked to evaluate 10 examples according to 2 criteria:
the text-image correspondence and the quality of the generated im-
ages, each of them on a 10-point Likert scale (1 = strongly negative
to 10 = strong positive). We invite 20 participants to participate
in this study and get 20 (participants) × 10 (questions) = 200
subjective evaluations for each method. The statistics are shown in
the supplementary materials. We perform one-way ANOVA tests
on the 5 methods mentioned above and find significant effects for
text-image correspondence (F(4,45) = 229.48, p < 0.001) and

[14] [51] [28] [3] Ours
mean 4.22 4.48 6.22 7.28 7.84

p 1.81e-14 1.46e-13 8.06e-9 1.70e-3

TABLE 2: T-test results for text-image correspondence per-
ceptual study. The results further prove the superiority of our
method on text-image correspondence over various alternatives,
with a higher mean score in the perceptual study as well as a
significantly small p-value in paired t-tests.

[14] [51] [28] [3] Ours
mean 3.98 4.35 6.79 7.46 7.46

p 1.65e-15 9.45e-17 7.26e-7 0.958

TABLE 3: T-test results for image quality perceptual study.
The results show that the generated image quality of our method is
comparable to that of StyleGAN generators [3], while significantly
better than that of [14], [51]. Note that although [28] also uses
StyleGAN generators, their score is significantly lower than ours.
This may be attributed to the fact that the optimized latent codes
from their methods sometimes generate out-of-distribution images
which exhibit obvious artifacts, as shown in Fig. 5.

.

for image quality (F(4,45) = 360.23, p < 0.001). The results
from paired t-tests further testify the effectiveness of our method
over the other methods, as illustrated in Tables 2 and 3.

4.3 Failure Modes
Since our dataset only contains frontal faces, the failure modes
of our pipeline mainly center around the non-frontal issue and
occlusion issue. Another failure mode is the issue of generat-
ing/reconstructing complicated hair styles such as wavy hair, plate
hair, bangs, etc.. We initially test our model on the CelebA [13]
and FFHQ [5] datasets but achieve under-expected results, and
we believe that this could attribute to the three failure modes
mentioned above. More failure examples are illustrated in Fig. 13.
As shown in Fig. 13, the left image contains unclear boundaries
between ears and hair, the middle image and the right image both
show artifacts around the ear which make it look like wearing ear
rings.

5 LIMITATIONS

The motivation for our work originates from an entertainment
and interaction setting. Therefore, directly using our model for
applications such as criminal investigation is improper and should
involve more dedicated considerations beforehand. In other words,
one of our model’s limitations, from the application perspective, is
that the accuracy and experimental settings restrict it from being
used as a way to facilitate applications requiring extra accuracy.

Another limitation of our work from the technical perspective
is that our model does not perform well on complicated hairstyles
such as wavy hair, plate hair, bangs, etc. Thus it could not generate
faces with such hairstyles. We refer to the readers to [46], [53]
about how to manipulate complex hairstyles. More details about
failure modes are appended in the supplementary materials.

Last but not least, the generation results of our model rely a lot
on the dataset/database. The frontal faces used in our work require
extensive work to generate and check their validity. Limited by
the diversity encoded in the StyleGAN generator, our database
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Fig. 10: Ablation study of the Geometry Graph. We randomly sample facial geometry features to generate face images. The upper
row shows the results generated from geometry features without being optimized by the Geometry Graph, and the lower row shows the
results generated using Geometry Graph. Obviously, there exist artifacts on the borders of different facial parts in the generated faces
when the geometry features are not being optimized by Geometry Graph. On the other hand, when optimized by Geometry Graph, the
geometry features of different facial parts are more consistent, producing more realistic results.
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Fig. 11: Interpolation via Geometry and Appearance Axes.
The appearance gradually changes along each column, while the
geometry changes along each row.

inherits such bias. The bias could be reduced as we are continuing
enlarging our dataset. We will release the code and provide an
online system when the dataset is diverse enough.

6 CONCLUSION

In this work, we have presented a local-to-global framework
for generating realistic facial images from pure textual inputs,
enabling linguistic control over the geometry and appearance
features of every facial part. We demonstrated the effectiveness
of our method by comparing it with the state-of-the-art text-
based editing and text-to-image models as well as conducting a
convincing user study under a real-world scenario. However, our
current pipeline may not apply to complex sentences. Generation
from sentences with more fuzzy descriptions is to be adapted in
the future.
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M. Zollhöfer, and C. Theobalt, “Stylerig: Rigging stylegan for 3d control
over portrait images,” 2020.

[53] C. Xiao, D. Yu, X. Han, Y. Zheng, and H. Fu, “Sketchhairsalon: Deep
sketch-based hair image synthesis,” 2021.

Zhaoyang Zhang is a Ph.D. student at Yale
Computer Graphics Group. His research in-
terests lie in 2D and 3D digital content cre-
ation. Prior to joining Yale, he obtained his
B.Eng. (summa cum laude) in Computer Sci-
ence and Technology from the University of
Chinese Academy of Sciences (UCAS) in June
2022.

Junliang Chen is currently a master candidate
in the Department of Film and TV Technology,
Beijing Film Academy. His research interests in-
clude digital film technology.

Hongbo Fu received a BS degree in information
sciences from Peking University, China, in 2002
and a PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2007. He is a Full Professor at the School
of Creative Media, City University of Hong Kong.
His primary research interests fall in the fields
of computer graphics and human computer in-
teraction. He has served as an Associate Editor
of The Visual Computer, Computers & Graphics,
and Computer Graphics Forum.

Jianjun Zhao is an associate professor in the
Department of Film and TV Technology, Beijing
Film Academy. He received his Ph.D degree in
computer science from Institute of Computing
Technology, Chinese Academy of Sciences. His
research focuses on film virtual production and
physics-based character animation.

Shu-Yu Chen received her PHD degree in Com-
puter Science and Technology from the Univer-
sity of Chinese Academy of Sciences. She is
currently working as an Assistant Professor at
the Institute of Computing Technology, Chinese
Academy of Sciences. Her research interests
include computer graphics.

Lin Gao received his PhD degree in computer
science from Tsinghua University. He is cur-
rently an Associate Professor at the Institute
of Computing Technology, Chinese Academy of
Sciences. He has been awarded the Newton
Advanced Fellowship from the Royal Society and
the AG young researcher award. His research in-
terests include computer graphics and geometric
processing.


