
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 1

Synthesizing Mesh Deformation Sequences
with Bidirectional LSTM
Yi-Ling Qiao, Yu-Kun Lai, Hongbo Fu, and Lin Gao∗

Abstract—Synthesizing realistic 3D mesh deformation sequences is a challenging but important task in computer animation. To
achieve this, researchers have long been focusing on shape analysis to develop new interpolation and extrapolation techniques.
However, such techniques have limited learning capabilities and therefore often produce unrealistic deformation. Although there are
already networks defined on individual meshes, deep architectures that operate directly on mesh sequences with temporal information
remain unexplored due to the following major barriers: irregular mesh connectivity, rich temporal information, and varied deformation.
To address these issues, we utilize convolutional neural networks defined on triangular meshes along with a shape deformation
representation to extract useful features, followed by long short-term memory (LSTM) that iteratively processes the features. To fully
respect the bidirectional nature of actions, we propose a new share-weight bidirectional scheme to better synthesize deformations. An
extensive evaluation shows that our approach outperforms existing methods in sequence generation, both qualitatively and
quantitatively.

Index Terms—Mesh deformation, mesh sequences, LSTM, deep learning, shape generation

F

1 INTRODUCTION

IN recent years, many techniques [1], [2], [3] have been
developed to capture 3D shape animations, which are

often represented as sequences of triangular meshes with
detailed geometry. Analyzing such animation sequences for
synthesizing new realistic 3D mesh sequences is very useful
in practice for the film and game industries. Although deep
learning has achieved significant success in synthesizing
a variety of media types, directly utilizing the temporal
information for synthesizing mesh deformation sequences
by deep learning methods remains unexplored.

A major challenge to achieve this is to go beyond
individual meshes and understand the temporal
relationships among them. There are several works
like [4], [5], which can generate mesh sequences but their
generation is based on interpolation or extrapolation in
the feature space without using temporal information.
Since the feature space is not infinite, such methods cannot
extrapolate long sequences or capture temporal properties
like periodicity; see Fig. 5 for comparisons that demonstrate
the differences between extrapolation-based methods and
ours. Skeleton constraints [6], [7] can also help with the
generation of meshes. Dyna [8] analyzes the dynamics of
human shapes. It operates on a skeleton representation

∗ Corresponding author is Lin Gao.

• Y.-L Qiao is with the Beijing Key Laboratory of Mobile Computing and
Pervasive Device, Institute of Computing Technology, Chinese Academy of
Sciences and also with with Department of Computer Science, University
of Maryland, College Park, US. E-mail: yilingq97@gmail.com

• L. Gao is with the Beijing Key Laboratory of Mobile Computing and
Pervasive Device, Institute of Computing Technology, Chinese Academy
of Sciences and also with the University of Chinese Academy of Sciences,
Beijing, China. E-mail: gaolin@ict.ac.cn

• Y.-K Lai is with the School of Computer Science and Informatics, Cardiff
University, Wales, UK. E-mail: LaiY4@cardiff.ac.uk

• H. Fu is with the School of Creative Media, the City University of Hong
Kong. E-mail: hongbofu@cityu.edu.hk

and thus is not applicable to general models such as
flags and dresses. Alternatively, [9] and [10] study the
relationships among all models in an unordered dataset
by performing clustering and shape analysis on the whole
datasets, which do not take sequences into account. Thanks
to the development of deep learning methods, in particular,
the recurrent neural network (RNN) and its variants such as
long short-term memory (LSTM) [11] and gated recurrent
unit (GRU) [12], one can more easily learn from sequences.
Based on RNNs, impressive results have been achieved
in tasks including movie prediction [13], [14], music
composition [15], text generation [16] and completion [17].
Compared to the standard RNN, LSTM can mitigate the
problem of vanishing gradients and thus better deal with
long-range dependencies [18]. This motivates us to use
LSTM to learn to synthesize mesh deformation sequences.

However, unlike audio or text, mesh frames cannot
serve as direct input to LSTM. The input to LSTM cells is
usually well-organized low-dimensional vectors, but raw
mesh representations are unordered vertices and faces in
high dimensions. Simply feeding a mesh into the LSTM
would lead to huge time and memory cost.

To make the mesh data tractable for LSTM, we apply
CNNs for feature extraction and dimensionality reduction
before putting the mesh data into LSTM cells. Recent efforts
have been made for lifting 2D Convolutional Neural Net-
works (CNNs) to 3D data [19], including multi-view [20] or
3D voxel [21], [22] representations. Those networks, how-
ever, are not suitable for high-resolution mesh data. In this
paper, we utilize mesh-based CNNs [23] working on a
shape deformation representation [24]. Share-weight convo-
lutional kernels introduced by [23] can significantly reduce
the number of network parameters, allowing meshes with
many vertices to be handled. Meanwhile, the deforma-
tion representation works well with large-scale deformation,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 2

suitable for describing rich deformation information in an
animation sequence. We construct an auto-encoder with a
mesh-based CNN to map a mesh to a low-dimensional
latent vector, suitable to be processed by LSTM.

Note that mesh sequences have a very different property
from audio or text, where the motion of mesh sequences
is usually bi-directional, i.e. both the forward and back-
ward actions can be reasonably present in an animation.
Therefore, we design a share-weight bi-directional LSTM
to learn the two directions simultaneously. In some sense,
this design doubles the number of training samples and
thus stabilizes training. Moreover, since the learned LSTM
can generate motion in both directions, sequence comple-
tion becomes easier. Based on the assumption that both
directions of the motion should be reasonable, our method
can be used on reversible motions. On the other hand, we
admit that some sequences might challenge our assumption
if their processes along the time axis are not reversible.
For example, motions like a bouncing ball with significant
damping might not be suitable for our model. Our method
is largely limited to processes dominated by conservative
forces, like many humans’ or animals’ actions. To apply our
method, we also expect similarities between the training and
test data, as other learning based methods. We will later
demonstrate the effectiveness of our novel designs.

In summary, to analyze 3D mesh deformation sequences,
we propose a novel bidirectional LSTM architecture com-
bined with mesh-based convolutions. This pipeline is able
to deal with complex mesh sequence data and flexible for
multiple applications. Our main contributions are:

1) We propose a deep learning method to cope with
mesh deformation sequences by exploiting the un-
derlying temporal information. Our method is able
to generate sequences with realism and diversity
conditioned on different initial frames.

2) We design a share-weight bidirectional LSTM
specifically for learning from deformation
sequences. Our experimental results show that
bidirectional generation helps to complete a
sequence in a more natural way.

Next, we first review relevant work and then present
our feature representation, network architecture, and loss
functions. In the Experiments section, we show extensive
experimental results to justify our design. Since no existing
work is designed to synthesize/complete mesh animation
sequences, we compare our work with the state-of-the-art
works that can be extended or applied to this problem, both
qualitatively and quantitatively. Finally, we draw conclu-
sions from our work.

2 RELATED WORK

RNN and LSTM. The recurrent neural network and its
variants, such as LSTM [11] and GRU [12], have been
widely used in dealing with sequential data, including
text [25], [26], video [13], [14] and audio [27], [28]. [29]
learns representations of video by LSTM in an unsupervised
manner. But none of the above methods have attempted to
analyze mesh sequences. Researchers have utilized various
methods for a better quality of generation. For example,

PredNet [30] learns to predict future frames by compar-
ing errors between prediction and observation, similar to
the loss adopted in our network. [31] incorporates policy
gradients into generative adversarial networks (GANs) [32]
and LSTM to generate sequences. Attempts have also been
made to predict video frames using CNNs [33]. To avoid
predicting videos directly in the high-dimensional pixel
space, some work uses high-level abstraction such as human
poses [34], [35] to assist with generation. This motivated
us to use mesh-based CNNs for extracting low-dimensional
features, which are then fed into LSTM.

Many variants of RNNs have been developed to pre-
dict or generate realistic motion sequences. For example,
[36] proposes an encoder-recurrent-decoder (ERD) to learn
spatial embeddings and temporal sequences of videos and
motion capture data. [37] generates image sequences with a
sequential variational auto-encoder, where two RNN chains
are used to encode and decode sampled sequences ac-
cordingly. However, such approaches that iteratively take
the output as input to the next stage could cause error
accumulation and make the sequence freeze or diverge.
To address this problem, [38] presents Auto-Conditioned
RNNs (acRNNs), whose inputs are previous output frames
interleaved with ground truth. With ground truth frames at
the beginning of a sequence, acRNN can generate output
sequences conditioned on given input sequences. Our ap-
proach adopts similar spatial encoding blocks. But unlike
their LSTMs, which have a single direction only, our bidi-
rectional LSTM allows easier generation of mesh sequences.

[39] builds a sequence-to-sequence architecture, which
is able to predict multiple actions, but the method does not
have spatial encoding modules. Using an encoder-decoder
structure, [40] extracts feature representations of human
motion for prediction and classification. Wang et al. [41]
propose to learn a latent space of garment meshes for
interactive animation synthesis. Their method focuses on
generating clothing meshes based on given body motions,
while our method exploits the temporal information and
can generate mesh sequences for general shape types. The
spatial-temporal relationship is exploited in [42] to generate
human motion skeleton sequences. [35] uses a GAN and
LSTM to generate actions or complete sequences by optimiz-
ing the input vector of the GAN. Compared to their tasks,
our goal focuses on general mesh sequences, which have
higher dimensions and are more general than skeleton data.
More research works on the 3D shape generation could be
referred to [43];

3D Shape Interpolation. Compared with image gener-
ation, synthesizing 3D shapes is more challenging due to
the high dimensionality and irregular connectivity of mesh
data. Previous works mostly generate 3D shapes via interpo-
lation in parameterized representations. For example, [44]
proposes to interpolate shapes in a Riemannian shell space.
Based on existing shapes, data-driven methods (e.g. [45])
can generate realistic samples. However, such traditional
methods focusing on shape representations and shape anal-
ysis have limited learning capabilities. More recently, [4]
proposes to use Variational Autoencoders (VAEs) to map
mesh models into a latent space and generate new models
by decoding latent vectors. Locally deformed shapes can
also be generated by a combination of deep learning and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 3

Cell

Conv

tCnvtCnvtCnv

'Z

'Z

tX

1+tX

Cell

Conv

tCnvtCnvtCnv

2+tX

Cell

Conv

tCnvtCnvtCnv

1n−+tX

Cell

Conv

tCnvtCnvtCnv

ntX +

…

tS (a) (b)

b
nS 1i- +

b
nS 1-

b
nS

bS2

bS1

fS1

fS2

f
iS

f
nS 1−

f
nS

……

……

aX

1+aX

1−+iaX

1−bX

bX

Fig. 1. Architecture of our network. (a) shows that our network is composed of LSTM module cell and mesh convolution modulesConv, tCnv. Taking
the network St at time step t as an example, the input to Conv is the deformation representation Xt. tCnv is a stack of transpose convolution
layers mirroring Conv. The output of tCnv is the feature change δXt. δXt +Xt gives the predicted feature for time step t+1, and is fed into St+1

iteratively. (b) is our bidirectional LSTM. Both chains have the same architecture as in (a), and the only difference is their opposite directions. The
forward chain takes the first model as input and the backward chain takes the last. They share weights and their predictions are constrained to
match each other.

sparse regularization [46]. While these learning-based meth-
ods can produce new shapes that are diverse and realistic,
the temporal information of mesh animation sequences has
not been fully explored, which we will address in this paper.

3 METHODOLOGY

3.1 Mesh Sequence Representation

Mesh animation sequences are typically represented as a set
of meshes with the same vertex connectivity but different
vertex positions. Such meshes can be obtained by consistent
remeshing or template fitting and become very common
nowadays due to the improved scanning and modeling
techniques. These animated mesh sequences usually involve
large-scale and complex deformations.

In this work, we represent shapes using the shape defor-
mation representation [24], a state-of-the-art representation
that works well for large-scale deformation and suitable
for deep learning methods. Compared to the plain mesh
representation, this representation is rotation-invariant and
keeps the local structure of the manifold. Assume the mo-
tion sequence dataset M contains n meshes and each mesh
is denoted asmt (t = 1, 2, . . . , n). We denote pt,i ∈ R3 as the
ith vertex of the tth model. Dt,i represents the deformation
gradient defined in each 1-ring vertex neighborhood, and is
computed as

Dt,i = argmin
Dt,i

∑
j∈Ni

cij ‖(pt,i − pt,j)−Dt,i(p1,i − p1,j)‖22 ,

(1)
where Ni is the 1-ring neighborhood of the ith vertex, and
cij is the cotangent weight to avoid discretization bias [47].
Note that Equation 1 computes the deformation gradients
w.r.t. the first mesh, which is treated as the template of the
motion sequence. During reconstruction, we recover each

mesh by deforming the first mesh using its deformation
gradients. The deformation gradient matrix Dt,i is decom-
posed into a rotation matrix Rt,i and scaling matrix St,i,
i.e., Dt,i = Rt,iSt,i. The difficulty for representing large-
scale deformations is that the same rotation matrix Rt,i can
be mapped to two rotation axes with opposite directions,
and the associated rotation angles might include different
numbers of cycles. To solve this rotation ambiguity problem,
a global integer programming based method [24] is applied
to obtain as-consistent-as-possible (ACAP) assignment of
angles and rotation axes. After removing trivial entries
such as zeros in the rotation and scale components at the
ith vertex of the tth model, the algorithm outputs feature
vectors qt,i ∈ R9 that represent local deformations. The
mesh representation Xt is eventually produced by linearly
normalizing each dimension of qt,i into [−0.95, 0.95] to
make it suitable for applying the tanh activation function,
following [4]. The reverse linear mapping needs to be ap-
plied to synthesized feature vectors, before their use for
shape reconstruction [24].

3.2 Generative Model

The overall architecture of our network is illustrated in
Fig. 1. In this illustration, we denote LSTM cells as cell.
Conv refers to the mesh convolutional operations [23],
[46] and tCnv represents transpose convolutions. For each
convolutional filter, the output at a vertex is computed by a
weighted sum of its 1-ring neighbors along with a bias:

yi =W1xi +W2

∑di

j=1 xnij

di
+ b, (2)

where xi and yi are input and output at the ith vertex, W1,
W2 and b are the filter’s weights and bias, di is the degree

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 4

TABLE 1
Comparison between two variants of our method and previous works on per-vertex position error (average distance between vertex positions of
ground truth and prediction on the nth frame). On four sequences from the Dyna dataset [8], we compare our method variants with [4] and [24].
The existing methods generate future mesh sequences by extrapolating in the feature space given two initial models. Also, we feed our network

with one or three initial frames (IFs) and observe that more initial frames generally improve the performance. On average, our method outperforms
extrapolation-based methods, which generate reasonable results in a short period but suffer from error accumulation later.

Methods Punching ShakeArm Handstand Horse
5th 10th 15th 5th 10th 15th 5th 10th 15th 5th 10th 15th

Ours+1 IF (×10−4) 175 156 285 335 381 319 323 527 516 603 869 1328
Ours+3 IF (×10−4) 95 84 107 301 226 290 212 379 428 451 329 671

[4] (×10−4) 132 240 457 291 433 688 93 489 797 286 713 1032
[24] (×10−4) 294 361 413 391 472 110 487 401 1589 334 1051 1568

TABLE 2
Average vertex position errors (×10−4) between ground truth and

prediction on Punching in Dyna [8] with different network architectures.
We can see that our share-weight BD-LSTM outperforms standard
BD-LSTM and unidirectional LSTM. We also observe a decrease in

accuracy when the LKL term is omitted.

Ours Std. BD-LSTM Unidir. LSTM w/o LKL

88 123 114 103

of the ith vertex, and nij is the jth 1-ring neighbor of the ith

vertex.
Given the LSTM state st and model Xt, we first describe

how to generate the next model Xt+1. First, Xt is put into
the mesh convolutional sub-network Conv, which outputs
a low-dimensional latent vector z = Conv(X). After that,
z is sent to LSTM cell, outputting (z′, st+1) = cell(z, st),
where st+1 represents the updated state and z′ is the up-
dated latent vector. z′ is then passed to transpose mesh
convolution tCnv. Similar to many sequence generation
algorithms, the output of tCnv(z′) is the difference between
the next and current models δXt = Xt+1 − Xt, instead of
Xt+1 itself, to alleviate error accumulation. In the end, the
generated model from Xt is simply worked out as Xt+1 =
Xt + δXt. Consecutive models are generated iteratively in
the same way. Fig. 1 (a) shows the structure of an LSTM
chain, and (b) illustrates the whole process of bidirectional
training. Suppose that we already have a set of models
Si,j = {Xi, Xi+1, ..., Xj}, (i ≤ j). To extend the sequence,
we would like to predict its n future models Sj+1,j+n|i,j =
{Xj+1, Xj+2, ..., Xj+n|Xi, Xi+1, ..., Xj}. Our method first
puts the existing models into the network in their order, and
let the LSTM cell update its state to sj from an initial state
s0. When it comes to the jth model, the network outputs
Xj+1, which is afterwards treated as the (j+1)st input, and
this process repeats for n times, leading to the follow-up
sequence Sj+1,j+n|i,j .

3.3 Bidirectional Generation
Sequence generation is a challenging problem in various
data forms, not only for the potentially tricky ways to
exploit temporal information but also about how to obtain
enough training data. When the data is scarce for a specific
application, which is often the case for 3D model datasets,
training can be problematic.

However, unlike text, movie, and audio, 3D model se-
quences can be more flexible. On the one hand, the or-
der of 3D shape sequences is less strict, i.e., the inverse

of motion is often reasonable. On the other hand, there
are usually multiple plausible paths between two meshes.
Based on these two observations, we propose a bidirec-
tional generation scheme, which allows generating more
possible deformation sequences than the dataset has and
avoids restricting results to specific deformation paths, as
illustrated in Fig. 1. From a 3D model deformation sequence,
we arbitrarily choose two models Xa and Xb as endpoints
of two inverse n-length sequences Sf , Sb such that Sf

1 =
Sb
n = Xa and Sf

n = Sb
1 = Xb. Let Xa and Xb have

opposite initial states sf0 and sb0, respectively. We expect
them to generate similar models, satisfying ∀1 ≤ i ≤
n, Sf

i ≈ Sb
n+1−i. In summary, there are weight-sharing

structures at different levels. Take the network diagram in
Fig. 1 as an example. First, inside Conv and tCnv, there
are convolutional kernels that share weights among vertices.
Second, the weights for the encoder-decoder structure and
the LSTM cell for each time step are shared. Third, unlike
standard bi-directional LSTMs (Std. BD-LSTM in Table 2),
our backward and forward chains share weights. Weight-
sharing between the forward and backward chains halves
the trainable parameters, which mitigate overfitting.

3.4 Loss Function
Our loss function is composed of three terms as follows

L = Lrecon + α1Lbidir + α2Lreg. (3)

To illustrate this, let the ground truth models be
{X1, X2, ..., Xn}, which are expected to be the results
of forward sequence Sf and backward sequence Sb. The
reconstruction loss

Lrecon =
n∑

i=1

(||Sf
i −Xi||+ ||Sb

i −Xn+1−i||) (4)

forces both sequences to resemble samples from the dataset.
Meanwhile, as described before, bidirectional sequences Sf

and Sb share weights and have similar outputs, which is
ensured by the bidirectional loss

Lbidir =
n∑

i=1

∥∥∥Sf
i − S

b
n+1−i

∥∥∥ . (5)

Furthermore, Lreg = LKL + L2 contains the KL divergence
term and the L2 penalty on network weights to regularize
the network. Assume that {wi} is the set of trainable param-
eters in the neural network. The L2 penalty is computed
by L2 =

∑
w2

i . The KL divergence helps find a good

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 5

0 5 10 15 20 25 30
Frame Number

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ea

tu
re

 C
ha

ng
e

Ours
W/o KL
W/o regularization
Unidirection

Fig. 2. Shape feature changes between subsequent frames of different methods. This line graph depicts the amount of feature changesmean(||Xt−
Xt+1||/Xt) between consecutive frames. The proposed method (blue) has stable and visible changes. Networks without KL loss or bidirectional-
training suffer from frozen sequences, and the one without L2 regularization has significant jerk.

(a) (c)

(b) (d)

Fig. 3. Visualization of the results in the ablation study corresponding
to the line graph in Fig. 2. (a) is generated by our method. (b) is from
the network trained without LKL, which nearly freezes at one frame.
(c) is generated from a standard unidirectional LSTM, and encounters a
problem similar to (b). (d) is generated from the network trained without
L2 regularization. The models do move but have sudden changes. In
summary, our method generates smooth and lively animation, indicating
that all the loss terms contribute to good performance.

latent feature for the high dimensional representation [48].
We expect that the encoded latent vector z conforms to a
Gaussian distribution, such that the feature is normalized
and variables in this vector are decoupled. Finding such
a feature embedding, in the sense of maximum likelihood
estimation, is equivalent to minimizing reconstruction loss
and KL divergence with a Gaussian distribution [48]. There-
fore, we have LKL = DKL(q(z|X)|p(z)) where q(z|X) is
the posterior distribution and p(z) is the Gaussian prior
distribution. Since the KL constraint enforces the feature
learned to have a similar distribution to Gaussian, the
space for optimization can be simpler. The encoder-decoder
structure and the KL loss are used to reduce dimensions and
better learn the distribution of shapes. We wish the network
to learn a low-dimensional random distribution such that
the decoder can generate reasonable shapes even from the
probably noisy and uncertain LSTM output. As we show in
Table 2, training with the KL loss helps to get a lower overall
loss. Moreover, we find that the KL term can stabilize the
training process by mitigating sudden jerks. Without this,
the manifold of the embedded feature may contain steep
regions, where small changes in the latent space could map
to big differences in the generated model (see Fig. 2). In all
our experiments, we set α1 = 0.5 and α2 = 0.1.

TABLE 3
The numbers of frames and training/test sequences for all datasets:
Dyna (Figs. 3, 4, 7, 9, and 11), Dress and Paper (Fig. 4), Handstand
(Fig. 5), Horse (Fig. 5), Camel (Fig. 6), Pant (Fig. 8), Finger (Fig. 8),

and Crane (Fig. 12).

Datasets Dyna Dress Handstand Horse Camel
Frames 2610 601 523 574 574

Train/test seq. 1840/398 418/89 356/73 397/83 397/83
Datasets Pant Paper Finger Crane SMPL
Frames 4009 873 571 522 501

Train/test seq. 3145/770 636/143 83/394 73/355 N/A

4 EXPERIMENTS

4.1 Implementation Details
We use Tensorflow as the framework of our implementation.
Experiments are performed on a PC with an Intel Core
i7-2600 CPU and an NVIDIA Tesla K40c GPU. We use
Adam optimizer [49] to update weights, with default Adam
parameters β1 = 0.9, and β2 = 0.999 as in [49]. For each
dataset, we randomly exclude a subsequence, which takes
up 20% of the dataset, as a test set, and use the remaining
frames as the training data. A training process takes 7,000
iterations, lasting for around 8 hours. We list the numbers
of frames and training/test sequences for all the datasets in
Table 3.

In each iteration, we generate 8 sequences, each of them
containing a deforming mesh at 32 frames. For the datasets
where motion is slow [8], we sample every other model
in sequences, by doing so the difference between adjacent
frames can be more remarkable. For all experiments, the
LSTM cell has 3 layers and 128 hidden dimensions, and
we set initial states as sf0 = −sb0 = [0.1]128. The mesh
convolution module Conv is composed of 3 layers with
tanh as the activation function.

4.2 Framework Evaluation
Bidirectional Generation. Our proposed share-weight bidi-
rectional LSTM (BD-LSTM for short) better utilizes tempo-
ral information to facilitate sequence completion. As we
will later show, it leads to results with greater diversity.
In addition, the Lbidir and LKL terms impose stronger
constraints during training and consequently help predict
more accurate sequences. According to the numerical results

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 6

(a) (c)

(b) (d)

Fig. 4. Qualitative results of our method on (a,c) Dyna [8], (b) dress, and (d) paper. The first model in each sequence is fed as input, and the network
automatically generates the following four meshes. This is the first approach that is able to generate an animation sequence from a single initial
mesh. Our method is applicable to general types of models that cannot be represented by skeletons, such as the dress and paper sequences.

in Table 1, our method is more effective than existing
methods [4], [24], which are state-of-the-art methods for
mesh interpolation and extrapolation, though they are not
originally designed for mesh sequence generation or com-
pletion.

Ablation Study of Loss Terms. Error accumulation is a
common problem in sequence generation tasks [37], [38],
[39]. Generated meshes often freeze because results tend
to stay at an average shape, or even diverge to random
results. To address this problem, we use three mechanisms:
1) LKL divergence to regularize the internal distribution;
2) L2 regularization loss to mitigate overfitting; and 3)
bidirectional generation to impose an additional constraint.
To verify the impact of these terms, we train models with
one of the three terms turned off. For unidirectional se-
quences, we use only one direction of LSTM. The line
graph in Fig. 2 shows representation changes mean(||Xt −
Xt+1||/Xt) between adjacent frames Xt and Xt+1. The
four networks are trained on Dyna [8] for 7,000 iterations,
and tested on 32 randomly chosen sequences. It can be
seen from the results that without KL or BD-LSTM, the
generated sequences tend to freeze. Meanwhile, the use
of L2 regularization helps reduce jerk. In Fig. 3, we show
sampled frames of the generated sequences corresponding
to the lines in Fig. 2. We can easily observe the freezing
frames in (b) and (c) as well as sudden changes in (d).
Please refer to the accompanying video, which provides
more visual comparisons of generated sequences.

We also perform a quantitative comparison of the aver-
age per-vertex error between prediction and ground truth
on the Dyna dataset [8]. As shown in Table 2, our BD-LSTM
leads to the lowest average per-vertex error among all the
compared methods.

Number of Initial Frames. Generating a sequence based
on initial frames is a useful but challenging application.
In theory, the more bootstrap frames the network has, the
more knowledge it obtains about the sequence, therefore
making a more accurate prediction. Previous mesh gen-
eration approaches, however, are based on extrapolation,
which require the availability of at least two existing models
(endpoints). Our method can take advantage of all input
frames by feeding them into the LSTM. A previous human
motion prediction method uses u = 4 frames to start the
recurrent network [38]. We test u = 1 and u = 3 in
Table 1 (Ours+1 IF and Ours+3 IF), which shows that more
initial frames can reduce the distance between prediction
and ground truth.

4.3 Sequence Generation

We now evaluate the sequence generation capability of
the proposed method. Starting from some initial frames,
sequence generation predicts future frames. In the first part
of this section, we show both qualitative and quantitative
results of the generating models. In the second part, we
further show that a single network can generate meshes in
different shapes and motions, only conditioned on the initial
frames.

Generating Sequences. As far as we are aware, this is
the first work to learn and generate long mesh sequences
given one or multiple initial meshes. Given two initial
frames, previous methods like [46] often use extrapolation
to generate new following meshes. However, simply extrap-
olating meshes from a limited number of input frames easily
fails to capture long-term temporal information, e.g., the
periodicity of a sequence. In contrast, since the transfor-
mations between frames of LSTM are nonlinear, LSTM has
a better ability to generate long sequences. Previous NLP
research [25] has also shown LSTM can generate words
and sentences endlessly. With the help of LSTM, our model
can model the history information and generate realistic
mesh sequences iteratively, even if the number of models
in the dataset is very limited. In our experiment, we feed
the first test mesh model to our trained framework and
let it generate the subsequent frames. Some qualitative
and quantitative results are shown respectively in Fig. 4
and Table 1. We compare our model with ground truth
as well as previous extrapolation-based methods [4], [24].
Fig. 5 plots the predictions on the 5th, 10th and 15th future
frames. We can see that both extrapolation methods fail
on the 15th frame because linearly extending the motion
path eventually exceeds the plausible deformation space.
In contrast, our method is aware of the periodicity of the
sequence and able to return back once reaching the extreme
point, producing natural motion cycles. More examples can
be found in the supplementary video.

In addition, in Figs. 6 and 8 we show long sequences
generated by our method. Since in our implementation the
network is constructed to have a fixed length of 32 frames,
we run the LSTM for multiple times, with the initial frames
of a run set to the last frames of the previous run, except for
the first run. In the end, all the sub-sequences are combined
together to form a long sequence. With only one given initial
model, the camel still moves realistically even after 220
frames. We also generate 300 frames of a walking finger and
moving pants in Fig. 8. We will also show in Sec. 4.4 that

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 7

5th Frame 10th Frame 15th Frame 5th Frame 10th Frame 15th Frame 5th Frame 10th Frame 15th Frame 5th Frame 10th Frame 15th Frame

(a) Ground Truth (b) [24] (c) [4] (d) Ours

Fig. 5. Comparison with other works on sequence generation. In this experiment, two consecutive frames are sent into the network, and we aim
to predict the future 5th, 10th, 15th meshes. (a) shows the ground truth of the meshes; (b) is obtained by using linear extrapolation in the feature
space [24]; (c) is the result by extrapolation on a feature from deep learning [4]; (d) is our result. We can see that extrapolation-based generation
fails when predicting frames further away. (b) totally fails on the 15th frame, and (c) also produces abnormal deformation, as highlighted in the red
circles. In contrast, our method forms a natural cycle and avoids exceeding the limits (following the horse’s stride).

1st frame 6th frame 11th frame 16th frame 21st frame 26th frame

31st frame 36th frame 41st frame 46th frame 51st frame 56th frame

61st frame 66th frame 71st frame 76th frame 81st frame 86th frame

Fig. 6. Sampled frames of a long sequence with 220 deforming meshes
generated by our network from a single initial frame (i.e., the first frame,
highlighted in a black box). The camel steps forward periodically in this
animation sequence.

a small set of keyframes can be given as input to flexibly
control the generation of long sequences.

To test how our method can generalize to new data,
we feed the network with a single initial frame and test
its performance with random initial states. Figure 10 shows
that our method can generate diversified sequences from a
same initial frame and random initial states. Moreover, we
train and test on completely disjoint sequences as shown
in Fig. 7. On the left side, we train our network on (a)
chicken wings from the Dyna [8] dataset, and test on (b)
jumping jack. Our method generates a sequence in (c),
which is different from both (a) and (b). On the right side,
we use the sequences from SMPL [50]. We train on (d) a
dancing man while test on (e) a jumping man. Our method
generates (f) a novel motion but more similar to dancing
poses. These examples show that the generated sequences
do not always match the motions in the training, yet they
can still look plausible. This also indicates that a single initial
frame is not enough to fully specify the whole animation,
and our aim is to produce plausible animations. In fact,
the results are different from both training and test data,
demonstrating that our method does not simply memorize
motions from the training set. Nevertheless, our model can
generate reasonable motions because the training and test
data still share some similarities since they are both human
motions.

Conditional Generation. Another promising application
of our method is to generate sequences of various meshes

conditioned not only on the action but also other character-
istics like shape. Previous approaches achieve conditional
human motion generation on videos [29] and skeletons [35],
but not on 3D shape sequences. To illustrate the effective-
ness of our method, we take Dyna [8] as an example. In
this collection of datasets, there are female/male models
of different subjects and actions. All meshes in different
datasets have the same number of vertices and share con-
nectivity, so we train our model on a mixture of those
datasets. Unlike previous conditional generation methods,
which take condition labels as input, the information of
conditions in our method is implicitly contained in initial
frames. To test this, we feed u = 2 bootstrap models
with a certain body mass index (BMI)/gender/motion as
input and obtain the following n = 16 frames as output.
Our method does not require a label to be specified and
automatically generates meshes consistent with the input
frames. We show our results in Fig. 9. It can be observed
that our method can generate human meshes of different
subjects and genders. Furthermore, even if the first frames
of different inputs are the same, the network can produce
different action sequences, according to the second frame.

4.4 Sequence Completion
We now consider another important application, namely
sequence completion, which produces in-between meshes
given two endpoint frames.

Completion Given Keyframes. Completing a mesh se-
quence based on given anchors is an important application
in animation. In our approach, we clip the target sequence
by keyframes. For each segment, we run our bidirectional
network by treating two keyframes as endpoints. We set
a threshold (e.g. 5%), and if the difference is lower than
the threshold between two models in the forward and
backward sequences, we merge the two sequences at this
pair. We try multiple runs until it can be merged together.
Since the computation is identical for each segment, for
illustration we show an example of completing one segment
constrained on two keyframes. Fig. 11 shows an example
on the Dyna dataset [8]. It can be seen from (f), (g) and
(h) that when the source and target models are highly
similar, interpolation-based approaches lead to results with
almost identical meshes since they generate meshes along
the shortest path between the source and target models (or
their representations in feature space).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 8

(a) (d)

(b) (e)

(c) (f)

Fig. 7. Test on novel data. We train and test our network on disjoint sequences. The left side is on the Dyna [8] dataset. The network is first trained
on (a) chicken wings and then tested on jumping jack. (b) are the samples of original meshes in the test dataset. (c) is the generated results given
3 frames from the test dataset. The first input mesh is highlighted in a black box in (b) and the consecutive second and third frames of input are
similar to the first frame with slight changes. The right side is on SMPL animation sequences [50]. We train on (d) a dancing sequence and test on
(e) a jumping man. Results (f) are generated by our method given 3 frames from the test dataset. The figure inside the black box in (e) is the first
input mesh. (f) are novel poses of a man crossing his legs. The two examples indicate that our method can generate sequences on unseen data
and synthesize motions that are different from both training and testing data.

(a)

(b)

Fig. 8. Two examples of long sequence generation (for 300 frames): (a)
walking fingers and (b) moving pants. Inside the black boxes are the
inputs.

With the help of bidirectional LTSM, our method can
generate animation given keyframes. This allows us to
generate a long sequence easily, with flexible control of
animation. Fig. 12 shows two examples of such results. Here,
BD-LSTM performs sequence completion for gaps between
keyframes. Bidirectional generation enables our network to
accomplish sequence completion and generation controlled
by keyframes.

We also perform a quantitative experiment of sequence
completion using a similar setting as in Fig. 11 with meshes
from Dyna f 50004 jumpingJacks dataset, and the length of
the sequence to be completed is set as 9 frames. We run
the experiment on 4 sequences, and compare our method
with the state-of-the-art interpolation methods [4], [45]. Our
method achieves the best performance with error 69.2%
lower than the state-of-the-art methods, in terms of the av-
erage per-vertex position error between completion results
and ground truth (0.868 for [45], 0.775 for [4] and 0.239 for
ours). This is because our method can learn motion patterns
(in this case cyclic) rather than simply interpolating between
given endpoints.

Diversified Sequence Completion. Previous
interpolation-based methods usually adopt a deterministic
strategy to complete sequences and thus result in a
fixed sequence. Our work, however, is able to produce
diversified sequence completion results. We run multiple
trials with randomized initial states until the sequences

from both sides can merge together at a certain frame
(e.g., the difference between two frames is less that 5%).
Since random trials can produce diversified results, the
network is able to generate different sequences as shown
in Figures 11 (b-d). In the real world, there is often more
than one possible motion between two static poses and our
method can therefore better describe such characteristics
than other generation methods.

Alternative Strategy. To test alternative com-
pletion strategies, we also implement an optimiza-
tion+unidirectional strategy [35] previously used for
human action completion. Given the source model X0 and
target model Xn, we first find the optimal LSTM initial
state ŝ0 = argmins0 ||X̂n − Xn||, where X̂∗ is the vector
representing a synthesized mesh, and{

(X̂i, si) = G(X0, s0) i = 1

(X̂i+1, si+1) = G(X̂i, si) i > 1,
(6)

where the LSTM forward iteration is denoted as
(Xt+1, st+1) = G(Xt, st). After solving the optimization
problem with [51], we then compute {X̂t} through Eq. 6.
Fig. 11 (e) shows a completion result with the source
and target models set to the same as the compared
methods. Compared to interpolation-based strategies,
the optimization+unidirectional strategy can achieve more
realistic morphing, but it only finds one optimal initial state,
not providing diverse possible choices as our BD-approach.

5 CONCLUSION

In this paper, we presented the first deep architecture to
generate mesh animation sequences. Our technique can not
only predict future frames given initial frames, but also
complete mesh sequences based on keyframes and generate
sequences conditioned on given meshes.

Fig. 13 shows two failure cases of our method. We use the
same experimental setting as in Fig 7. For (a), the network
is trained on a dancing motion sequence from SMPL and
tested on a jumping motion. Since the distributions of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 9

(a) (c)

(b) (d)

Fig. 9. Conditional generation. Trained with a mixture of different Dyna datasets, our network can output sequences conditioned on the input
meshes. In this figure, the first two meshes of each sequence are the input. For example, on the right of the figure, we feed two fit female shapes
into the network. The second frame in (c) lifts her right leg while (d) lifts the left leg. Our model can perceive their differences and predict subsequent
motions according to the conditions. Similar results can be observed in the fat male example on the left.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 10. Generated results by given an initial frame and random states. The frame in the black box is the initial frame. (a) is the ground truth
sequence. (b)-(h) are sequences generated by our model on given random initial states in a normal distribution. The results indicate that our
method can generate diversified sequences with different input states.

shapes in training and test data differ a lot, meshes gener-
ated on the test data might not always be realistic and could
involve weird poses with self-intersections. For (b), we train
the network on chicken wings and test it on jumping jack
from Dyna. The sequence freezes on this shape. The freezing
problem also appears in other LSTM papers. In our case,
this problem can be resolved by additional user interactions.
When the sequence is freezing, we can provide a new
keyframe to continue generation.

Several future extensions could be explored. First, our
current work mainly focuses on the generation of mesh
sequences, while this network structure can also potentially
benefit other applications like classification. Second, since
the auto-encoder and LSTM are trained together, we have
not fully studied how spatial and temporal information
individually influenced the encoding process. Finally, the
current network only learns the deformation. In the future,
people may build more powerful algorithms that take dy-
namics into consideration.

ACKNOWLEDGMENTS

This work was supported by Beijing Program
for International S&T Cooperation Project (No.
Z191100001619003), Beijing Municipal Natural Science
Foundation (No. L182016), National Natural Science
Foundation of China (No. 61872440 and No. 61828204),
Royal Society Newton Advanced Fellowship (No.

NAF\R2\192151), Youth Innovation Promotion Association
CAS, Tencent AI Lab Rhino-Bird Focused Research Program
(No.JR202024).

REFERENCES

[1] F. Bogo, J. Romero, M. Loper, and M. J. Black, “FAUST: Dataset
and evaluation for 3D mesh registration,” in CVPR, 2014.

[2] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello,
A. Kowdle, S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, P. Kohli,
V. Tankovich, and S. Izadi, “Fusion4D: Real-time performance
capture of challenging scenes,” ACM Trans. Graph., vol. 35, no. 4,
pp. 114:1–114:13, 2016.

[3] C. Stoll, J. Gall, E. de Aguiar, S. Thrun, and C. Theobalt, “Video-
based reconstruction of animatable human characters,” ACM
Trans. Graph., vol. 29, no. 6, pp. 139:1–139:10, 2010.

[4] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia, “Variational autoencoders for
deforming 3D mesh models,” in CVPR, 2018.

[5] L. Gao, Y.-K. Lai, D. Liang, S.-Y. Chen, and S. Xia, “Efficient
and flexible deformation representation for data-driven surface
modeling,” ACM Trans. Graph,, vol. 35, no. 5, p. 158, 2016.

[6] E. De Aguiar, C. Theobalt, S. Thrun, and H.-P. Seidel, “Automatic
conversion of mesh animations into skeleton-based animations,”
in Computer Graphics Forum, vol. 27, no. 2. Wiley Online Library,
2008, pp. 389–397.

[7] H.-B. Yan, S. Hu, R. R. Martin, and Y.-L. Yang, “Shape
deformation using a skeleton to drive simplex transformations,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 3, pp. 693–706, 2008.

[8] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black, “Dyna: A
model of dynamic human shape in motion,” ACM Trans. Graph.,
vol. 34, no. 4, p. 120, 2015.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 10

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 11. Diversified sequence completion. We show the completion results produced by different methods. Source (first) and target (last) meshes
are shared among all the sequences. (a) is the ground truth from f 50004 jumpingJacks dataset [8]; (b), (c) and (d) are the results by our BD-
LSTM; (e) is the optimization+unidirectional baseline strategy described in the paper; (f), (g) and (h) are interpolation results using [4], [45] and
[24] accordingly. We can see from (f), (g) and (h) that interpolation-based approaches generate almost identical meshes, since interpolation often
follows the shortest path between source and target. Compared to (e), our method can generate diverse, plausible results for users to choose.

(a)

(b)

Fig. 12. Keyframe control. Our method can generate a sequence given a small set of keyframes (highlighted in black boxes). The BD-LSTM
generates in both forward and backward directions and thus completes the gaps between consecutive keyrames. This application enables more
convenient control of sequence synthesis and editing.

(a)

(b)

Fig. 13. Failure cases. (a) is obtained by training the network on dancing
while testing it on jumping motion from SMPL [50]. (b) is obtained by
training the network on chicken wings and testing it on jumping jack
from Dyna [8].

[9] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or,
“Unsupervised co-segmentation of a set of shapes via descriptor-
space spectral clustering,” ACM Trans. Graph., vol. 30, no. 6, 2011.

[10] H. Huang, E. Kalogerakis, and B. Marlin, “Analysis and synthesis
of 3D shape families via deep-learned generative models of
surfaces,” CGF, vol. 34, no. 5, pp. 25–38, 2015.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase

representations using RNN encoder-decoder for statistical
machine translation,” arXiv:1406.1078, 2014.

[13] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” arXiv:1511.05440, 2015.

[14] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-
conditional video prediction using deep networks in atari games,”
in NIPS, 2015.

[15] Q. Lyu, Z. Wu, J. Zhu, and H. Meng, “Modelling high-dimensional
sequences with LSTM-RTRBM: Application to polyphonic music
generation,” in IJCAI, 2015.

[16] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in CVPR, 2015.

[17] O. Melamud, J. Goldberger, and I. Dagan, “Context2vec: Learning
generic context embedding with bidirectional LSTM,” in SIGNLL,
2016.

[18] F. M. Bianchi, L. Livi, and C. Alippi, “Investigating echo-state
networks dynamics by means of recurrence analysis,” IEEE
TNNLS, vol. 29, no. 2, pp. 427–439, 2018.

[19] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, “3D shape
segmentation with projective convolutional networks,” in CVPR,
2017.

[20] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in ICCV,
2015.

[21] G. Riegler, A. O. Ulusoy, and A. Geiger, “Octnet: Learning deep
3D representations at high resolutions,” in CVPR, 2017.

[22] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning
a probabilistic latent space of object shapes via 3D generative-
adversarial modeling,” in NIPS, 2016.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 11

[23] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional
networks on graphs for learning molecular fingerprints,” in NIPS,
2015.

[24] L. Gao, Y.-K. Lai, J. Yang, L.-X. Zhang, L. Kobbelt, and S. Xia,
“Sparse data driven mesh deformation,” IEEE TVCG, 2019.

[25] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz,
and S. Bengio, “Generating sentences from a continuous space,”
arXiv:1511.06349, 2015.

[26] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudan-
pur, “Extensions of recurrent neural network language model,” in
ICASSP, 2011.

[27] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and
Y. Bengio, “A recurrent latent variable model for sequential data,”
in NIPS, 2015.

[28] E. Marchi, G. Ferroni, F. Eyben, L. Gabrielli, S. Squartini, and
B. Schuller, “Multi-resolution linear prediction based features for
audio onset detection with bidirectional LSTM neural networks,”
in ICASSP, 2014.

[29] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised
learning of video representations using LSTMs,” in ICML, 2015.

[30] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding
networks for video prediction and unsupervised learning,”
arXiv:1605.08104, 2016.

[31] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence
generative adversarial nets with policy gradient,” in AAAI, 2017.

[32] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in NIPS, 2014.

[33] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos
with scene dynamics,” in NIPS, 2016.

[34] J. Walker, K. Marino, A. Gupta, and M. Hebert, “The pose knows:
Video forecasting by generating pose futures,” in ICCV, 2017.

[35] H. Cai, C. Bai, Y.-W. Tai, and C.-K. Tang, “Deep video gener-
ation, prediction and completion of human action sequences,”
arXiv:1711.08682, 2017.

[36] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent
network models for human dynamics,” in ICCV, 2015.

[37] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,”
arXiv:1502.04623, 2015.

[38] Z. Li, Y. Zhou, S. Xiao, C. He, and H. Li, “Auto-conditioned
LSTM network for extended complex human motion synthesis,”
arXiv:1707.05363, 2017.

[39] J. Martinez, M. J. Black, and J. Romero, “On human motion
prediction using recurrent neural networks,” in CVPR, 2017.

[40] J. Bütepage, M. J. Black, D. Kragic, and H. Kjellström,
“Deep representation learning for human motion prediction and
classification,” in CVPR, 2017.

[41] T. Y. Wang, T. Shao, K. Fu, and N. J. Mitra, “Learning an intrinsic
garment space for interactive authoring of garment animation,”
ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1–12, 2019.

[42] H. Wang, E. S. Ho, H. P. Shum, and Z. Zhu, “Spatio-
temporal manifold learning for human motions via long-horizon
modeling,” IEEE transactions on visualization and computer graphics,
2019.

[43] Y. Xiao, Y. Lai, F. Zhang, C. Li, and L. Gao, “A survey on deep
geometry learning: From a representation perspective,” Comput.
Vis. Media, vol. 6, no. 2, pp. 113–133, 2020. [Online]. Available:
https://doi.org/10.1007/s41095-020-0174-8

[44] P. Huber, R. Perl, and M. Rumpf, “Smooth interpolation of key
frames in a Riemannian shell space,” Computer Aided Geometric
Design, vol. 52, pp. 313–328, 2017.

[45] L. Gao, S.-Y. Chen, Y.-K. Lai, and S. Xia, “Data-driven shape
interpolation and morphing editing,” CGF, vol. 36, no. 8, pp. 19–
31, 2017.

[46] Q. Tan, L. Gao, Y.-K. Lai, J. Yang, and S. Xia, “Mesh-based
autoencoders for localized deformation component analysis,” in
AAAI, 2018.

[47] Z. Levi and C. Gotsman, “Smooth rotation enhanced as-rigid-as-
possible mesh animation,” IEEE TVCG, vol. 21, no. 2, pp. 264–277,
2015.

[48] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,”
arXiv:1312.6114, 2013.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv:1412.6980, 2014.

[50] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.
Black, “SMPL: A skinned multi-person linear model,” ACM Trans.
Graphics (Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 248:1–248:16,
Oct. 2015.

[51] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation,
vol. 9, no. 2, pp. 159–195, 2001.

Yi-Ling Qiao received a bachelor’s degree in
computer science and technology from the Uni-
versity of Chinese Academy of Sciences in 2019.
He is currently a PhD student in computer sci-
ence at University of Maryland, College Park.
His research interests include computer graph-
ics and geometric processing.

Yu-Kun Lai received his bachelor’s degree and
PhD degree in computer science from Tsinghua
University in 2003 and 2008, respectively. He
is currently a Professor in the School of Com-
puter Science & Informatics, Cardiff University.
His research interests include computer graph-
ics, geometry processing, image processing and
computer vision. He is on the editorial boards
of Computer Graphics Forum and The Visual
Computer.

Hongbo Fu received the BS degree in infor-
mation sciences from Peking University, China,
in 2002 and the PhD degree in computer sci-
ence from the Hong Kong University of Science
and Technology, in 2007. He is a Professor in
the School of Creative Media, City University of
Hong Kong. His primary research interests fall
in the fields of computer graphics and human
computer interaction. He has served as an asso-
ciate editor of The Visual Computer, Computers
& Graphics, and Computer Graphics Forum.

Lin Gao received the bachelor’s degree in math-
ematics from Sichuan University and the PhD
degree in computer science from Tsinghua Uni-
versity. He is currently an Associate Professor at
the Institute of Computing Technology, Chinese
Academy of Sciences. He has been awarded
the Newton Advanced Fellowship from the Royal
Society and the AG young researcher award.
His research interests include computer graph-
ics and geometric processing.

