
Support Substructures: Support-Induced
Part-Level Structural Representation
Shi-Sheng Huang, Hongbo Fu, Ling-Yu Wei, and Shi-Min Hu,Member, IEEE

Abstract—In this work we explore a support-induced structural organization of object parts. We introduce the concept of support

substructures, which are special subsets of object parts with support and stability. A bottom-up approach is proposed to identify such

substructures in a support relation graph. We apply the derived high-level substructures to part-based shape reshuffling between

models, resulting in nontrivial functionally plausible model variations that are difficult to achieve with symmetry-induced substructures

by the state-of-the-art methods. We also show how to automatically or interactively turn a single input model to new functionally

plausible shapes by structure rearrangement and synthesis, enabled by support substructures. To the best of our knowledge no single

existing method has been designed for all these applications.

Index Terms—Support substructure, shape synthesis, 3D modeling, stability

Ç

1 INTRODUCTION

UNDERSTANDING high-level structure of a 3D model
greatly benefits a variety of applications such as struc-

ture-preserving editing [1] and upright orientation [2].
High-level structures are often closely related to the func-
tionality of an object and are thus difficult to define and
detect. Most existing works (e.g., [3], [4]) towards high-level
shape understanding regard symmetry as the main seman-
tic cue for shape analysis. Such approaches are inapplicable
to objects or scenes exhibiting little or no symmetry (Fig. 1).

Support and stability are two fundamental attributes of
objects in the physical world, especially for man-made
objects. This motivates us to explore a support-induced high-
level structural shape representation. In this work we focus
on three types of support relationship, namely, “support
from below”, “support from above”, and “support from
side” (Fig. 3). A simplest supporting scenario might be a sin-
gle object part stably supported by another object part.

We extend this supporting scenario by allowing support
in multiple hierarchy and/or hierarchical groups of similar
parts if any (Section 3.1), which already explains a variety of
support substructures (Fig. 1b).

Based on this observation we first form an input set of
object parts with the three support relations as a partially
ordered set, represented as a support relation graph
(Section 3.2). A bottom-up approach is then presented to
first identify a set of basic support substructures and then
combine them to form complicated substructures, possibly
with support in multiple hierarchy.

Our support substructures form a basis for deriving
structural similarity, which has great potential for various
applications. For example, we show that reshuffling two or
more support substructures automatically leads to nontriv-
ial, interesting shape variations (Section 4.1) that are diffi-
cult to achieve with the existing works. In addition, we
apply support substructures to structure rearrangement
(Section 4.2) and structure synthesis (Section 4.3), which
automatically create many new functionally plausible shape
variations from a single model alone. An interactive struc-
ture synthesis tool is also presented to allow explicit user
control (Fig. 1e).

2 RELATED WORK

In recent years support and stability cues are getting popu-
lar in the computer vision community for 3D interpretation
of a scene, thanks to the availability of consumer-level depth
cameras. For example, Jia et al. [5] proposed to jointly opti-
mize over segmentations, block fitting, support relations
and object stability for 3D reasoning. The work of Panda
et al. [6] first learns the semantics in terms of support rela-
tionship among different objects and then use the inferred
support relationship to predict a support order for robotic
manipulation in clutter. Silberman et al. [7] present an auto-
matic approach to infer support relationships of an indoor
scene from an RGB-D image. Unlike these works, which
mainly use support and stability to find a good, physically
valid interpretation of a scene, ours takes a stable, self-sup-
porting arrangement of object parts as input and aims to
derive semantic substructures for high-level shape editing
and manipulation.

Support and/or stability have also beenwidely used in the
field of computer graphics, e.g., for mesh puppetry [8],
upright shape orientation determination [2], furniture layout
synthesis [9], furniture design [10], self-supporting surface
design [11], [12], [13], freeform architecture design [14], struc-
tural analysis for 3D printing [15], balanced shape design [16]
etc. Like ours, most of these works determine static stability

� S.-S. Huang, L.-Y.Wei, and S.-M. Hu are with the Department of Computer
Science and Technology, TsinghuaUniversity, Beijing, China.
E-mail: {shishenghuang0, cosimo.dw}@gmail.com, shimin@tsinghua.edu.cn.

� H. Fu is with the School of Creative Media, City University of Hong Kong,
Hong Kong. E-mail: fuplus@gmail.com.

2024 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

mailto:
mailto:
mailto:

via geometric validation instead of physical simulation or
validation [10]. We believe that our derived support sub-
structures can potentially benefit some of these applications,
besides those demonstrated in the paper. Our analysis of
part-level relationship is conceptually related to [17], [18],
which, however, rely on neither support nor stability.

It is well known that symmetry provides a strong cue for
high-level understanding of shapes exhibiting rich symme-
try. This has motivated a series of symmetry detection algo-
rithms and symmetry-based applications (see an insightful
survey in [19]). Symmetry can be used to form a hierarchical
organization of object parts [20]. However, it is unclear how
such a general symmetry hierarchy could be exploited for
applications like ours. Very recently, Zheng et al. [3] intro-
duce a symmetric functional arrangement, called SFARR,
which always contains a triplet of shape parts, with one
part stably supported by or supporting another two sym-
metric parts. With such a simple representation a diverse
set of plausible model variations can be synthesized from a
small set of input models. However their technique is inap-
plicable to other rich substructures, e.g., with different num-
bers of symmetric elements or no symmetry at all. In
addition how to apply their technique to our other applica-
tions is also unclear. In contrast symmetry is not inherent in
our support-induced substructures, though our representa-
tion does make use of the symmetry information if any and
naturally supports not only SFARR but also different types of
symmetric or non-symmetric arrangements. The very recent
work by [4] presents a topology-varying structural blending
algorithm, where symmetry also plays a critical role to pro-
duce continuous and plausible in-betweens undergoing
topology variations.

Semi-automatically or automatically synthesizing new
shape variations from existing models has been of a great
interest in recent years. The main goal is to generate hun-
dreds and thousands of models with little or even no user
intervention, which otherwise would be a rather tedious
process for commercial modeling systems like Autodesk
Maya. Below we only review the most relevant works to
ours. Bokeloh et al. [21] present an inverse procedural
modeling system which examines partial symmetries of a
single 3D example model to automatically produce new 3D

models that are similar to the input exemplar. Merrell and
Manocha [22] provide a general procedural modeling
method to synthesize complex 3D shapes, based on various
dimensional, geometric, and algebraic constraints. Quite
recently, Wu et al. [23] introduce a meaningful split gram-
mar for facade layout interpretation, and then an inverse
procedure modeling approach for facade manipulation.
Given a pair of input shapes the part-based recombination
approach by Jain et al. [24] is able to automatically instanti-
ate new models that have similar symmetry and adjacency
structure to the input shapes, but with different appearance.
Xie et al. [25] present a reshuffle-based technique for gener-
ating a diverse set of non-trivial scene variations from only
a small set of input scenes, instead of a sufficiently big training
set of 3D scenes used in [26]. Assuming the availability of
labeled parts or explicit part correspondence, several
approaches demonstrate that many more in-class variations
can be created given a larger database of input models with the
same class, either automatically [27], [28] or interactively [29].
Similar to [3] our work aims for the synthesis of both in-
class and across-class variations, without explicit part corre-
spondence. We show shape synthesis applications that take
a single, two or more models as input. None of the existing
methods has demonstrated to work for all our applications.

3 SUPPORT SUBSTRUCTURES

In this section we first introduce the definition of support
substructures and then present an algorithm to detect such
substructures in an input pre-segmented model. We will
show three applications of the detected substructures in
Section 4.

3.1 Definitions and Assumptions

3.1.1 Support Relations

Objects, especially man-made ones, can often be decom-
posed into a set of building blocks (Figs. 2b and 2c), which
are connected by certain support relations to make the
objects stable. In this work we explore three types of com-
monly seen support relations, namely “support from
below”, “support from above”, and “support from side”, as
illustrated in Fig. 3. As we will show shortly that while these

Fig. 1. Given a pre-segmented object (a), we derive support substructures (b), which provide structural organization of object parts. Such high-level
substructures enable applications such as structure rearrangement (c) and structure synthesis (d), automatically turning a single model or a small
set of models to many new nontrivial, functionally plausible variations. Interactive synthesis permits explicit user control over the design (e).

HUANG ETAL.: SUPPORT SUBSTRUCTURES: SUPPORT-INDUCED PART-LEVEL STRUCTURAL REPRESENTATION 2025

relations look simple they are surprisingly sufficient to pro-
duce rich support substructures.

A support relation is essentially a binary relation, defined
between a pair of building blocks. We assume that the direc-
tion of a support relation can be always geometrically deter-
mined and is one-way. This assumption is applicable to
support relations existing in many man-made objects (e.g.,
Figs. 2b, 2c and 3). However, it is not always valid. For
instance, we are not interested in a pair of parts that support
each other. Fig. 2d shows such a counterexample.

Under this assumption a support relation, denoted as �,
brings a partial order to a set of building blocks of an object,
denoted as M. Specifically, for all elements a, b, and c in M,
� satisfies: 1) reflexivity: a � a, a building block a supports
itself naturally; 2) antisymmetry: if a supports b and b sup-
ports a at the same time, we have a ¼ b; 3) transitivity: as
illustrated in Fig. 2a, if a supports b (i.e., a � b) and b sup-
ports c (i.e., b � c), we can conclude a supports c, i.e., a � c.

Our three types of support relation over M lead to a par-
tially ordered set ðM;�Þ, also called a poset in set theory. Such
a poset can be equivalently represented as a support relation
graph, which is essentially a directed acyclic graph (DAG),
with set elements as nodes and binary relations as directed
edges, pointing from supporting elements to supported ones
(Fig. 3). A similar support relation graph has been explored
in [6], but used only for predicting support order.

3.1.2 Support Substructures

A support substructure is formed by a subset of our poset or
a subgraph of our support relation graph. A desired defini-
tion of support substructure should not only allow the
extraction of a rich set of substructures from an object but
also effectively help form functionally plausible new varia-
tions for various applications.

Our definition of support substructure is an extension of
a primitive support substructure. A primitive support sub-
structure contains an ordered pair of primitive elements
ða; bÞ with a stably supporting b, i.e., a � b. That is b can
achieve static equilibrium with the support from a, as illus-
trated in Fig. 2a. Let fag � fbg (Fig. 4a), with � meaning a
stable support relation, denote such a primitive substructure,
which is consistently observed across objects (e.g., Fig. 3c).

It is very often that a group of elements with very similar
or even the same shape, denoted as As, together stably sup-
port a primitive part b (e.g., four chair legs supporting a seat
in Fig. 2b).We thus also considerAs �T fbg (Fig. 4b) as a sup-
port substructure if the type of support relation T between b
and a, 8a 2 As, is the same. See another example in Fig. 3b.

Since similar elements are perceptually grouped together, no
subset ofAs is allowed to form a substructure with others.

Similarly our support substructure also extends to
fag �T Bs (e.g., an airplane body supporting two wings as
shown in Fig. 3d), where a is a primitive part, Bs is a group
of similar parts, and a stably supports any part in Bs with
the same support relation T (Fig. 4c). In short, our extension
of support substructures is applicable to a group of similar
elements connected to a single element with the same sup-
port relation. This also extends to hierarchial grouping of
similar elements like the example shown in Fig. 3a, where
we have two wings connected to the body (as a single node)
and two turbine engines connected to each of the wings.
Note that the SFARR substructure [3] is only a special case of
our support substructures.

The primitive support substructure can also be extended
to Ac �T fbg (Fig. 4d), where Ac denotes the entire set of ele-
ments with the same support relation to primitive element b
and together stably supporting b. Here individual elements
of Ac are not necessarily of similar shape (Fig. 2c). To keep
the stability of an existing substructure, a subset of Ac is not
allowed to form a new substructure with b. However, it is
possible that individual elements of Ac form new substruc-
tures with other elements supporting them. In other words,
individual elements of Ac, as supported components, can
form new substructure.

We call fag � fbg, As �T fbg, fag �T Bs, and Ac �T fbg
basic support substructures (Fig. 4), since both the support-
ing and supported components of such a substructure
involve only one layer of elements. Many objects exhibit
support in hierarchy, i.e., one part supporting the other in
single or multiple hierarchy. In case of support in multi-
ple hierarchy, a part is supported by other parts at differ-
ent hierarchies (Fig. 2c). We thus extend the definition
of support substructure by support in multiple hierarchy.

Fig. 3. The support relations (“support from below”, “support from above”
and “support from side”) between parts of a pre-segmented model
(e) are represented as a support relation graph (f). (a-d): a subset of
detected support structures, with supporting components shown in
green and supported ones in red.

Fig. 2. We assume that the direction of a support relation between a pair
of building blocks is one-way, like those in (a)-(c). See a counterexample
in (d), where the three leg parts support each other and it is thus hard to
tell which supports which. The graphs in (c) and (d) illustrate the support
relation graphs.

Fig. 4. Four kinds of basic support substructures.

2026 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

Specifically, let A1 �T1 B1 and A2 �T2 B2 denote two sup-

port substructures, with A1 \B2 6¼ ; and B1 \A2 ¼ ;. In
other words, A1 and B2 share certain object parts. Then a
new support substructure with an increased hierarchy
level can be created by combining the given two substruc-
tures, leading to two possible combinations: either
A1 [B2 [A2 �T1 B1 or A2 �T2 B2 [A1 [B1, as illustrated

in Fig. 5. Iteratively combining newly created substruc-
tures leads to substructures with support in (possibly
multiple) hierarchy.

3.1.3 Remark

It can be easily seen that if a group of similar parts con-
nected to a part is considered as a unified element, any sup-
port substructure by our definition essentially forms an
upper semilattice, which is a subset of our poset with a least
upper bound for any nonempty finite subsets.

3.2 Detection

We focus on man-made objects that have a known upright
orientation [2]. Whether an entire input model is “supported
from below” (e.g., by the ground) or “supported from above”
(e.g., hung from a ceiling) is also given as input to our algo-
rithm. Below we will explain the algorithm in the context of
an input model placed on the ground. Adapting the algo-
rithm to amodel supported from above is straightforward.

3.2.1 Pre-Segmentation

We require the availability of semantically meaningful seg-
ments for the input model. In our implementation, we seg-
ment an input model by using an SDF-based mesh partition
method [30] and manually adjust the automatically gener-
ated segmentation results, if necessary. See such a seg-
mented model in Fig. 8a.

3.2.2 Support Relation Graph

To identify support substructures, we first build a support
relation graph, denoted as G (Fig. 8b) as follows. Each object
part leads to one node in the graph. All the nodes whose
corresponding parts touch the ground plane are marked as
ground-touching nodes, denoted as Vg (e.g., the five nodes in
dark green in Fig. 8b). A pair of components a and b are
determined to be connected if their convex hulls intersect at
several points (more than five in our experiment) or the
minimal distance between them is below a threshold d (Sec-
tion 5). With Principal Component Analysis (PCA) we
approximate a plane P using the points where a and b are in
contact, as illustrated in Fig. 6.

We first locally classify the type of support between a and
b (Fig. 6) . a and b have a “support from side” relation if the
normal of P is nearly perpendicular to the upright orienta-
tion (deviation angle � 10o). Otherwise we temporarily
assign a “support from below” relation to a and b, and add
a directed edge from the one below the plane to the other.
After all pairs of connected parts are examined, we add a
directed edge between each pair of object parts, denoted as
c and d, with “support from side”. Specifically, a directed
edge from c to d (i.e., c � d) is added if there is an undirected
path between c and some of the ground-touching nodes.

Locally it is difficult to distinguish between “support
from below” and “support from above”. Since the input
model is placed on the ground, “support from below” was
initially used, as illustrated in Fig. 7a. Now we perform
region growing starting from the ground-touching nodes Vg

to iteratively find “support from above” (Fig. 7b). Specifi-
cally, we first identify all the nodes Vc, to each of which
there is a directed path from a node in Vg. Let Vr denote the
rest of the nodes. We change the relation from “support
from below” to “support from above”, and correspondingly
reverse the direction for such edges between Vc and Vr, and
among Vr. Then in Vr we label nodes which touch Vc as Vg

(Fig. 7c) and repeat the above steps until all the nodes are
visited (Fig. 7d).

3.2.3 Support Substructure

As discussed previously, a support substructure is essen-
tially a subgraph of the support relation graph G. For each
group of similar parts As connected to a single part, we first

Fig. 5. Illustration of support substructures combination. S: support from
below; H: support from above; A: support from side.

Fig. 6. An illustration to show how to determine the “support from side”
and “support from below” relations.

Fig. 7. An illustration to show how we iteratively rectify “support from
below” (arrows in red) as “support from above” (arrows in green).

HUANG ETAL.: SUPPORT SUBSTRUCTURES: SUPPORT-INDUCED PART-LEVEL STRUCTURAL REPRESENTATION 2027

reduce the graph G by contracting the nodes corresponding
to As and replacing them with a single node, followed by
necessary updates on the set of edge connectivity (Fig. 8c).
This reflects the requirement that no subset of As is allowed
to form a substructure with others. This process is repeated
until each level of hierarchial grouping of similar parts leads
to a single node in the graph.

Like the previous works (e.g., [3], [5]), we determine
static stability via geometric validation. Specifically, given
a group of elements B with multiple supports from
another group of elements A, we say B is stably supported
by A if the projection of B’s center of mass to the ground
falls inside the convex hull of the projection of the multi-
supporting areas from A to the ground. In G we also con-
tract a pair of nodes a and b if b is supported by a only
but the support is unstable.

The static stability analysis often does not work for
“support from side”, where stable support is typically
achieved by other means like nail joints. Since stability pro-
vides a strong cue for the extraction of meaningful substruc-
tures by analyzing the geometry alone, we first search for
support substructures among the parts connected by
“support from below” and/or “support from above”. To
achieve this, we temporarily break the edges with “support
from side” in G, leading to a set of weakly connected sub-
graphs fGig (Fig. 8d).

We take a bottom-up approach to search for all basic sup-
port substructures in each subgraph Gi. First, we determine
the support order starting from the ground-touching nodes,
using a level order traversal approach similar to [6]. The
order prediction is performed on a transitive reduction of a
copy of Gi. Otherwise the predicted order would be unde-
sired in case of support by multiple hierarchy. Second, from
the lowest order, for each node a we search for a basic sup-
port substructure that contains a. Specifically, let b be the
node directly supported by a. If b is supported by multiple
nodes including a, we check the stability of b against the set
of multiple nodes. If they are stable, b and the set of multiple
supporting nodes form a support substructure. The above
steps are repeated until all the nodes are visited.

To get the basic support substructures purely formed by
“support from side”, we break the edges in G with “support
from below” and “support from above”. We then use a simi-
lar bottom-up approach but without stability validation to
identify those support substructures in the resulting
subgraphs.

Finally we combine the basic support substructures (Sec-
tion 3.1), which possibly involve different support types, to
form new substructures in multiple hierarchy (Fig. 8e). The
more rounds we combine, the more complicated substruc-
tures we get. In general, the number of rounds for substruc-
ture combination is application dependent. However, we
found 1-2 rounds are already sufficient for our applications
to synthesize many nontrivial shape variations.

4 APPLICATIONS

In this section we introduce three applications, where sup-
port substructures play a major role and make the synthe-
sized models structurally valid and functionally plausible.
In the first application (Section 4.1), we reshuffle compatible
support substructures from two or more different models to
create new shape variations. In the second and third appli-
cations we show how to synthesize new shapes given a sin-
gle model by re-arranging (Section 4.2) or duplicating
(Section 4.3) compatible support substructures. The com-
mon idea behind these three applications is to perform the
modeling process with the support substructures as build-
ing blocks. By decomposing each shape into a set of support
substructures, we get a structural organization of parts. Our
carefully designed operating rules for different applications
respect the encoded relationships between parts in the
detected support substructures and thus produce function-
ally plausible modeling results. Let SSing � SSed denote a

basic or multi-hierarchy support substructure, where SSing

and SSed (Fig. 9a) are the supporting and supported compo-
nents of the substructure, respectively.

4.1 Shape Reshuffling

This application is motivated by the recent work of Zheng
et al. [3], which creates new in-class or across-class shape
variations by reshuffling compatible symmetry-induced
substructures, called SFARR-s. We will show that our sup-
port-induced substructure representation is able to create
many more variations, which received higher scores by the
user study participants than those by SFARR.

Given n (n � 2) input objects, which are possibly from
different model families, with pre-computed segmentation
but not necessarily having explicit part correspondence, we

first detect a set of support substructures Si ¼ fs1i ; s2i ; . . . ; skii g

Fig. 8. Support substructure detection starts with basic support sub-
structures (1; 2; 3; 4). Substructures with support in hierarchy are
obtained by combining basic substructures: after first round ! 5 and 7;
after second round ! 6 and 8. The combination order shows the hierar-
chy attribution of support substructures.

Fig. 9. Illustration for contact slots (dots in orange) and context
compatibility.

2028 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

for each object (Section 3.2). Let S ¼ fS1; S2; . . . ; Sng. We then
cluster all support substructures in S by the type of support,
leading to three clusters, corresponding to three support
types. In each cluster, we sort the support substructures by
their bounding box size.

For a pair of support substructures si and sj in each clus-
ter, we measure structure compatibility gðsi; sjÞ based on the
difference in terms of scale, contact, and context. Specifically,

gðsi; sjÞ ¼ � � u � b; (1)

where �measures the scale compatibility between the corre-
sponding supporting and supported components in si and
sj at the bounding box level (see a similar definition in [3]).
Let ui denote the volume of the convex hull formed by the

contact slots (Fig. 9a) between SSing
si

and SSed
si
. We then have

u ¼ gðui; ujÞ to compare the difference of component contact
between si and sj, where gðx; yÞ ¼ 1þ jx� yj=jxþ yj.
Finally b measures context compatibility, i.e., the difference
of the context of si and sj in their original models. Specifi-

cally, let f
Tl
SSed

denote the number of support relations of

type Tl between SSed and the other object parts which are

not in the substructure of interest but connected to SSed. For
example, the supported component (in red) in Fig. 9b has

f
Tl
SSed

¼ 2, with Tl ¼ “support from below”. Note we count 1

for each group of similar parts (e.g., the two chair arms).

By similarly introducing f
Tl
SSing

, we compute b as

Q6
k¼1 gðDk

i ;D
k
j Þ, where Di ¼ ðfT1

SSed
i

; f
T2
SSed

i

; f
T3
SSed

i

; f
T1

SS
ing
i

; f
T2

SS
ing
i

;

f
T3

SS
ing
i

Þ is a 6D context compatibility descriptor.

Figs. 10a and 10b shows four variations by performing
reshuffling twice. It is shown that when the structure com-
patibility g is of small values, the corresponding reshuffling
results are generally of high quality. In contrast, high struc-
ture compatibility costs often lead to unpleasing results, as
shown in Figs. 10c and 10d. We thus perform reshuffling
greedily, starting from a pair of support substructures
(from different input objects) with the minimum value of
gðsi; sjÞ. In this way, many functionally implausible results
can be effectively avoided.

4.1.1 User Study

We conducted a user study to evaluate the quality of new
shape variations achieved by reshuffling. We applied our
reshuffling technique to the main inputs tested by [3].
There were in total five different sets of input models (see
the thumbnails in Fig. 11 (left)), varying from three to six
models. For each set of input models, we automatically
synthesized 100 models, each of which came with an
increasing value of gðsi; sjÞ. Please refer to our supple-
mental materials, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2015.2473845 for the detailed reshuf-
fling results. The 500 results by our technique, together
with the unique results by SFARR (more details later), were

Fig. 10. Shape reshuffling once (a) and twice (b). Note that such reshuffling results are difficult to synthesize with sFARR due to the lack of proper trip-
lets of shape parts between models. (c) and (d) show two examples rejected by our technique due to their high structure compatibility costs.

Fig. 11. Left: the average score rated by the participants overall decreased with the number of reshuffling results, indicating the effectiveness of our
structure compatibility metric. (a)-(e): box-and-whisker plots of the scores of our results and SFARR’s results for each set of input models. In each plot,
the first 10 boxes are for 10 sets of our randomly-picked results and the 11th for SFARR’s results. (f): the user-rated score of each of the unique models
by SFARR. Please refer to the supplemental materials, available online, for the detailed results.

HUANG ETAL.: SUPPORT SUBSTRUCTURES: SUPPORT-INDUCED PART-LEVEL STRUCTURAL REPRESENTATION 2029

http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2473845
http://doi.ieeecomputersociety.org/10.1109/TVCG.2015.2473845

presented in a random order to in total 60 participants (all
of them were university students), who were asked to
rate every synthesized shape on a discrete scale from 1
(worst) to 5 (best). They were suggested to give a score
for each model based on their own answers to the follow-
ing questions: “are they coherent with your understand-
ing of man-made objects?” and “how likely a similar
object would appear in reality?”.

To check whether a reshuffling result with a lower struc-

ture compatibility value would receive a higher score by the

participants, we calculated the average score given the par-

ticipants for the first k synthesized models (with increasing

values of gðsi; sjÞ), 1 � k � 100, in each set of models. As

seen from Fig. 11 (left), the average score for each set overall

decreased with k, the number of synthesized models, indi-

cating an effective quality control by gðsi; sjÞ. This figure

also suggested that the top 40 results were often reasonably

good (with average score � 3:5) and the top 80 results were

still acceptable (with average score � 3:0).

4.1.2 Comparison with SFARR

When a triplet of parts with the special arrangements
required by SFARR appears in the object, it will also be
detected by our algorithm as a support substructure.
SFARR is thus only a special type of support substructure.
Our support substructure representation is more general
and exists beyond symmetric arrangements. It supports
multiple hierarchy and does not restrict the number of
elements. Theoretically our technique is able to repro-
duce all the results shown in [3]. However, due to the
adoption of different compatibility metrics, 39 out of
their 106 results (Figs. 1, 12 and 14 of [3]) were not in the
set of the 500 results by our technique. The quality of
these 39 results was rated by our participants during the
user study.

Our technique produced many more reshuffling results.
It is more important to verify whether our results are com-
parable to or even better than those by SFARR. To this end,
from the top 80 results in each set we randomly sampled
the same number of results as the corresponding set in [3],
and calculated the average scores for the sampled results
and the results by SFARR, respectively. Each of their result
sets contained 11 to 35 models. For fairer comparisons, the
above process was repeated for 10 times for each set of input
models. It was found that our results were rated consis-
tently and significantly higher than those by SFARR, as con-
firmed by t-tests (p-value < 0:05 in all cases). This is
possibly because the unique results by SFARR were rated rel-
atively poorly, as shown in Fig. 11f. For each set of input
models, Figs. 11a and 11e shows a box-and-whisker plot of
the scores of the 10 sets of our randomly picked results and
the corresponding sets of results by SFARR.

Fig. 12 shows around top-30 results by applying our
reshuffling technique to new sets of input models. Many of
the results (e.g., those highlighted in yellow) would be diffi-
cult to produce by SFARR due to the lack of necessary sym-
metry parts in the input objects. However, we also admit
that the flexibility of our representation is at the cost of
slightly more complicated operations towards functionally
plausible reshuffling results.

4.2 Structure Rearrangement

Our support substructures give a structural decomposition
of an input object. Each support substructure is structurally
valid and thus can be used as a whole for shape editing.
Based on this observation, we introduce a shape rearrange-
ment application, which automatically rearranges substruc-
tures to create nontrivial variations from a single input model.
This application is more like an in-model reshuffling. For
simplicity, we perform rearrangement operations in 2D
(ground plane) only.

Again let S ¼ fs1; s2; . . . ; sng denote a set of support sub-
structures for an input model, which is often a scene model
for creating more variations. Again we first cluster the sub-
structures by support type, leading to three clusters. We
then align the support substructures in each cluster by reg-

istering their supporting components SSing
i via Iterative

Closest Point (ICP). The substructures with small alignment
errors are grouped together. Denote the resulting groups as
G ¼ fg1; g2; . . . ; gmg. To create interesting rearrangement
results we drive rearrangement mainly by a principal group
ĝ 2 G, which has the biggest bounding box size. For exam-
ple the support substructures 2, 5, and 7 in Fig. 1 form such
a principal group.

Every pair of substructures in ĝ have their supporting
components well aligned. We thus can switch between two
substructures in ĝ for structure rearrangement, without
destroying the contact conditions in the 2D plane. Specifi-
cally structure rearrangement is achieved by a two-step
approach, as illustrated in Fig. 13:

(1) Iteratively switch between pairs of support sub-
structures in ĝ. We randomly select an unvisited pair of
support substructures si, sj 2 ĝ and then replace with
each other. After si is replaced with sj, sj might need
rotated to avoid severe intersection with the existing
substructures originally adjacent to si. We use mesh col-
lision detection to check the availability of severe inter-
sections, specifically by checking whether the ratio
between the intersection part and the original model is
below a threshold " (Section 5) or not. The height of the
existing substructures which are originally connected

with SSed
si

is adjusted to get well connected to sj. This

process is repeated till no unvisited pair is found or the
number of iterations exceeds a user-specified number
(e.g., 20).

(2) Iteratively relocate support substructures from non-
principal groups. For each support substructure ski in a
non-principal group gk, we examine whether it is possible
to relocate ski to a new position. We first find a support sub-

structure sli from another non-principal group 2 glð6¼ gkÞ,
which shares the largest number of supporting components
with ski . We can then relocate ski to get connected to slj 2 gl,

since sli and slj are well aligned and thus slj is very likely to

well support the relocated version of ski . The new location

of ski is determined by first aligning ski with sli using their

shared components and then transforming ski by the opti-

mal transformation between ski and slj . ski might need

rotated to avoid intersecting with the existing substructures.
The relocation step is repeated till we reach a user-specified
number (e.g., 20).

2030 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

Fig. 12. Four sets of shape reshuffling results by our technique. Note that each set contains around top-30 results, without cherry picking. The input
models are those with colored parts. The results highlighted in red are less visually appealing, and those highlighted in yellow are difficult to synthe-
size by SFARR.

HUANG ETAL.: SUPPORT SUBSTRUCTURES: SUPPORT-INDUCED PART-LEVEL STRUCTURAL REPRESENTATION 2031

4.2.1 Results

Different from the application of shape reshuffling, which
needs a relatively large set of substructures to create many
variations, structure rearrangement is already able to create
many new functionally plausible shapes with a relatively
small number of support substructures. Hence for this appli-
cation we only combine basic substructures for one round
(Section 3.2). Fig. 1 shows the rearrangement results after
three iterations. Please refer to Fig. 14 and the supplemental
materials, available online, for more rearrangement results.

4.3 Structure Synthesis

The application of shape rearrangement essentially changes
only the locations of support substructures. Now we show
another application which turns a single input model to
new nontrivial variations by duplicating substructures and
connecting them together, in a spirit of procedural model-
ing. We follow the notations introduced in Section 4.2. We
will first present the main idea using a 2D example and
then discuss its extension to 3D synthesis.

4.3.1 Structure Synthesis

As illustrated in Fig. 15, it is operated among the sub-
structures in the principal group ĝ. Each time a pair of
support substructures si; sj 2 ĝ are randomly selected. If
there exists a 2D transformation Tij which can link si with
sj, and the transformed si does not seriously intersect
with the other support substructures, si is then copied

and transformed to link with sj. TijðsiÞ is added to G

(Fig. 15 (right column)). This process is repeated until
there exist no such a pair of substructures or it reaches
the prescribed number of iterations. Below we give the
details on the definition of Tij.

4.3.2 Definition of Tij

To define Tij we first introduce a contact descriptor between
si 2 ĝ and any other substructure sj 2 S (Fig. 15 (left col-
umn)). Specifically the contact information between si and
sj is analyzed in three aspects: (1) a set of sharing parts
between the supporting components of si and sj, i.e.,

Aij ¼ SSing
si

\ SSing
sj

; (2) the inner direction dinij from the cen-

troid of Aij to the centroid of SSed
si
, (3) the outer direction

doutij from the centroid of Aij to the centroid of SSed
sj
. This

leads to a contact descriptor Dij ¼ fAij; d
in
ij ; d

out
ij g for si and

sj. It is easy to see that Aij ¼ Aji, d
in
ij ¼ doutji . Note that the

Fig. 14. Gallery of automatic shape rearrangement results. The input models are in yellow.

Fig. 13. Illustration of two-step structure arrangement.

Fig. 15. Illustration of Tij and the structure synthesis process. Left col-
umn: the contact descriptor is calculated for the principal group ĝ con-
taining five support substructures. Middle column: local view of s3 and
s4. Right column: a support substructure is newly duplicated under the
2D transformation of T 34.

2032 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

directions dinij and doutij are both 2D vectors. Finally we get a

contact descriptor setDi ¼ fDikjAik 6¼ ;g for each si 2 ĝ.
To encourage forming more links between a pair of sub-

structures in the principal group and thus creating more
variations, we try to add more potential contact information
from each of other substructures in ĝ, denoted as sl, to si.

Specifically, we compute a 2D transformation T li : sl ! si
that best aligns SSing

sl
to SSing

si
. The contact descriptorDl of sl

is transformed by T li as T liðDlÞ ¼ fT liðDlkÞg with

T liðDlkÞ ¼ ðT liðAlkÞ; T liðdinlk Þ; T liðdoutlk ÞÞ. si’s contact descriptor
set is then updated asDi ¼ Di [T liðDlÞ.

Now for each si 2 ĝ we have Di ¼ fDik ¼ ðAik; d
in
ik ; d

out
ik Þg.

Given si, sj 2 ĝ, they can get linked together iff there exists a
2D transformation T such that (1) T ðAikÞ ¼ Ajl, i.e., the shar-
ing supporting components get well aligned; (2)
T ðdinikÞ ¼ doutjl , the inner direction din of si is aligned with the

outer direction dout of sl; (3) T ðdoutik Þ ¼ dinjl , the outer direction

dout of si is consistent with the inner direction din of sl. We
also use mesh collision detection to check the availability of
severe intersections. This simple rule forms the basis for our
structure synthesis procedure.

4.3.3 Results

Fig. 16 shows several results created by our structure syn-
thesis enabled by support substructures. Our work bears
some resemblance to inverse procedural modeling, in par-
ticular the work by Bokeloh et al. [21]. However unlike [21],
which requires the detection of partial symmetry regions,
our technique relies on support and stability. Both of the
techniques are able to produce unique results. See one more
example in Fig. 1.

4.3.4 Interactive Synthesis

We also present a simple interface to permit explicit user
control over the design. The user is allowed to interactively

specify a growing direction (arrow in red in Fig. 18a) out of
possible growing directions (arrows in white in Fig. 18b).
The user may also specify how many times substructure
duplication should be performed. Fig. 18 shows interactive
structure synthesis in action and Fig. 1e gives another inter-
active modeling result. Please refer to the supplemental
material, available online, to see more automatically and
interactively synthesis results.

4.3.5 Extension to 3D Synthesis

We experimented a simple way to perform structure syn-

thesis in 3D, based on the following observation: given two

support substructures s1 and s2, we can conclude that s2
can stably support s1 if s

ed
2 (the supported component of s2)

stably supports sing1 (the supporting component of s1). This

motivates us to perform synthesis along the SUPPORT
direction. Specifically, we first randomly select two support
substructures si and sj 2 ĝ. We then find a 2D rotation and

2D translation to align the projected centers of si and sj.

Finally we translate the transformed si along the SUPPORT

direction until the slots of singi well touch sedj . This process is

repeated until there exist no such a pair of substructures or

it reaches the prescribed number of iterations. Fig. 17 shows

a synthesized result.

5 DISCUSSION

5.1 Parameters

In our experiments we always set d ¼ 0:05d, where d is the
diagonal length of the input model’s bounding box, and
intersection error " ¼ 0:10. The default values for the other
parameters were already given in the previous text. Fig. 19
illustrates that an improper value of " would lead to arti-
facts for structure rearrangement and synthesis. For exam-
ple, the part highlighted in red (Fig. 19b) blocks the way to a

Fig. 16. Automatic structure synthesis enabled by support substructures. Please refer to Fig. 14 for the input models.

HUANG ETAL.: SUPPORT SUBSTRUCTURES: SUPPORT-INDUCED PART-LEVEL STRUCTURAL REPRESENTATION 2033

sliding board. In Fig. 19d, severe intersection is not removed
due to the improper value of ".

We also analyze the roles of the three support types in
the synthesized results. Specifically we collect the frequency
of the three support types used in the results produced by
our applications. We find that “supporting-from-below”
(normalized frequency: 47:05 percent) and “support-from-
side” (normalized frequency: 35:30 percent) are more popu-
lar than “supporting-from-above” (normalized frequency:
17:65 percent). This is mainly because most of our tested
input models represent objects that are supposed to stably
stand on some flat surface (e.g., ground, floor, table, etc.).

5.2 Time Complexity

For a shape with n parts, the total complexity for substruc-

ture detection is Oðn2Þ. Although n is generally small, in
practice the step of connection detection between compo-
nent pairs (Section 3.2) is relatively slow due to the convex-
hull-based intersection. The average time used for substruc-
ture detection of each shape in all our experiments is about
1-2 minutes, measured on a PC with an Intel Core 2 Duo 2.4
GHz CPU and 16 GB RAM. Since all the substructures can
be detected in a preprocessing step, so the time complexity
is still acceptable. Given all the detected substructures, it
took on average several seconds to synthesize one

reshuffling result. Our structure rearrangement and synthe-
sis can be achieved at interactive rates, as seen in the supple-
mentary video, available online.

5.3 Limitations

First, similar to other recent high-level shape synthesis meth-
ods (e.g., [3], [4], [27], [28]) ourmethod relies on pre-segmen-
tation of good quality. Second, we assume that the direction
of support relation graph can be geometrically determined,
which is not always possible for example for structurally in-
determined structures [11]. The properties (i.e., reflexivity,
antisymmetry, transitivity) of our adopted three types of
support do not apply to all kinds of support relationships.
Like previous symmetry-based synthesis methods [22],
which are not applicable to models with little symmetry, our
rearrangement and synthesis techniques are designed for
shapes with rich self-similar support substructures.

Fig. 18. Interactive structure synthesis in action. The input model is highlighted in green. The user may interactively control the growing directions
(arrows in red) and the number of times for substructure duplication.

Fig. 17. After detecting the support substructures of the model, we select
three support substructures (a). Support substructure 2 is copied and
transformed in the SUPPORT direction (supported by support substruc-
ture 1) to get support substructure 4(b). Support substructure 3 is copied
and transformed in the SUPPORT direction (supported by support sub-
structure 4) to get support substructure 5(b).

Fig. 19. Top: structure rearrangement with " ¼ 0:10 (a) and " ¼ 0:20 (b).
Bottom: structure synthesis with " ¼ 0:10 (c) and " ¼ 0:20 (d). The input
model is in Fig. 13.

2034 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

Otherwise, it is difficult to produce many interesting varia-
tions. Last, support relationships themselves might not be
sufficient to capture semantic relationships between parts.
Therefore, like many other shape understanding systems,
our technique may produce interesting but functionally not
very plausible results, e.g., those in Fig. 20.

6 CONCLUSION AND FUTURE WORK

This work presented the concept of support substructures, a
high-level structural representation of object parts based on
support and stability, and defined them as special semilatti-
ces induced by the support relations as partial order over a
set of object parts. Although our definition of support sub-
structure is simple, it enables various applications, includ-
ing shape reshuffling, structure rearrangement, and
structure synthesis, as demonstrated in the paper. None of
the previous works is able to handle all these applications
in a single framework. The current structure rearrangement
and synthesis are operated in 2D only. Since our support
substructures already encode vertical hierarchies, it would
be interesting to extend these applications to the 3D domain.

In the future we are interested in refining or generalizing
the definition of support substructure, aiming at higher-
level shape editing applications. It is also interesting to
study the linkage of the synthesis of structures and perform
a more careful stability analysis, e.g., a systematic treatment
of force flow and structural stability with more realistic
physical assumptions, and non-trivial structural optimiza-
tion based on reassembling and varying parts etc.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research
Project of China (Project Number 2011CB302203), the Natu-
ral Science Foundation of China (Project Number
61120106007), Research Grant of Beijing Higher Institution
Engineering Research Center, and Tsinghua University Ini-
tiative Scientific Research Program. Hongbo Fu was par-
tially supported by grants from the Research Grants
Council of HKSAR, China (Project Nos. 113513, 11204014
and 11300615).

REFERENCES

[1] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or, “iWIRES: An
Analyze-and-edit approach to shape manipulation,” ACM Trans.
Graph., vol. 28, pp. 33:1–33:10, 2009.

[2] H. Fu, D. Cohen-Or, G. Dror, andA. Sheffer, “Upright orientation of
Man-made objects,”ACMTrans. Graph., vol. 27, pp. 42:1–42:7, 2008.

[3] Y. Zheng, D. Cohen-Or, and N. J. Mitra, “Smart variations: Func-
tional substructures for part compatibility,” Comput. Graph. Forum,
vol. 32, no. 2pt2, pp. 195–204, 2013.

[4] I. Alhashim, H. Li, K. Xu, J. Cao, R. Ma, and H. Zhang, “Topology-
varying 3d shape creation via structural blending,” ACM Trans.
Graph., vol. 33, no. 4, pp. 158:1–158:10, 2014.

[5] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning
with blocks, support, and stability,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2013, pp. 1–8.

[6] S. Panda, A. Hafez, and C. Jawahar, “Learning support order for
manipulation in clutter,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2013, pp. 809–815.

[7] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmen-
tation and support inference from RGBD images,” in Proc. Eur.
Conf. Comput. Vis., 2012, pp. 746–760.

[8] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo, “Mesh
puppetry: Cascading optimization of mesh deformation with
inverse kinematics,” ACM Trans. Graph., vol. 26, no. 3, p. 81, 2007.

[9] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and
S. J. Osher, “Make it home: automatic optimization of furniture
arrangement,” ACM Trans. Graph., vol. 30, pp. 86:1–86:12, Aug.
2011.

[10] N. Umetani, T. Igarashi, and N. J. Mitra, “Guided exploration of
physically valid shapes for furniture design,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 86:1–86:11, 2012.

[11] E. Vouga, M. Hobinger, J. Wallner, and H. Pottmann, “Design of
Self-supporting surfaces,” ACM Trans. Graph., vol. 31, no. 4,
pp. 87:1–87:11, 2012.

[12] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo, “All-hex meshing
using singularity-restricted field,” ACM Trans. Graph., vol. 31,
no. 6, pp. 177:1–177:11, Nov. 2012.

[13] Y. Liu, H. Pan, J. Snyder, W. Wang, and B. Guo, “Computing Self-
supporting surfaces by regular triangulation,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 92:1–92:10, Jul. 2013.

[14] H. Pottmann, A. Schiftner, P. Bo, H. Schmiedhofer, W. Wang, N.
Baldassini, and J. Wallner, “Freeform surfaces from single curved
panels,” ACM Trans. Graph., vol. 27, no. 3, pp. 76:1–76:10, 2008.

[15] O. Stava, J. Vanek, B. Benes, N. Carr, and R. M�ech, “Stress relief:
Improving structural strength of 3d printable objects,” ACM
Trans. Graph., vol. 31, no. 4, pp. 48:1–48:11, 2012.

[16] R. Pr�evost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung,
“Make it stand: Balancing shapes for 3d fabrication,” ACM Trans.
Graph., vol. 32, no. 4, pp. 81:1–81:10, 2013.

[17] N. J. Mitra, Y.-L. Yang, D.-M. Yan, W. Li, and M. Agrawala,
“Illustrating how mechanical assemblies work,” ACM Trans.
Graph., vol. 29, pp. 58:1–58:12, 2010.

[18] M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi, “Converting 3d
furniture models to fabricatable parts and connectors,” ACM
Trans. Graph., vol. 30, no. 4, pp. 85:1–85:6, 2011.

[19] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan, “Symmetry in 3d
geometry: Extraction and applications,” Comput. Graph. Forum.,
vol. 32, no. 6, pp. 1–23, 2013.

[20] Y. Wang, K. Xu, J. Li, H. Zhang, A. Shamir, L. Liu, Z. Cheng, and
Y. Xiong, “Symmetry hierarchy of Man-made objects,” Comput.
Graph. Forum, vol. 30, no. 2, pp. 287–296, 2011.

[21] M. Bokeloh, M. Wand, and H.-P. Seidel, “A connection between
partial symmetry and inverse procedural modeling,” ACM Trans.
Graph., vol. 29, no. 4, pp. 104:1–104:10, 2010.

[22] P. Merrell and D. Manocha, “Model synthesis: A general proce-
dural modeling algorithm,” IEEE Trans. Vis. Comput. Graph.,
vol. 17, no. 6, pp. 715–728, Jun. 2011.

[23] F. Wu, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka, “Inverse
procedural modeling of facade layouts,” CoRR, vol. abs/
1308.0419, 2013.

[24] A. Jain, T. Thorm€ahlen, T. Ritschel, and H.-P. Seidel, “Exploring
shape variations by 3d-model decomposition and Part-based
recombination.” Comput. Graph. Forum, vol. 31, no. 2, pp. 631–640,
2012.

[25] H. Xie, W. Xu, and B. Wang, “Reshuffle-based interior scene syn-
thesis,” in Proc. 12th ACM SIGGRAPH Int. Conf. Virtual-Reality
Continuum Its Appl. Industry, 2013, pp. 191–198.

[26] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan,
“Example-based synthesis of 3d object arrangements,” ACM
Trans. Graph., vol. 31, no. 6, pp. 135:1–135:11, 2012.

[27] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun, “A proba-
bilistic model for component-based shape synthesis,” ACM Trans.
Graph., vol. 31, no. 4, pp. 55:1–55:11, 2012.

[28] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen, “Fit and diverse: Set
evolution for inspiring 3d shape galleries,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 57:1–57:10, Jul. 2012.

[29] S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun,
“Probabilistic reasoning for Assembly-based 3d modeling,” ACM
Trans. Graph., vol. 30, pp. 35:1–35:10, 2011.

Fig. 20. Interesting but functionally not very plausible reshuffling results.

HUANG ETAL.: SUPPORT SUBSTRUCTURES: SUPPORT-INDUCED PART-LEVEL STRUCTURAL REPRESENTATION 2035

[30] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh parti-
tioning and skeletonisation using the shape diameter function,”
The Vis. Comput., vol. 24, no. 4, pp. 249–259, 2008.

Shi-Sheng Huang is currently working toward
the PhD degree at Tsinghua University in Beijing.
His research interests include: shape analysis,
point cloud processing and image processing.

Hongbo Fu received the BS degree in informa-
tion sciences from Peking University, China, in
2002 and the PhD degree in computer science
from the Hong Kong University of Science and
Technology in 2007. He is an associate professor
in the School of Creative Media, City University of
Hong Kong. His primary research interests fall in
the fields of computer graphics and human com-
puter interaction. He has served as an associate
editor of The Visual Computer, Computers &
Graphics, and Computer Graphics Forum.

Ling-Yu Wei received the BS degree in Tsinghua
University, Beijing, China in 2014 and is currently
working toward the PhD degree at the University
of Southern California. His research interests
include: shape analysis and computer graphics.

Shi-Min Hu received the PhD degree from
Zhejiang University in 1996. He is currently a pro-
fessor in the Department of Computer Science and
Technology at Tsinghua University, Beijing. His
research interests include digital geometry proc-
essing, video processing, rendering, computer ani-
mation, and computer aided geometric design. He
is an associate editor of IEEE Transactions on
Visualization and Computer Graphics, Computer-
Aided Design, Computer and Graphics, and The
Visual Computer. He is themember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2036 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 8, AUGUST 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

