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Fig. 1. We present an effective supervoxel convolution operation (SVConv for short) and apply it to 2D-3D joint learning for semantic mapping, which performs
online dense semantic segmentation as well as scene reconstruction. Our approach strikes a significantly better balance between efficiency and segmentation
accuracy than the existing online 3D semantic segmentation techniques.

Online 3D semantic segmentation, which aims to perform real-time 3D scene
reconstruction along with semantic segmentation, is an important but chal-
lenging topic. A key challenge is to strike a balance between efficiency and
segmentation accuracy. There are very few deep learning based solutions
to this problem, since the commonly used deep representations based on
volumetric-grids or points do not provide efficient 3D representation and
organization structure for online segmentation. Observing that on-surface
supervoxels, i.e., clusters of on-surface voxels, provide a compact representa-
tion of 3D surfaces and brings efficient connectivity structure via supervoxel
clustering, we explore a supervoxel-based deep learning solution for this task.
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To this end, we contribute a novel convolution operation (SVConv) directly
on supervoxels. SVConv can efficiently fuse the multi-view 2D features and
3D features projected on supervoxels during the online 3D reconstruction,
and leads to an effective supervoxel-based convolutional neural network,
termed as Supervoxel-CNN, enabling 2D-3D joint learning for 3D semantic
prediction.With the Supervoxel-CNN, we propose a clustering-then-prediction
online 3D semantic segmentation approach. The extensive evaluations on
the public 3D indoor scene datasets show that our approach significantly
outperforms the existing online semantic segmentation systems in terms of
efficiency or accuracy.
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1 INTRODUCTION
Online 3D semantic segmentation together with on-the-fly 3D re-
construction has become urgent and crucial for applications in-
volving instant scene understanding such as service robotics and
autonomous driving [Dong et al. 2019; Liu et al. 2018; Zheng et al.
2019]. Directly segmenting progressively fused 3D geometry is often
time-consuming. A common solution is to perform the 3D segmen-
tation in a 2D-to-3D semantic mapping manner [Jeon et al. 2018;
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McCormac et al. 2017a; Narita et al. 2019; Pham et al. 2019], i.e.,
mapping the 2D semantics frommultiple views to a progressively re-
constructed 3D surface. However, these traditional solutions usually
fuse the 2D semantics in a naïve Bayesian style, which constrains
3D segmentation results to a low level of accuracy.

Recently, deep neural networks have achieved promising results
for various 3D shape analysis and understanding tasks, such as 3D
object classification [Graham et al. 2018; Qi et al. 2017a,b; Sedaghat
et al. 2017; Zhao et al. 2019], 3D scene semantic segmentation [Choy
et al. 2019; Dai and Nießner 2018; Wu et al. 2019], instance seg-
mentation [Han et al. 2020; Hou et al. 2019], scene completion [Dai
et al. 2018; Song et al. 2017] and object localization [Avetisyan et al.
2019a,b, 2020; Chen et al. 2020; Wald et al. 2019]. However, most of
these attempts are performed in an offline manner, assuming that
the inputs are already complete 3D scenes or objects. Online scene
understanding especially for semantic mapping has not benefited
too much from the advancement of deep learning techniques.
Directly apply the volumetric-based convolution [Graham et al.

2018; Hou et al. 2019], point-based convolution [Qi et al. 2017a,b;
Wu et al. 2019], or even sparse convolution [Choy et al. 2019] to
online 3D semantic segmentation by simply converting densely re-
constructed scenes to volumetric-grids or a set of points is inefficient
due to the huge amounts of data to be handled (e.g., a 5m × 5m ×
3m room would result in 600 million voxels at a voxel size of 5mm).
The joint learning by fusing 3D geometry features and 2D features
from multi-view frames [Graham et al. 2018; Hou et al. 2019] could
be even more difficult for online 3D semantic segmentation due to
the lack of an efficient organization structure for the 2D-3D data
association, though it has more potential to improve the semantic
segmentation accuracy. Very recently, Zhang et al. [2020] proposed
probably the first deep learning method for online 3D segmentation.
However, they can only predict semantics for a relatively small num-
ber of 3D points (typically 512) per view with a moderate processing
rate of 10fps. The key challenges still remain to be solved for the
online 3D semantic segmentation via deep neural networks, i.e., how
to re-organize the inherently unstructured 3D data in a structured
representation, and design effective deep neural networks on such
structured representation to balance the efficiency and accuracy for
online 3D segmentation.

Our key observation is that not all voxels are meaningful to rep-
resent a progressively reconstructed 3D geometry, and only those
on the geometry surface make sense. Based on this insight, we
only track the on-surface voxels and cluster them into boundary-
preserving supervoxels (with almost equal supervoxel size) via pro-
gressive supervoxel clustering, instead of randomly sampling points
in each view as in [Zhang et al. 2020]. Supervoxel is a compact
representation for 3D geometry with a much less number of units
(100× less compared with the number of voxels). Besides, the super-
voxel clustering step brings a very efficient on-surface connectivity
structure between supervoxels, and this structure enables a very
efficient convolution operation, leading to deep convolution neural
networks for online 3D semantic segmentation.

However, how to perform the convolution on supervoxels has not
been explored to the best of our knowledge and is nontrivial, since
the convolutional kernel function and the neighborhood required
for convolution are not well defined. In this paper, we propose

a feasible convolution operation on supervoxels, named SVConv,
and make such a supervoxel convolution effective with a carefully
designed 2D-3D joint learning. Benefited from SVConv, we propose
a deep convolution neural network, Supervoxel-CNN, with which a
clustering-then-prediction semantic mapping approach is built for the
online 3D semantic segmentation task. To the best of our knowledge,
our work is the first to introduce such an effective supervoxel-
based deep convolution neural network for the online 3D semantic
segmentation task (Fig. 1).

We have extensively evaluated the efficiency and accuracy of our
approach on the public 3D indoor benchmark, i.e. ScanNet v2 [Dai
et al. 2017a] and SceneNN [Hua et al. 2016] datasets, compared to the
state-of-the-art online and offline 3D semantic segmentation tech-
niques. Our system significantly boosts the segmentation accuracy
(see in Sec. 5) compared with the traditional Bayesian-style 2D-to-
3D semantic mapping systems (e.g., SemanticFusion [McCormac
et al. 2017a] and ProgressiveFusion [Pham et al. 2019] with more
than 10% mIoU accuracy improvement. Although our approach out-
performs the very recent deep learning based approach [Zhang et al.
2020] only with a slightly higher segmentation accuracy, we per-
form the online 3D segmentation at about 20fps, which is 2× faster
than their system, demonstrating the efficiency of our proposed
Supervoxel-CNN.

We summarize our technical contributions as: 1) We for the first
time contribute a feasible convolution operation directly on super-
voxels, i.e. SVConv, making it possible for an efficient 2D-3D joint
learning for the online semantic segmentation task. 2) We propose a
Supervoxel-CNN network and a clustering-then-prediction semantic
mapping approach, which efficiently segments a progressively re-
constructed 3D surface, achieving state-of-the-art online semantic
segmentation accuracy.

2 RELATED WORK
In recent years we have seen great progress in real-time 3D scene
reconstruction in computer vision, computer graphics, and robotics.
Significant efforts have also been put to semantic scene understand-
ing in either 2D or 3D. A full review of such topics is beyond the
scope of this work. Below we discuss works mostly related to ours.

RGB-D Depth Fusion. Since the pioneer work of KinectFu-
sion [Newcombe et al. 2011], a lot of efforts have been put to
achieve real-time 3D scene reconstruction. To enable large-scale
3D reconstruction, many efficient data structures, such as Voxel-
Hashing [Nießner et al. 2013] and Scalable-VoxelHashing [Chen
et al. 2013], have been proposed for depth fusion based on a trun-
cated signed distance function (TSDF) [Curless and Levoy 1996].
Besides, several works like RGB-D SLAM [Whelan et al. 2015], In-
finiTAM [Kähler et al. 2015], ElasticFusion [Nießner et al. 2013],
BundleFusion [Dai et al. 2017b] etc. achieve more accurate RGB-D
depth fusion by using bundle adjustment and deformable loop clo-
sure. Wang et al. [2017] introduced a robust feature-based real-time
3D reconstruction approach by tracking the RGB features of 3D
points from all frames. Recently, Cao et al. [2018] proposed a precise
depth fusion approach to reduce the depth noise influence using
noise-aware bundle adjustment. However, most of the current depth
fusion systems have focused on 3D geometry reconstruction and
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Fig. 2. Illustration of a supervoxel (containing highlighted voxels), and its
feature and label representations.

very few of them support 3D semantic segmentation along with
on-the-fly depth fusion.

The semantic information has been shown useful for object [Hu
et al. 2018] or 3D scene reconstruction [McCormac et al. 2018; Yang
et al. 2019; Zheng et al. 2019]. Some previous 3D depth fusion ap-
proaches have introduced semantic information to online 3D re-
construction by joint structure and semantic analysis [Zhang et al.
2015], object identification [Xu et al. 2016], object clustering [Nan
et al. 2012], etc. Unlike these works, ours is based on the state-of-
the-art depth fusion techniques like VoxelHashing [Nießner et al.
2013] and aims to improve the accuracy of semantic mapping but
not geometry quality.
Semantic Segmentation. Due to the fast development of deep

neural networks, scene understanding, especially in the tasks of
2D scene labeling, scene segmentation, object classification, has ad-
vanced significantly. A lot of techniques (e.g., DeconvNet [Noh et al.
2015], FCN [Shelhamer et al. 2017], Mask-RCNN [He et al. 2017],
SSMA [Valada et al. 2020]) have been proposed for 2D segmentation.
Although they produce impressive 2D segmentation for individual
images, they often fail to provide consistent segmentation between
consecutive RGB frames. A straightforward integration of them into
a 2D-to-3D semantic mapping framework would cause uncertain
association.

3D scene understanding based on deep 3D geometry learning has
also advanced rapidly in recent years. For example, PointNet [Qi et al.
2017a] and its variations [Qi et al. 2018, 2017b] provide a powerful
deep learning method to learn rotation- and translation-invariant
deep features for unorganized point clouds. PointConv [Wu et al.
2019] introduces a point convolution operation with translation-
invariant and permutation-invariant convolution learning for any
point set. SparseConvNet [Graham et al. 2018] and Minkowsk-
iNet [Choy et al. 2019] extend the convolution operation to high
dimensional data with sparse convolution. 3DMV [Dai and Nießner
2018] and 3D-SIS [Hou et al. 2019] introduce a 2D-3D joint feature
learning by projecting 2D features to 3D voxels with a volumetric-
based convolution. FPConv [Lin et al. 2020] introduced a local flat-
tening with a learnt weight map to project 3D points onto a 2D grid,

thus enabling regular 2D convolution for efficient feature learn-
ing. To further improve the spatial consistency of 3D semantic
segmentation, Hu et al. [2020] proposed dynamic region growing
and data-driven context analysis with multi-scale processing for
patch partition and classification.

Although these 3D learning methods achieve nice segmentation
results, their inputs are a complete set of 3D points or a fully recon-
structed scene. Our experiments will show that although some of
those methods like MinkowskiNet [Choy et al. 2019] might achieve
a higher segmentation accuracy than ours, they are not efficient
enough for online 3D segmentation. The recent work OccuSeg [Han
et al. 2020] proposes an occupancy-aware learning-then-clustering
approach for 3D instance segmentation. Except from the different
goals, our approach contributes a feasible 3D representation via
supervoxel clustering for efficient 2D-3D joint online semantic seg-
mentation learning, instead of clustering the surface patches with
embedded deep features like OccuSeg.

Online Semantic Segmentation. The semantic segmentation
in company with the on-the-fly 3D reconstruction performs the 3D
scene geometry reconstruction and semantic understanding at the
same time, and is deemed to be more suitable for online applications
in robotics and virtual reality, thus receiving hot research attentions
these years.
SemanticFusion [McCormac et al. 2017a] provides a pioneer so-

lution for online 3D semantic segmentation with a Bayesian style
2D-to-3D mapping based on surfels. To reconstruct watertight sur-
faces, the subsequent works such as Semantic Reconstruction [Jeon
et al. 2018] and PanopticFusion [Narita et al. 2019], extend the 2D-
to-3D mapping framework to TSDF voxels. For better efficiency,
ProgressiveFusion [2019] adopts to over-segment the voxels into
supervoxel then performs 2D-to-3D semantic mapping based on
supervoxels. A fundamental problem for these 2D-to-3D semantic
mapping approaches is that they rely on 2D learning but lack 3D
learning, thus limiting the further accuracy improvement. Compared
with these approaches, our approach performs supervoxel-based
2D-3D joint learning to get much better segmentation results.

Very recently, Zhang et al. [2020] introduce an impressive point
convolution for time-varying geometric data, and their approach
achieves the state-of-the-art accuracy for online 3D semantic seg-
mentation. However, this point-based segmentation approach is
still not efficient, since the performance of its neighborhood man-
agement would descend rapidly with the increasing number of 3D
points. An efficient data structure to organize 3D voxels is still ur-
gently needed in the online semantic segmentation task. Compared
to their approach, our supervoxel-based solution has two advan-
tages. First, the supervoxel number is mainly influenced by the
underlying geometry surface being reconstructed itself but not the
number of camera views. Thus the number of supervoxels needed
to be processed is significantly less than the number of points from
multi-view as in Zhang et al. [2020]. Second, the supervoxel neigh-
borhoods can be easily managed via supervoxel clustering, which
does not need extra time-consuming management of neighborhoods.

There also exist relevant works [Valentin et al. 2015], which aim
at interactive online 3D semantic segmentation. In contrast, our
approach performs 3D segmentation automatically without any
user intervention [Thanh Nguyen et al. 2017; Yang et al. 2017].
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3 SUPERVOXEL CONVOLUTION
Towards an efficient and effective deep convolution network for
online 3D semantic segmentation, we first introduce our progressive
supervoxel clustering with boundary-preserving property, and then
present a novel convolution operation on supervoxels.

3.1 Progressive Supervoxel Clustering
Supervoxel clustering is a technique for over-segmenting voxels into
a graph of connected supervoxels, in which the voxel-to-supervoxel
indexing and supervoxel-to-supervoxel neighborhood information
can be efficiently extracted [Papon et al. 2013]. Besides, the number
of supervoxels is significantly less than that of the original voxels.
On-surface Supervoxel Clustering. Although a depth fusion

system like VoxelHashing [Nießner et al. 2013], BundleFusion [Dai
et al. 2017b] et al. often needs to allocate a huge number of vox-
els, we only keep track of the on-surface voxels, denoted as 𝑉 =

{𝑣𝑖 = (𝑝𝑖 , 𝑛𝑖 , 𝑐𝑖 )} with 𝑝𝑖 , 𝑛𝑖 , 𝑐𝑖 encoding the position, normal and
color of the voxel 𝑣𝑖 , and cluster them into a set of supervoxels
S = {𝑠𝑘 , 𝑠𝑘 ⊂ 𝑉 }, as illustrated in Fig. 2. Since voxels across bound-
aries often belong to different objects thus with different semantic
labels, we cluster voxels along object boundaries such that all the
voxels inside a supervoxel can be assigned with the same label. To
this end, we follow the latest technique proposed by Lin et al. [2018]
to perform boundary-preserving supervoxel clustering. However,
directly applying Lin et al. [2018]’s method to our online 3D se-
mantic labeling task is not suitable since the original clustering
implementation is too time-consuming with slow convergence.
To address this issue, we make two modifications. First, we re-

lax their fusion-based minimization function using a much larger
initialization parameter _ (with 8× larger). Second, we terminate
the exchange-based minimization once the number of voxels to be
exchanged is lower than a certain threshold (2, 000 in all our experi-
ments). Please refer to Lin et al. [2018] for more technical details.
In this way, the clustering can converge much faster to keep pace
with 3D depth fusion. Besides, we constrain the number of voxels in
each clustered supervoxel such that the clustered supervoxels have
a nearly equal number of voxels. This constraint is meaningful for
the derivation of supervoxel convolution in Sec. 3.2.
Progressive Clustering. Since the previously reconstructed sur-

face would not influence the current reconstruction during incre-
mental 3D reconstruction, we can perform supervoxel clustering
in a progressive way to further improve the efficiency of the whole
system. Specifically, we track the latest on-surface voxels and di-
vide them into two subsets: those overlapping with the previously
clustered regions,𝑈 , and the remaining𝑈 ′. We further identify the
voxels 𝑆 ⊂ 𝑈 , satisfying that at least one of its siblings in the same
supervoxel 1) is updated due to the depth fusion from the latest
frame, or 2) is neighboring to𝑈 ′. Finally, we only cluster the voxels
in 𝑆 ∪ 𝑈 ′ and leave the the rest of the voxels unchanged. Since
voxels in 𝑆 have already been clustered in the previous round, we
adopt to transfer the previous clustering centers to these voxels
and perform the supervoxel clustering only for the newly added
voxels in𝑈 ′. In most of the cases, since the voxel number in𝑈 ′ is far
less than 𝑆 between consecutive frames during 3D reconstruction,
our progressive clustering can be performed very efficiently. In this

Fig. 3. Illustration of supervoxel convolution. For a set of supervoxels (a),
the convolution for a supervoxel 𝑠0 with its neighbors 𝑠𝑘 , 𝑘 = {1, ..., 7} (b) is
performed by estimating the supervoxel weight function𝑊𝑠𝑣 ( ·) defined on
the supervoxel centroid displacement 𝑠𝑐0 −𝑠𝑐𝑘 (c). This is an approximation
of the convolution weight function𝑊 ( ·) defined on the voxel position
displacement 𝑝𝑖 − 𝑝 𝑗 in PointConv convolution (c).

way, we efficiently organize all the tracked on-surface voxels with
supervoxels during the online processing. Sometimes, the voxel
number of 𝑈 ′ would not be enough to form a desired supervoxel.
Since this scenario seldom occurs, we cluster such voxels into a new
supervoxel and send it to the subsequent prediction.

Properties of Supervoxels. During the on-the-fly depth fusion,
our progressive supervoxel clustering approach organizes all 3D
voxels as a set of supervoxels such the following properties are pre-
served. 1) The resulting supervoxels are located on the reconstructed
geometry surface since the associated 3D voxels are all on-surface.
2) Those supervoxels have a nearly equal number of voxels, bene-
fiting the definition of supervoxel convolution. 3) The neighboring
relations among supervoxels are kept such that the neighbors of
a supervoxel can be fetched in O(1) time given a small number of
supervoxels, without the need of using extra time-consuming tree-
based data structures as done in [Zhang et al. 2020]. Besides, the
voxel-to-supervoxel indexing information within a supervoxel is
also held, which can benefit the feature aggregation of supervoxel
convolution in Sec. 3.2. 4) Supervoxels are boundary-preserving
such that the voxels associated with each supervoxel can be pre-
dicted with the same label as the supervoxel. These properties make
it possible to define a convolution operation directly on supervoxels
for effective learning on 3D.

3.2 Supervoxel Convolution
Convolution operations have been proven to be very efficient in 3D
geometry learning, such as mesh-based convolution [Hanocka et al.
2019], volumetric-based convolution [Dai and Nießner 2018; Hou
et al. 2019], and point-based convolution [Wu et al. 2019]. Although
a voxel could be regarded as a point in our case, the convolution
operation on supervoxels is undefined. The core problems faced are:
1) how to define a supervoxel’s position representation with which
the convolution weight function can be estimated, and 2) how to
define a supervoxel’s feature representation. In this subsection, we
present SVConv, which extends convolution for points [Wu et al.
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2019] to supervoxels, as a feasible convolution operation directly
on supervoxels.
From PointConv to SVConv. PointConv [Wu et al. 2019] intro-

duces a novel convolution operation over 3D points as:

𝐹𝑜𝑢𝑡 (𝑝,𝑊 , 𝐹𝑖𝑛) =
∑
𝑝 𝑗 ∈Ω

𝑊 (𝑝 − 𝑝 𝑗 )𝐹𝑖𝑛 (𝑝 𝑗 ),

where Ω is a set of neighboring points of a point 𝑝 ,𝑊 (·) is the
local convolution weight function, and 𝐹𝑖𝑛 (·) and 𝐹𝑜𝑢𝑡 (·) are the
input and output features of each point, respectively. Following
PointConv, we consider a supervoxel 𝑠0 with its neighbors {𝑠𝑘 },
𝑘 = {1, 2, ..., 𝐾} (e.g., 𝐾 = 7 in Fig. 3(b)) and convolve the input
feature 𝐹𝑖𝑛 of each voxel in 𝑠0 by the weight function𝑊 (·) defined
on the voxels’ position displacement. Specifically, for two voxels 𝑣𝑖
and 𝑣 𝑗 , their position displacement is defined as 𝑝𝑖 − 𝑝 𝑗 . Then we
formulate the PointConv for voxel 𝑣𝑖 ∈ 𝑠0 as:

𝐹𝑜𝑢𝑡 (𝑣𝑖 ) =
𝐾∑
𝑘=0

∑
𝑣𝑗 ∈𝑠𝑘

𝑊 (𝑝𝑖 − 𝑝 𝑗 )𝐹𝑖𝑛 (𝑣 𝑗 ) . (1)

Since the supervoxel’s size is almost fixed due to almost the
same number of voxels in each supervoxel, we can approximate the
position displacement 𝑝𝑖 − 𝑝 𝑗 (𝑣𝑖 ∈ 𝑠0, 𝑣 𝑗 ∈ 𝑠𝑘 ) as the displacement
of their corresponding supervoxel centroids 𝑠𝑐𝑘 =

∑
𝑝 𝑗 ∈𝑠𝑘 𝑝 𝑗/|𝑠𝑘 |

using Taylor expansion: 𝑝𝑖 − 𝑝 𝑗 ≈ 𝑠𝑐0 − 𝑠𝑐𝑘 + 𝑜 (𝑠𝑐0 − 𝑠𝑐𝑘 ) with
𝑜 (·) being the Peano remainder. Following the Taylor’s theorem,
we approximate the weight function𝑊 (𝑝𝑖 − 𝑝 𝑗 ) ≈𝑊 (𝑠𝑐0 − 𝑠𝑐𝑘 +
𝑜 (𝑠𝑐0−𝑠𝑐𝑘 )) ≈𝑊 (𝑠𝑐0−𝑠𝑐𝑘 ) +𝑜 (𝑠𝑐0−𝑠𝑐𝑘 )𝑇 𝜕𝑊

𝜕 (𝑠𝑐0−𝑠𝑐𝑘 ) . By defining a
new convolution weight function as𝑊𝑠𝑣 (𝑠𝑐0 − 𝑠𝑐𝑘 ) = |𝑠𝑘 | (𝑊 (𝑠𝑐0 −
𝑠𝑐𝑘 ) + 𝑜 (𝑠𝑐0 − 𝑠𝑐𝑘 )𝑇 𝜕𝑊

𝜕 (𝑠𝑐0−𝑠𝑐𝑘 ) ), we can re-write Equation (1) as:

𝐹𝑜𝑢𝑡 (𝑣𝑖 ) ≈
𝐾∑
𝑘=0

𝑊𝑠𝑣 (𝑠𝑐0 − 𝑠𝑐𝑘 ){
1
|𝑠𝑘 |

∑
𝑣𝑗 ∈𝑠𝑘

𝐹𝑖𝑛 (𝑣 𝑗 )}. (2)

By averaging the output features of all voxels 𝑣𝑖 in supervoxel
𝑠0 and considering the nearly equal size of all supervoxels |𝑠0 | ≈
|𝑠𝑘 |, 𝑘 = {1, 2, ..., 𝐾} (Sec. 3.1), we can obtain:

1
|𝑠0 |

∑
𝑣𝑖 ∈𝑠0

𝐹𝑜𝑢𝑡 (𝑣𝑖 ) ≈
𝐾∑
𝑘=0

𝑊𝑠𝑣 (𝑠𝑐0 − 𝑠𝑐𝑘 ){
1
|𝑠𝑘 |

∑
𝑣𝑗 ∈𝑠𝑘

𝐹𝑖𝑛 (𝑣 𝑗 )}. (3)

Equation (3) shows that we can define a new convolution opera-
tion directly on supervoxels. For each supervoxel 𝑠𝑘 , if we utilize
the centroid 𝑠𝑐𝑘 =

∑
𝑝 𝑗 ∈𝑠𝑘 𝑝 𝑗/|𝑠𝑘 | as its position representation, the

input feature 𝑆𝑉𝑖𝑛 (𝑠𝑘 ) as the average of its associated voxels’ in-
put features 𝑆𝑉𝑖𝑛 (𝑠𝑘 ) = 1

|𝑠𝑘 |
∑
𝑣𝑗 ∈𝑠𝑘 𝐹𝑖𝑛 (𝑣 𝑗 ) and the output feature

𝑆𝑉𝑜𝑢𝑡 (𝑠𝑘 ) as the average of its associated voxels’ output features
𝑆𝑉𝑜𝑢𝑡 (𝑠𝑘 ) = 1

|𝑠𝑘 |
∑
𝑣𝑗 ∈𝑠𝑘 𝐹𝑜𝑢𝑡 (𝑣 𝑗 ), we can define a supervoxel-based

convolution operation (SVConv) for each supervoxel 𝑠0 with its
neighbors {𝑠𝑘 } as:

𝑆𝑉𝑜𝑢𝑡 (𝑠0) =
𝐾∑
𝑘=0

𝑊𝑠𝑣 (𝑠𝑐0 − 𝑠𝑐𝑘 )𝑆𝑉𝑖𝑛 (𝑠𝑘 ), (4)

In this way, our SVConv can be viewed as an approximation of
PointConv in the supervoxel level, which is also effective for 3D
classification.

Position Representation. From the definition of SVConv, we
calculate the centroid of a surpervoxel as its position, and then esti-
mate the convolution weight function𝑊𝑠𝑣 (·) in its local neighbors.
Similar to PointConv [Wu et al. 2019], we approximate this weight
function using a set of Multi-Layer Perceptrons (MLPs).

Feature Representation for 2D-3D Joint Learning. Since a
supervoxel’s feature representation is the average of its voxels’ fea-
tures, descriptive features are required for voxels. The works of
3DMV [Graham et al. 2018], 3D-SIS [Hou et al. 2019] and Zhang et
al. [2020] have shown that the fusion of 3D features with 2D deep
features from multi-view is effective for 3D semantic prediction.
However, this 2D-3D fusing operation is not suitable for our dense
setting. First, the mutlti-view 2D-3D management of each 3D voxel
would be too time-consuming to be company with the 3D recon-
struction system. More importantly, storing the 2D deep feature for
each voxel during the dense reconstruction would result in memory
explosion.
To address this issue, we choose to fuse the relatively solidified

2D semantic probability distribution instead of the original 2D deep
feature. What’s more, to avoid storing an 𝑀−dimensional proba-
bility distribution (𝑀 is the number of labels) for each voxel, we
only store a single label along with its confidence and update the
label and confidence in a max-pooling way during the dense re-
construction. More specifically, as shown in Fig. 2, for a voxel 𝑣
with label 𝐿(𝑣) and confidence𝑊 (𝑣), if a newly detected 2D label
𝐿𝑖 equals 𝐿(𝑣), we keep 𝑣 ’s label unchanged and increase its confi-
dence weight by one:𝑊 (𝑣) ←𝑊 (𝑣) + 1. Otherwise, we decrease
its weight by one, and in case of a negative weight, we replace
its label with 𝐿𝑖 and reset its weight:𝑊 (𝑣) ← 0. Then as for the
supervoxel 𝑠 , we calculate the supervoxel prediction probability
distribution 𝑃 (𝑠) = (𝑝𝑠 (𝑙1), ..., 𝑝𝑠 (𝑙𝑀 )) by averaging over all the
associated voxels for 𝑙𝑖 , weighted by their associated confidence
weights: 𝑝𝑠 (𝑙𝑖 ) = 1∑

𝑣𝑗 ∈𝑠𝑊 (𝑣𝑗 )
∑
𝑣𝑗 ∈𝑠𝑊 (𝑣 𝑗 ) · 𝐼 (𝑙 (𝑣 𝑗 ) = 𝑙𝑖 ), with 𝐼 (·)

the indictor function. For the supervoxel’s 3D features, we adopt
the voxel’s 9-dimensional 3D geometry features and perform the
3D feature averaging with 𝑓 𝑠 = 1

|𝑠 |
∑
𝑣𝑖 ∈𝑠 𝑣𝑖 .

Finally, we concatenate the supervoxel’s 3D geometry features
and the 2D prediction probability distribution together, yielding a
fused 2D-3D feature 𝑆𝑉 (𝑠) = (𝑓 𝑠 , 𝑃 (𝑠)) ∈ R9+𝑀 . As shown in Sec. 5,
our fused 2D-3D features for supervoxels are effective for super-
voxel convolution as a 2D-3D joint learning dedicated to semantic
prediction during the online dense 3D reconstruction, balancing the
time complexity and memory usage.

Properties of SVConv. Although SVConv is derived from Point-
Conv, it is distinct from PointConv with at least three major benefits
for the online semantic segmentation task: (1) Feature aggrega-
tion. The supervoxel’s compact representation stores the voxel-to-
supervoxel indexing information, thus making it possible to com-
pute the supervoxel prediction probability distribution (see the fea-
ture representation above) for the 2D-3D feature aggregation. We
show that without such feature aggregation, a naïve PointConv on
uniformly sampled voxels is not very effective to achieve a high
accuracy of semantic segmentation (see the evaluation in Sec. 5.3).
(2) Supervoxel size constraint. Our SVConv is only feasible when the
supervoxels have a nearly equal size (in term of voxel numbers) (see
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Fig. 4. System overview of online 3D semantic segmentation based on Supervoxel-CNN. It takes the RGB-D stream as input (a) and performs in the loop
depth-fusion-based scene reconstruction with semantic labels projected from the 2D CNN semantic prediction on keyframes (b). A voxel tracking module (c) is
performed to collect the latest-ready 3D voxels. We run supervoxel clustering to progressively cluster the latest-ready 3D voxels into supervoxels with their
neighborhoods managed efficiently (d). Those clustered supervoxels are then fed to Supervoxel-CNN with supervoxel convolution for 2D-3D joint learning of
semantic prediction (e), leading to a reconstructed 3D scene with dense semantic segmentation.

Equation 3). Without this constraint, the semantic segmentation
accuracy will decrease, as shown in Sec. 5.4 (“Supervoxel-CNN w/o
BP”). (3) On-surface neighbors. Based on supervoxel clustering,
our SVConv performs the convolution operation on on-surface
neighbors efficiently. In contrast, PointConv could not ensure the
on-surface neighbors, thus missing the on-surface neighborhood
benefits.

4 SUPERVOXEL-CNN FOR ONLINE 3D SEMANTIC
SEGMENTATION

Based on the progressively clustered supervoxels and the defined
SVConv, we build a deep neural network with all convolution layers,
called Supervoxel-CNN. With Supervoxel-CNN, we demonstrate a
clustering-then-prediction approach for online 3D semantic segmen-
tation with the state-of-the-art efficiency and accuracy.

4.1 Approach
The pipeline of our online 3D semantic segmentation enabled by
Supervoxel-CNN is shown in Fig. 4. It contains an online reconstruc-
tion module with VoxelHashing [Nießner et al. 2013] for camera
pose estimation and dense 3D geometric reconstruction. Along-
side the online reconstruction, we extract the 2D semantic label
information by using a 2D CNN (i.e., SSMA [Valada et al. 2020]
in our implementation) on keyframes. In parallel with the seman-
tic reconstruction, we implement a voxel tracking module to track
the on-surface voxels, whose geometry or semantic label changes
during scene reconstruction. The tracked voxels are arranged in a
buffer and then sent to supervoxel clustering. We perform boundary-
preserving supervoxel clustering in a progressive way to organize
the on-surface 3D voxels as supervoxels, whose voxel-to-supervoxel
index and supervoxel-to-supervoxel neighbors are also efficiently
maintained. The latest supervoxels and their neighbors are then
fed to Supervoxel-CNN to predict the final semantic labels for a
reconstructed 3D scene. Thereafter each voxel 𝑣 ∈ 𝑠 is automatically

assigned with the same label as 𝑠 , and updated back to the recon-
struction process. The online segmentation results at frame 400,
800, 1900, and the final results of scene0435_01 from the ScanNet v2
validation set are presented in Fig. 1. Our proposed Supervoxel-CNN
achieves highly accurate segmentation results, at a processing rate
of about 20fps.

4.2 Supervoxel-CNN
The aforementioned supervoxel convolution makes it possible for
us to build a deep convolution neural network to directly learn the
semantic labels of supervoxels. The backbone of our Supervoxel-
CNN for 3D semantic segmentation is illustrated in Fig. 5. It takes as
input a set of supervoxels S = {𝑠𝑖 , 𝑖 = 1, ..., 𝑛}, with each supervoxel
𝑠𝑖 affiliated with the centroid displacements between its 𝐾 neigh-
borhoods (a 𝐾 × 3 vector) and their corresponding fused 2D-3D
features (a 𝐾 × (9 +𝑀) vector). The input centroid displacement
vector is fed to a set of MLPs with sharing weights, batch normal-
ization and ReLU activation, and then convoluted (matrix multiply)
with the input fused 2D-3D features, followed by 𝐶𝑜𝑛𝑣2𝐷 , Reshape
and MLPs. Finally, a softmax layer is applied to generate the final
semantic probability prediction for supervoxels. Besides, we also
apply a CRFasRNN [Zheng et al. 2015] layer on the output of the
backbones for further smoothing the semantic prediction results.

4.3 Training Details
Preparing Training Data.We train Supervoxel-CNN on the Scan-
Net v2 dataset [Dai et al. 2017a], which contains in total 1,513 real
world RGB-D sequences with annotated 3D scenes, 1,201 sequences
for training and 312 sequences for validation. Since the annotation
data in ScanNet is based on voxels instead of supervoxels, we need
to adapt their data for our purpose. To create the supervoxel-based
training data, we implement a semantic reconstruction system with-
out the Supervoxel-CNN part, called SV-SemanticFusion for short).
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Fig. 5. The backbone of our Supervoxel-CNN architecture.

We use SV-SemanticFusion to collect supervoxels for training. Specif-
ically, the output of SV-SemanticFusion for the 𝑖-th sequence data
is a set of supervoxels with 𝐾 neighbors for each supervoxel, de-
noted as S𝑖 = {𝑠 𝑗 , 𝑗 = 1, ...𝑘𝑖 } with a corresponding position rep-
resentation set F𝑖 = {𝑓 𝑠 |𝑠 ∈ S𝑖 } and a feature representation set
P𝑖 = {𝑃 (𝑠) |𝑠 ∈ S𝑖 } computed as described in Sec. 3.2. For each
computed supervoxel 𝑠 𝑗 ∈ S𝑖 , we seek a ground-truth semantic
label 𝑙 𝑗 ∈ L from the corresponding 3D annotated mesh and denote
the ground-truth label set for S𝑖 as L̂𝑖 = {𝑙 𝑗 , 𝑗 = 1, ..., 𝑘𝑖 }. By col-
lecting all the 1,201 training sequences, we obtain the training data
as T = {⋃𝑖 F𝑖 ,

⋃
𝑖 P𝑖 ,

⋃
𝑖 L̂𝑖 }. In the SV-SemanticFusion system, we

also adopt the SSMA [Valada et al. 2020] to compute the labels.
Training Parameters.When training our Supervoxel-CNN, we

randomly select about 90% of the training data as a training dataset
and the rest for cross validation. We use the Adam optimizer with
the initial learning rate set as 𝑙𝑟 = 10−3. The batch size is set as 16
and the number of epochs is set as 10. We use the categorical-hinge
loss and set the clip value as 0.5 to avoid gradient explosion. We
train the network on a platform with NVIDIA Titan RTX (24G GPU)
configuration. It takes about a few hours to train the network to
reach an accuracy of 93% on the validation set.

5 EVALUATION AND ANALYSIS
To further demonstrate the advantages of our Supervoxel-CNN
and the Supervoxel-CNN based clustering-then-prediction online
3D semantic segmentation approach (short for our approach) over
traditional 2D-to-3D mapping and other learning based methods,
we first conduct extensive qualitative (Sec. 5.1) and quantitative
evaluations (Sec. 5.2) on two public 3D datasets (Scannet v2 [Dai
et al. 2017a] and SceneNN [Hua et al. 2016]), and compare our
approach with some representative offline 3D CNN approaches
(Sec. 5.3). Then we perform an ablation study of the core part of our
approach, i.e the Supervoxel-CNN (Sec. 5.4). Thereafter, we give a
comprehensive time efficiency analysis of our approach (Sec. 5.5)
and perform a time vs accuracy evaluation (Sec. 5.6) to see how our
approach behaves in striking the balance between time efficiency
and segmentation accuracy. In Section 5.7, we summarize our main
limitations and discuss some meaningful directions to improve our
approach.

5.1 Qualitative Evaluation
We first qualitatively compare our approach with two semantic map-
ping approaches, i.e., SemanticFusion (SF) [McCormac et al. 2017a]

and ProgressiveFusion (PsF) [Pham et al. 2019]. SF is a representa-
tion for naïve Bayesian based semantic mapping methods such as
Semantic Reconstruction (SR) [Jeon et al. 2018] and PanopticFusion
(PF) [Narita et al. 2019]. Similar to ours, PsF is the only semantic
mapping method that adopts supervoxels to organize voxels. Since
the original SF implementation is based on surfel-based depth fusion,
we re-implemented it based on TSDF-based depth fusion for a fair
comparison. Besides, we also implemented the PsF system. For fair-
ness, we run all the methods using the same camera trajectory for
each sequence. Fig. 6 shows two representative semantic mapping
results generated by these methods on the ScanNet v2 validation set.
Benefiting from the effective joint 2D-3D learning on supervoxels,
our approach achieves more accurate 3D segmentation results than
both SF and PsF. Please refer to our supplementary material to see
more qualitative comparison results.

5.2 Quantitative Evaluation
In this experiment, we adopt the same setting as the aforementioned
qualitative evaluation and compare the semantic segmentation ac-
curacy using two commonly used metrics, i.e., mAcc and mIoU, as
described by the ScanNet v2 dataset. In addition to the four non-
learning based methods, i.e., SF, PsF, SR, and PF, we also include the
recent work of Zhang et al. [2020] (referred to as FA-PConv), which
is also a deep learning based online 3D segmentation method like
ours.

Comparisons with Non-3D-learning Methods. As shown in
Table 1, our approach achieves significantly higher IoU than all the
four non-3D-learning based semantic mapping methods in all 20
classes. In total, our approach significantly boosts the mAcc and
mIoU with a large margin of 9.3% and 13.3%, respectively, compared
to PsF, which performs the best among the four traditional methods.
This confirms that our approach serves as a practical and effective
learning approach for online 3D semantic segmentation.

Since our approach performs semantic segmentation in an online
manner, we also present the mAcc and mIoU accuracy values of
our system for every 100 frames in comparison with SF and PsF. As
shown in Fig. 7, our approach helps achieve more consistent and
accurate results than the other two traditional approaches.

Comparison with FA-PConv. Since FA-PConv performs con-
volution directly on 3D points, to achieve online performance, this
method randomly samples a much smaller number of points (typi-
cally only 512 points for each frame) as input and thus only predicts
labels for this sparse set of points. A post-processing is thus needed
to ‘transfer’ labels from sparse points to dense points, by assigning
the label of each dense point with that of its nearest sparse point, to
perform the comparison. As shown the comparison results on the
Scannet v2 validation set in Table 1, our approach outperforms FA-
PConv in 8 classes and achieves nearly equal (within 1%) accuracy
in 3 classes in terms of IoU. In total, our approach achieves slightly
higher accuracy than PA-PConv with an improvement of 2.6% and
1.1% for mAcc and mIoU, respectively.

Although our approach performs only slightly better than FA-
PConv in terms of quantitative evaluation, our approach achieves vi-
sually more consistent segmentation results. This is partially due to
that the compact representation (supervoxel) our Supervoxel-CNN
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Fig. 6. Qualitative comparison of semantic segmentation results by different approaches, including SemanticFusion (SF), ProgressiveFusion (PsF), FA-PConv
and ours. The two examples are from scene0430 (top) and scene0575 (bottom) in the ScanNet v2 validation set. Please refer to our supplementary material for
more comparison results.

Table 1. The quantitative accuracy comparison with different online 3D semantic segmentation approaches on the ScanNet v2 validation set, including
SemanticFusion (SF) [McCormac et al. 2017a], Semantic Reconstruction (SR) [Jeon et al. 2018], PanopticFusion (PF) [Narita et al. 2019], Progressive Fusion
(PsF) [Pham et al. 2019], and FA-PConv (FPC) [2020]. For each class, the IoU is reported. ‘↑’ means ‘the larger, the better’ for the underlying metrics(%), and
the numbers in boldface indicate the best performance.
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SF 58.3 72.2 35.7 46.8 46.9 43.7 37.8 35.7 29.5 32.0 21.7 33.2 34.7 46.9 34.3 28.8 65.5 47.2 59.8 34.7 47.4 42.2
SR 66.9 80.6 31.7 52.6 64.0 58.3 51.6 30.9 21.1 31.2 7.3 24.0 26.1 30.3 56.3 23.6 73.3 46.2 69.7 33.3 65.6 44.0
PF 65.7 81.0 44.8 67.0 66.7 61.3 54.8 35.6 45.9 48.4 30.2 35.8 42.0 53.3 47.0 50.8 82.1 52.6 57.5 40.3 68.7 53.1
PsF 70.6 87.1 48.6 61.2 68.4 59.8 54.0 47.5 47.0 65.7 25.7 41.7 48.9 54.9 41.8 34.5 78.9 53.4 65.6 43.7 70.3 55.0
FPC 83.8 91.9 60.9 82.3 75.1 77.9 68.9 64.8 56.3 64.0 40.6 56.0 58.2 64.8 64.2 51.7 87.0 63.5 85.4 46.4 77.0 67.2
Ours 80.5 91.1 60.5 78.5 80.6 72.6 64.4 60.5 61.7 79.1 35.0 59.3 59.9 70.4 57.5 75.2 86.4 61.3 73.4 57.8 79.6 68.3

adopted has the advantage of overcoming inconsistent segmenta-
tion. Fig. 6 shows several representative visual comparison examples
evaluated on the Scannet v2 validation set. The segmentation results
of FA-PConv are noisy in some object areas (such as ’chair’ areas in

Fig. 6). In contrast, our results are more consistent. Please refer to
our supplementary material for more visual comparisons.
Besides, we also evaluate our approach on the Scannet v2 hid-

den test in the Scannet benchmark1. Our approach (termed as

1http://kaldir.vc.in.tum.de/scannet_benchmark/, 21st Oct. 2020
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’Supervoxel-CNN’) achieves an mIoU of 63.5, ranked as the state-of-
art online 3D semantic segmentation approach (till the time of this
submission). Please refer to our supplementary material to see the
detailed comparison results.
Evaluation on SceneNN. Besides the ScanNet v2 dataset, we

also perform an evaluation on the SceneNN dataset [Hua et al. 2016]
to test the generalization ability of our approach. The SceneNN
dataset is a public indoor 3D dataset consisting of various indoor
scenes, e.g., offices, dormitory, classrooms, pantry etc., with 50 scans
for the training and 26 scans for the test. Since only the 50 scans
in the training set have public ground-truth semantic annotations,
we perform the evaluation on those 50 scans. To evaluate the gen-
eralization ability of our approach, we only use the weights of
Supervoxel-CNN pre-trained on the ScanNet v2 training dataset,
without fine-tuning on SceneNN scans. The FA-PConv [Zhang et al.
2020] results are obtained using its publicly released code2 with the
default parameters settings. The segmentation accuracies of SF and
PsF are fetched from the original paper of PsF [Pham et al. 2019].
Besides, we also adopt the segmentation accuracy metrics (i.e., mAcc
and wIoU) used in PsF. Table 2 shows the average mAcc and wIoU
of the four compared approaches evaluated on the SceneNN. Our
method significantly outperforms SF and PsF in both the mAcc and
wIoU accuracy, with more than 15% improvement. Our method also
achieves a higher accuracy than FA-PConv with about 5% accuracy
improvement in both mAcc and wIoU. Please refer to our supple-
mentary materials for the detailed accuracy results on each scan
and the visual comparison results on the SceneNN dataset.

Table 2. Comparison of the segmentation accuracy (average mAcc(%) and
wIoU(%)) on the SceneNN dataset with the compared approaches, i.e., Se-
manticFusion (SF) [McCormac et al. 2017a], ProgressiveFusion (PsF) [Pham
et al. 2019], FA-PConv(FPC) [Zhang et al. 2020], and ours. Please refer to
the supplementary material for the detailed segmentation accuracy.

Metrics SF PsF FPC Ours
mAcc↑ 58.50 61.60 71.70 76.93
wIoU↑ 47.13 52.21 63.88 69.00

5.3 Comparisons with 3D CNNs
Our approach performs online semantic segmentation, which is
different from many existing 3D CNN-based methods for offline 3D
scene segmentation. However, to evaluate the segmentation accu-
racy of our method against the state-of-the-art methods, we also
compare our approach with these offline segmentation methods by
evaluating the semantic segmentation accuracy on a final recon-
structed surface. For the 3D CNNs, we choose three state-of-the-art
methods, i.e., PointNet++ [Qi et al. 2017b], 3DMV [Dai and Nießner
2018] and MinkowskiNet [Choy et al. 2019], and use their open-
source code (or accuracy reported in the original papers) for the
comparison. The evaluation is again performed on the ScanNet v2
validation set. Table 3 shows the mAcc accuracy of the final seg-
mentation results using the four compared methods. Our approach

2https://github.com/jzhzhang/FusionAwareConv

achieves higher mAcc accuracy than PointNet++ and 3DMV, but
lower than MinkowskiNet.

Although MinkowskiNet achieves better segmentation accuracy
than our approach, it is nontrivial to directly apply MinkowskiNet
to our online task. One important issue is the time efficiency. In
the online semantic segmentation task, a huge number of 3D vox-
els (about millions) make the voxel-based semantic prediction very
time-consuming with MinkowskiNet. This is verified by the timing
evaluation made in Sec. 5.5. An alternative solution is to progres-
sively predict the voxels’ semantic labels for a partially reconstructed
scene. However, as shown in Fig. 8, MinkowskiNet often fails to
make accurate semantic prediction for partially reconstructed 3D
objects. This suboptimal performance for partially reconstructed 3D
objects is a common issue for the 3D geometry learning approaches
such as PointNet, PointNet++, and MinkowskiNet. In contrast, our
approach performs better, mainly because of our adopted 2D-3D
joint learning strategy, which makes use of more descriptive 2D
deep features for partially reconstructed 3D objects. Please refer to
our supplementary materials for more visual results.

SVConv versus PointConv. As aformentioned in Sec. 3.2, the
design of our SVConv has several advantages over the original Point-
Conv [Wu et al. 2019] for the online 3D semantic segmentation task.
To verify our claims, we build a PointConv-Uniform model, which
performs a progressive semantic prediction on the uniformly sam-
pled on-surface voxels with PointConv. For an efficient implemen-
tation, we use the supervoxels’ centroids as the uniformly sampled
on-surface voxels, since our supervoxel clustering can be seen as a
nearly uniform voxel sampling. For feature representations, since
those centroids are isolated voxels without neighboring information,
we use the label distribution projected from 2D CNN as the feature
representation fed to PointConv. Table 4 shows that our approach
also outperforms this alternative solution with an improvement of
4.5% and 2.9% in mAcc and mIoUrespectively, demonstrating that
our proposed SVConv is more effective than PointConv.

5.4 Ablation Study
Boundary-preserving Supervoxel. To investigate the impact of
the boundary-preserving supervoxels on the 3D semantic segmen-
tation accuracy, we trained Supervoxel-CNN using non-boundary-
preserving supervoxels (generated by VCCS [Papon et al. 2013], as
shown in Fig. 9), referred to as “Supervoxel-CNNw/o BP”. As shown
in Table 4, compared to Supervoxel-CNN trained on boundary-
preserving supervoxels, this non-boundary-preserving Supervoxel-
CNN drops off 4.3% and 2.6% in mAcc and mIou, respectively. One
main reason would be that the non-boundary-preserving supervox-
els are inherently more likely to mis-classify the voxels close to ob-
ject boundaries. Fig. 10 shows a visual comparison between seman-
tic segmentation using “Supervoxel-CNN FULL” and “Supervoxel-
CNN w/o BP”.

2D/3D Features. A descriptive feature is crucial for learning.
To verify the importance of the fused 2D-3D features, we train
Supervoxel-CNN using only the 3D geometric feature 𝑓 𝑠 or the 2D
semantic prediction probability feature 𝑃 (𝑠) as the feature represen-
tation for every supervoxel 𝑠 , called “Supervoxel-CNN w/o 3D” and
“Supervoxel-CNN w/o 2D”, respectively. As shown in Table 4, the
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Fig. 7. The progressive mAcc accuracy values (1st Column) by three compared methods, including SemanticFusion (SF), ProgressiveFusion (PsF), and ours,
tested on sequences scene0025 (top), scene0217 (middle) and scene645 (bottom) from the ScanNet v2 validation set. 2nd and 3rd Column: the progressive and
final 3D segmentation results by our method. Please refer to the supplementary material for more results.

Table 3. The quantitative accuracy comparison of the final semantic segmentation results between our approach and offline semantic segmentation methods on
the ScanNet v2 validation set, including PointNet++ (PN++) [Qi et al. 2017b], 3DMV (with 5-views) [Dai and Nießner 2018], and MinkowskiNet (MkNet) [Choy
et al. 2019]. Note that the result values of PN++ and 3DMV are adopted from the original paper of 3DMV with only the Acc reported for each class. So the
results of MkNet and ours also report the Acc for each class in the table for easy comparison.
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PN++ 89.5 97.8 39.8 69.7 86.0 68.3 59.6 27.5 23.7 84.3 0 37.6 66.7 48.7 54.7 85.0 84.8 62.8 86.1 30.7 60.2
3DMV 73.9 95.6 69.9 80.7 85.9 75.8 67.8 86.6 61.2 88.1 55.8 31.9 73.2 82.4 74.8 82.6 88.3 72.8 94.7 58.5 75.0
MkNet 93.5 97.6 78.9 85.7 92.9 85.8 77.8 88.6 74.2 89.1 45.3 75.9 85.6 75.1 85.7 93.0 91.8 77.8 91.6 71.2 82.9
Ours 90.5 95.1 76.0 83.8 89.0 85.0 77.4 75.8 74.7 89.7 47.8 74.3 77.6 79.2 67.5 90.1 93.9 73.1 80.2 70.6 79.6

fused 2D-3D feature representation indeed contributes to a higher
semantic segmentation accuracy, and the 2D semantic feature is
more descriptive than the 3D geometric feature. This is reasonable
since the 2D feature has been solidified for prediction through the
SSMA [Valada et al. 2020], while the 3D feature is still raw.

Besides, to study the influence of SSMA, we have also imple-
mented the SF and PsF using SSMA for 2D semantic prediction,
termed as SF-SSMA and PsF-SSMA, respectively. As shown in Ta-
ble 4, though SSMA helps improve the accuracy of SF and PsF, our
Supervoxel-CNN still outperforms PsF-SSMA and SF-SSMA with
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Fig. 8. Visual comparison of the segmentation results of scene616 (ScanNet
v2) between our method (b) and MinkowskiNet (a) adapted for online seg-
mentation. Note that MinkowskiNet makes wrong prediction of a partially
observed chair (frame 121) and a door (frame 982) in the online task.

Fig. 9. Visual comparison between boundary-preserving supervoxel clus-
tering (Left) and VCCS [Papon et al. 2013] (Right) on the scene0427 from
the ScanNet v2 validation set. Note that our method better respects the
underlying object boundaries.

Fig. 10. Visual comparison between the semantic segmentation results of
scene0609 of the ScanNet v2 validation set, using Supervoxel-CNN FULL
(a) and Supervoxel-CNN w/o BP (b).

an improvement of 7.2% in mAcc and 6.9% in mIoU w.r.t. PsF-SSMA
and even larger w.r.t SF-SSMA.
CRFasRNN Inference. We inspect how Supervoxel-CNN per-

forms without CRFasRNN inference, referred to as “Supervoxel-
CNN w/o CRFasRNN” in Table 4. CRFasRNN is a data-driven ap-
proach that leads to spatially consistent semantic prediction by
reformulating the CRF inference as RNN inference in a deep leaning
way [Zheng et al. 2015]. We thus adopt the CRFasRNNmodule to en-
courage more consistent semantic predictions between neighboring
supervoxels. Although CRFasRNN inference does not significantly

Fig. 11. Visual semantic segmentation results of Supervoxel-CNN for scene
scene0406 from the ScanNet v2 validation set, with (a) or without (b) CR-
FasRNN inference.

Table 4. The 3D semantic segmentation accuracy (mAcc and mIoU) of
different models (or methods) evaluated on the validation set of the Scannet
v2 dataset. Please refer to our supplementary materials for the statistic
details for both the mAcc and mIoU metrics.

Model mAcc mIoU
SF-SSMA 65.4 59.1
PsF-SSMA 68.6 61.4

PointConv-Uniform 75.1 65.4
Supervoxel-CNN w/o BP 75.3 65.7
Supervoxel-CNN w/o 3D 74.0 64.2
Supervoxel-CNN w/o 2D 70.1 62.4

Supervoxel-CNN w/o CRFasRNN 78.9 68.1
Supervoxel-CNN FULL 79.6 68.3

boost the semantic segmentation accuracy number, it makes the
final results spatially more consistent, as shown in Fig. 11. Besides,
we show more visual results in the supplementary materials.

Supervoxel Neighborhood. The number of supervoxel neigh-
borhoods, i.e. 𝐾 in Sec. 3.2, used in SVConv also influences the
performance of our Supervoxel-CNN. To study how the number of
supervoxel neighborhoods effects our Supervoxel-CNN, we train
the Supervoxel-CNN on the Scannet v2 training set with different
values of 𝐾 for the SVConv, and evaluate the segmentation accuracy
(mAcc and mIoU) on the Scannet v2 validation set. Fig. 12 shows
the average mAcc and mIoU accuracy over the 312 scans of Scannet
v2 validation set. In general, the segmentation accuracy increases
with the increasing number of supervoxel neighborhoods when
𝐾 <= 10 and doesn’t take much effects when 𝐾 > 10. So in all of
our experiments we set 𝐾 = 10 for best segmentation accuracy of
our Supervoxel-CNN.

5.5 Time Analysis
Complexity Analysis. Our approach performs online 3D seman-
tic segmentation following the clustering-then-prediction fashion.
For supervoxel clustering, the time complexity is 𝑂 (𝑁𝑙𝑜𝑔(𝑁 )) with
𝑁 being the voxel number. Note that in our progressive cluster-
ing, the voxel number 𝑁 in region 𝑈 ′ (Sec. 3) is a relatively small
number (around 4000 in our experiments). The time complexity of
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Fig. 12. The average mAcc (a) and mIoU (b) accuracy statistics of our
Supervoxel-CNN with the respect to the number of supervoxel neighbor-
hoods 𝐾 , tested on the Scannet v2 validation set.

Supervoxel-CNN prediction is 𝑂 (𝑀) with𝑀 being the supervoxel
number. The supervoxel number𝑀 is also a small number in the lat-
est on-surface region (Sec. 3). Besides, the supervoxel neighborhood
searching during the SVConv of our Supervoxel-CNN is𝑂 (1), which
is simply performed by querying the neighborhood array stored for
each supervoxel, benefiting from the connectivity structure after
the supervoxel clustering.
System Timing. We evaluate the time efficiency between differ-

ent online semantic segmentation methods, including SemanticFu-
sion (SF), ProgressiveFusion (PsF), FA-PConv, and ours. Since the
approaches of SF, PsF, and ours consist of both the 3D dense recon-
struction component and semantic segmentation component, while
FA-PConv only focus on the semantic segmentation component
without a dense 3D reconstruction component, for a fair compar-
ison, we focus only on the semantic prediction component for all
the four systems. Specifically, we calculate the average semantic
prediction rate when the number of frames increases during the 3D
reconstruction on the Scannet v2 validation set.

As shown in Fig. 13, SF is the most efficient approach and achieves
average 25fps prediction rate. PsF achieves average 18fps predic-
tion rate and our approach achieves average 20fps prediction rate.
Specifically, our progressive supervoxel clustering step takes aver-
age 18ms and Supervoxel-CNN prediction takes average 32ms only,
since the number of supervoxels is small during the online task.
Please note that the prediction time depends on multiple factors
including the scene size, supervoxel size, etc. (see the evaluation in
Sec. 5.6). FA-PConv achieves average 10fps prediction rate, which
is slower than our approach partially due to the time-consuming
neighborhood management scheme during their fusing-aware point
convolution. Note that FA-PConv would slow down further if it is
integrated into a dense 3D reconstruction system.

Compared to these approaches, our approach achieves compara-
ble online prediction rate (near real-time) with SF (slightly faster
than PsF) but with significantly better accuracy, and at least 2× faster
prediction rate than FA-PConv with better segmentation results,
which strikes the best balance between efficiency and accuracy. We
also evaluate the processing time of an online 3DCNN approach
(adopting MinkowskiNet to predict all voxel’s semantic labels at
each timestep). Please refer to the accompanying video for live
demonstration of both the data from the ScanNet dataset and real
shot scenes.

Fig. 13. The semantic prediction rate curves of different online methods.
Here, the online 3DCNN is implemented using MinkowskiNet.

GPU Storage Usage. Our system consumes GPU memory stor-
age mainly in three modules: the SSMA 2D semantic prediction
module, the clustering-then-prediction 3D semantic prediction mod-
ule, and the 3D reconstruction module. The SSMA module with
default parameters setting costs about 1G GPU memory storage. In
our 3D semantic prediction module, the clustering (including the
voxel tracking, progressive supervoxel clustering, etc.) costs about
0.7G GPU memory storage, and Supervoxel-CNN prediction costs
about 1G GPU memory storage. The 3D reconstruction module con-
sumes the most, and uses about 10G GPU memory storage with a
voxel size of 0.01m.

5.6 Timing vs Accuracy Evaluation
The semantic prediction timing and segmentation accuracy in our
approach would be mainly influenced by two factors: (1) the super-
voxel size 𝑅, which plays a crucial role in both the clustering and
prediction stages and directly influences the prediction timing and
segmentation accuracy. Note that supervoxels are clustered into
a similar pattern once the supervoxel size is configured [Lin et al.
2018]; (2) the scene size, which affects the CPU/GPU computation
and storage for the entire system, thus influencing the prediction
timing and segmentation accuracy indirectly. To evaluate how our
approach behaves under different supervoxel sizes and scene sizes
in terms of the prediction timing and segmentation accuracy, we per-
form another evaluation of our system on the ScanNet v2 validation
set.
For the ScanNet v2 validation set, we found the floor area of all

the 312 indoor scenes varies from about 3𝑚2 to 60𝑚2, with intervals
[21𝑚2, 60𝑚2], [13𝑚2, 21𝑚2] and [3𝑚2, 13𝑚2] each containing about
1
3 of the scenes. We thus randomly select 10 scenes for each of the
floor area intervals, and mark them as ‘Large’ scenes, ‘Moderate’
scenes, and ‘Small’ scenes, respectively. For all the 30 selected scenes,
we test our full system with supervoxel size 𝑅 varying from 0.1m
to 0.5m (a step of 0.05m), and compute the corresponding semantic
prediction rate (in fps) and segmentation accuracy (in mAcc). For
comparison, we also test the SemanticFusion and ProgressiveFusion
systems on these scenes with the same supervoxel size configu-
rations. Note that supervoxel size is a parameter for supervoxel
clustering [Papon et al. 2013], we also use it to control the clustering
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Fig. 14. The average semantic prediction rate and segmentation accuracy curves for large scenes (a), moderate scenes (b) and small scenes (c) with different
supervoxel’s sizes (horizontal axis) respectively, by three online semantic segmentation methods (SemanticFusion, ProgressiveFusion and ours) evaluated on
the ScanNet v2 dataset. Please refer to the supplementary material for the detailed timing and accuracy curves of each individual scene.

in ProgressiveFusion though their intermediate clustering results
would not guarantee boundary-preserving like ours.

Fig. 14 shows the average semantic prediction rates and segmen-
tation accuracy values for Large, Moderate and Small scenes, with
respect to different supervoxel sizes. Our approach’s semantic pre-
diction rate increases slightly with the increasing superovoxel size
𝑅 (about 2fps increment from 0.1m to 0.5m). This makes sense since
when the supervoxel size become larger, the total number of su-
pervoxels to be fed to our system becomes smaller, thus making
the overall system faster. For the segmentation accuracy, the mAcc
first increases with the supervoxel size varying from 0.1m to 0.3m
and then decreases from 0.3m to 0.5m (with peak at around 0.25m).
The scene size mainly influences the semantic prediction rate, with
18-20fps in large scenes, 20-22fps in moderate and small scenes, but
has little influence on the segmentation accuracy. This is partially
due to that large CPU/GPU computation and storage in large scenes
will slow down the performance of our supervoxel clustering and
Supervoxel-CNN prediction.

To strike a trade-off between efficiency and accuracy, we set the
supervoxel size as 0.25m with the highest segmentation accuracy
and around 20fps average semantic prediction rate of all scene size.
For SemanticFusion, the different supervoxel size does not affect
the semantic prediction rate or the segmentation accuracy, since
SemanticFusion does not adopt supervoxel-based prediction. Note
that there are small variations in the prediction rate and accuracy
curves of SemanticFusion due to multiple tests. ProgressiveFusion
behaves similarly to our approach but has a lower prediction rate
and segmentation accuracy.

5.7 Limitations and Discussion
A main limitation of our approach is that we could not correct
wrong 2D semantic labels from the 2D CNN. As shown in Fig. 15,
since SSMA wrongly detects a monitor (marked ‘1’ in the figure) as
part of a wall, our approach fails to correct it. Another limitation
is that our approach could not segment small objects very well,

partially due to the unbalanced 3D annotation dataset for training.
A small object would be wrongly assigned as a semantic label of its
neighboring region or others (e.g., the three small objects marked ‘2’
in the figure are labeled wrongly). One feasible solution to overcome
these limitations might be to design a more effective end-to-end 3D-
to-3D semantic mapping deep neural network trained on balanced
a sufficiently annotated 3D dataset. Besides, the 3D reconstruction
quality would influence the final semantic segmentation results,
though 3D reconstruction quality is not the focus of our approach.
We assume that the reconstruction system can provide reliable

camera poses for the online task. The challenging cases raised by
camera tracking lost, re-localization or loop closure are not seriously
explored in our approach yet. Our Supervoxel-CNN performs the
2D-3D joint learning by aggregating the 2D-3D features only. How-
ever, we have not explored how to improve the 2D feature learning
(such as the SSMA module), thus enhancing the 2D-3D feature ag-
gregation in turn. Our current implementation determines the final
prediction for each supervoxel based on the latest prediction by
our Supervoxel-CNN, which might lead to gradually non-stabilized
predictions. A more robust solution might be to determine the label
of each supervoxel based on the last 𝑁 predictions for temporally
more consistent predictions. Besides, the performance of 2D CNNs
would be effected by camera views [Kundu et al. 2020] thus in-
fluencing our 2D-3D feature aggregation. This could be improved
by introducing a view consistent constraint to the 2D-3D feature
aggregation for better 3D segmentation consistency, which is not
explored in our current solution yet. Lastly, a comprehensive re-
training with both synthetic and real-world data for the 2D CNN
module and Supervoxel-CNN could further improve the generaliza-
tion capability of our approach, though our preliminary evaluation
found that re-training Supervoxl-CNN on the ScanNet v2 dataset
augmented with the synthetic data from SceneNetRGB-D [McCor-
mac et al. 2017b] did not lead to significant improvement in terms of
segmentation accuracy. We think these above mentioned points are
interesting points to explore in the future to improve our system’s
robustness and segmentation accuracy.
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Fig. 15. A failure case of our approach evaluated on scene0645 of the Scan-
Net v2 dataset.

6 CONCLUSION
In this paper, we have introduced SVConv, the first attempt to per-
form convolution on supervoxels for efficient and effective learn-
ing on a dense 3D representation. Based on SVConv, we present a
supervoxel-based deep neural network with fully convolution layers,
i.e. Supervoxel-CNN, and propose a clustering-then-prediction online
dense 3D semantic segmentation approach based on the Supervoxel-
CNN, which transforms the complicated 2D-to-3D semantic map-
ping for the dense voxels to a novel, learnable and effective 3D
semantic prediction with joint 2D-3D learning on progressively
clustered supervoxels. Our approach outperforms other online 3D
semantic segmentation methods, achieving the state-of-the-art se-
mantic segmentation results. We hope that our work can inspire
more efficient solutions using deep neural networks for the impor-
tant 3D semantic mapping task in computer graphics, computer
vision, and robotics communities. In the future, we would like to
apply SVConv for other 3D geometry learning tasks like semantic
instance segmentation [Hou et al. 2019].
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