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In this supplementary document, we provide further de-
tails of the implementation used in our experiments, as well
as more experimental results.

1. Experiment and Evaluation

1.1. Implementation Details

As illustrated in our paper (Section 3.2), our generative
model is trained to learn the motion distribution at frame
t with τ previous poses and control signals in the current
and τ previous frames. In this way, the generative model
based on flows is able to synthesize motions autoregres-
sively. Specifically, we set τ = 10.

Each step of flow contains a coupling layer. We first split
the input a of the coupling layer into two parts a = [a′, a′′]
in the channel dimension. In more detail, the input a con-
tains the data of τ previous poses and control signals in the
current and τ previous frames. Then, we transform one part
of the input a′′ based on the scale and translation parame-
ters, which are extracted from the remaining part a′ by us-
ing the invertible Transformer. The invertible Transformer
in each coupling layer consists of two layers, followed by
a linear transformation (Section 4.1 in our paper). Dur-
ing training, the linear transformation is initialized by zeros.
Thus, the scale parameters are initialized close to ones and
translation parameters are initialized with zeros [2, 3]. Con-
sequently, the effect of the coupling layer is initially close
to an identity transformation to facilitate training our deep
networks [5].

During motion style transfer, we generally infer the la-
tent style from the input style motion. In addition, we edit
the style code in the latent space to generate multiple plau-
sible results. In more detail, we infer the latent codes zsi
from motions in the style si and calculate the difference of
max(zsi) − min(zsi) as a direction of the latent space to

manipulate the motion style si. Note that our method is
unsupervised during training and uses the style labels only
during testing.

1.2. Latent Code Visualization

As discussed in our paper (Section 3.2), we use the la-
tent codes inferred from the generative flow model to con-
trol motion styles. To get a better understanding of how
the generative flows learn to synthesize stylized human mo-
tions, we infer the latent codes by our proposed generative
flow model and project the latent codes onto a 2D space by
using t-SNE (Section 4.2). Below, we show more experi-
ment results of latent style codes.

Latent Style Code. In our paper (Section 4.2), we eval-
uate the clustering results of latent codes from the gen-
erative flows with different invertible transformation set-
tings (i.e., baseline: without imposing an invertible trans-
formation, with an invertible LSTM, and with an invert-
ible Transformer). The clustering results show that the in-
vertible Transformer outperforms the other settings (Section
4.2). We also evaluate the motion style transfer results qual-
itatively to confirm the superiority of the invertible Trans-
former. As shown in Figure 1, our model with the invert-
ible Transformer can transfer the “sexy” style of a walking
motion to a running motion, while the other settings fail to
transfer the style and preserve the content.

In our paper (Section 4.2), the latent codes inferred from
walking samples of dataset A are plotted to show how the
generative flows learn to synthesize stylized motions in the
same content (walking). Here, we show the projected 2D
latent codes from random motion samples of different mo-
tion contents (i.e., jump, kick, punch, run, trans, walk) in
dataset A. As shown in Figure 2 (b), the latent style codes
inferred from our model can be clustered in accordance with
motion contents. We notice that the latent codes of “trans”
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Figure 1. Qualitative comparison of our model with different
settings, namely, without imposing an invertible transforma-
tion (Baseline), with an invertible LSTM, and with an invertible
Transformer. The style of a walking motion (in a “sexy” style)
is transferred to a running motion (in an “angry” style). The full
video sequences can be found in the supplemental video.

motions are not clustered into a group, because the motions
in the “trans” content represent transition movements (e.g.,
from “walk” to “run”), which are similar to other motions in
contents. The result implies that our model can synthesize
stylized motions, considering not only the style properties
but also the content properties of motions. In Figure 2 (a), it
can be seen that the style codes extracted by the network of
Aberman et al. [1] are not related to the motion contents. As
illustrated in [1], their network encodes motion styles and
contents into latent codes, separately. However, it is hard
to perform motion style transfer in a similar way for differ-
ent motion contents. For example, the “childlike” style may
have an influence on the “walk” motion with lively move-
ments of upper limbs, and may have an influence on the
“kick” motion with slow movements of lower limbs. As
shown in Figure 3, the model of Aberman et al. [1] fails to
transfer the “childlike” style of a running motion to a kick-
ing motion and preserve the kicking motion content. How-
ever, our model is able to synthesize a new kicking motion
in the “childlike” style successfully.

The motion samples of a specific style in dataset A are
captured in different contents, separately. For example,
childlike walking movements and childlike kicking move-
ments are captured in different motion samples. Thus, the
style latent codes from motion samples in the same con-
tent (walking) in dataset A can be clustered according to

(a) (b)

Figure 2. Style latent codes extracted by the network of Aberman
et al. [1] (a) and our generative flow model (b). The latent codes
are extracted from motion samples in dataset A and are projected
onto 2D space by using t-SNE, and colored according to their mo-
tion contents.

Input Style

Input Content

Aberman et al.

Ours

Figure 3. Qualitative comparison between our model and that of
Aberman et al. [1]. Our model is better at transferring a “childlike”
style of a running motion) to a kicking motion while preserving
the motion content. The full video sequences can be found in the
supplemental video.

style labels (as illustrated in our paper, Section 4.2). How-
ever, the motion samples of a specific style in dataset B are
performed by a character in different contents without parti-
tions between the contents. Thus, there are many transition
motions (e.g., from “walk” to “turn” and from “walk” to
“kick” ) in dataset B. Here, we also show the projected 2D
latent codes, which are inferred from random motion sam-
ples in dataset B (Figure 4). It can be seen from Figure 4
that the latent codes learned by the generative flow model
are not clustered according to style labels. This may be due
to the fact that most of the motion samples in dataset B are
transition motions. The latent codes learned from a mixture
of transition motions tend to manipulate the style proper-
ties, relying on motion contents. However, our model can
still successfully learn to synthesize stylized motions based
on dataset B, as shown in Figure 5 and our supplementary



Figure 4. Style latent codes extracted from motion samples in
dataset B are projected onto 2D space by using t-SNE, and col-
ored according to their style labels.

video.
Unseen Styles. As shown in our paper (Section 4.2),

our generative flows can not only learn to cluster the action
samples in the same style, but also generalize to the sam-
ples in an unseen style. Here, we perform experiments to
verify the generalization ability of the generative flows in a
more challenging scenario. We retrain our model on dataset
A without the motions that are labeled by the “strutting”
label or “old” label, and then test the retrained model us-
ing the motions including the “strutting” and “old” styles.
The latent codes of unseen “strutting” and “old” styles ex-
tracted by the network of Aberman et al. [1], are close to
the “proud” and “angry” styles (Figure 6), respectively. In
contrast, the latent codes of unseen styles from our model
are clustered successfully. The experiment result demon-
strates that the generative flows can infer latent style prop-
erties from unseen style motion samples with very limited
training data, implying that the proposed generative flow
model has a good generalization ability for applications.

1.3. Plausible Results.

As illustrated in our paper (Section 3), our model is prob-
abilistic and is able to generate plausible motions in a spe-
cific style. In more detail, we edit the style latent code in-
ferred from a style motion in the latent space to generate
multiple plausible results, as shown in Figure 7.

1.4. User Study.

As illustrated in our paper (Section 4.3), we have com-
pared our model to other methods with qualitative experi-
ments. We also conduct a user study to qualitatively eval-
uate our synthesized motion results in terms of the realism,
style expressiveness, and content preservation as suggested
by [1]. 50 subjects have been invited to participate in the
user study, and most of them have no experience (about

Realism Style Content
Mocap 53.6% − −
Holden et al. [4] 36.6% 20.4% 24.2%
Aberman et al. [1] 39.8% 32.4% 40.2%
Ours 47.8% 47.2% 35.6%

Table 1. User study results.

52%) or are beginners (about 32%) in the research on hu-
man motion. For evaluating our model, the participants are
shown to the human motions represented by using 3D stick
skeletons in a fixed camera angle.

First, we evaluate the realism of different motions. We
prepare in total 10 sets of motions. Each set of motions
contains 4 motions, obtained from four different sources:
(1) Results from Mocap datasets, (2) Results of Holden et
al. [4], (3) Results of Aberman et al. [1], (4) Results of
our method. Specifically, the results of (2), (3) and (4) are
generated with the same inputs. The users are asked to an-
swer a question: “Which of the motions is realistic?”, and
to choose one of the five answers: (1), (2), (3), (4) or None.

We receive 500 (= 50 participants × 10 sets of motions
per participant) responses for the question of realism eval-
uation, and report the realism ratios for each motion source
in Table 1. It is shown that only 53.6% of the motions from
Mocap datasets are judged as realistic. This is possibly be-
cause most of the users are not familiar with human motion
studies. Specifically, the users tend to judge the motions
in special styles (e.g., running in the “old” style) as not re-
alistic. However, the results still confirm that the motions
generated by our model are the most realistic compared to
those by the other two methods.

Second, we compare our style transfer results to those of
Holden et al. [4] and Aberman et al. [1] in terms of style
transfer and content preservation. Similarly, we prepare 10
sets of motions, each including a style input, a content input,
and three transferred results by the three compared meth-
ods. Among each set of 3 evaluated transferred results, we
ask the users to first select the motion whose style is closer
to the input style motion (“ Which of the motions is more
similar to the input style motion in style?”), and then select
the motion whose content is closer to the input content mo-
tion (“ Which of the motions is more similar to the input
content motion in content?”). 7 sets of the above motions
involve input motions in different styles but in the same con-
tent, because it is difficult for common users who are not
familiar with human motion studies to judge style transfer
results from input motions in different contents (e.g., trans-
fer the style of a kicking motion in the “childlike” style to a
running motion in the “old” style).

We receive 500 responses respectively for evaluating the
style transfer and content preservation. The results are
shown in Table 1. It is shown that our method is judged
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Figure 5. Samples of two representative style transfer results on database B. In each example, the input style motion (a) and input content
motion (b) are used to synthesize an output motion (c). The style of a walking motion (in a “depressed” style) is transferred to a running
motion in the first row, and the style of a walking motion (in a “zombie” style) is transferred to a transition motion (from walking to
kicking). The full video sequences can be found in the supplemental video.
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Figure 6. The t-SNE visualization of latent codes from unseen
styles, extracted by the network of Aberman et al. [1] (a) and
our generative flow model (b). Both of the models are trained on
dataset A excluding the action samples in the “strutting” label and
“old” styles to evaluate their generalization abilities.

Input Style

Input Content

Plausible Results

Figure 7. Plausible results of stylized motion synthesis by our gen-
erative flow model.

better than the methods of Holden et al. [4] and Aberman et
al. [1] in the aspect of style transfer. However, the method
of Aberman et al. [1] is judged better than our method in
the aspect of content preservation. The reason is that 70%
of the evaluated motions provide input motions in the same
content to make it easy for the common users to evaluate the
style transfer results. Our model tends to generate stylized
motions more similar to the style motion with input motions
in the same content (as illustrated in our paper Section 4.2).
Then, some of the users judge such results as not similar to
the content motion. Furthermore, we evaluate the content
preservation with input motions in different contents only (3
sets of motions are used), and the results are 19.3%, 38.7%
and 42% for the method of Holden et al. [4], the method of
Aberman et al. [1] and our method, respectively. It can be
seen that our method outperforms the methods of Holden
et al. [4] and Aberman et al. [1] in the aspect of content
preservation based on input motions in different contents.
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