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Abstract

Style-based motion synthesis is an important problem in
many computer graphics and computer vision applications,
including human animation, games, and robotics. Most ex-
isting deep learning methods for this problem are super-
vised and trained by registered motion pairs. In addition,
these methods are often limited to yielding a determinis-
tic output, given a pair of style and content motions. In
this paper, we propose an unsupervised approach for mo-
tion style transfer by synthesizing stylized motions autore-
gressively using a generative flow modelM. M is trained
to maximize the exact likelihood of a collection of unlabeled
motions, based on an autoregressive context of poses in pre-
vious frames and a control signal representing the move-
ment of a root joint. Thanks to invertible flow transforma-
tions, latent codes that encode deep properties of motion
styles are efficiently inferred byM. By combining the latent
codes (from an input style motion S) with the autoregressive
context and control signal (from an input content motion
C),M outputs a stylized motion which transfers style from
S to C. Moreover, our model is probabilistic and is able
to generate various plausible motions with a specific style.
We evaluate the proposed model on motion capture datasets
containing different human motion styles. Experiment re-
sults show that our model outperforms the state-of-the-art
methods, despite not requiring manually labeled training
data.

1. Introduction
In computer graphics, there has been a long-standing in-

terest in synthesizing characteristic motions in varied styles,
since this task benefits various applications including hu-
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Figure 1. Our stylized motion synthesis that transfers the style
from an input style motion to an input content motion. The gener-
ative flow model is trained via unsupervised learning on unlabeled
motion data of different styles. The trained model extracts the
style latent codes from the input style motion. Then, it outputs
a high quality stylized motion with the style latent codes (from
the input style motion), the autoregressive context and the control
signal (from the input content motion).

man animation, games, and robotics, etc. Early meth-
ods rely on handcrafted features to design different motion
styles [38, 2]. To release the burden of handcrafted fea-
ture design, data-driven motion style transfer methods us-
ing deep learning models have been proposed. They auto-
matically learn useful features from the input motion sam-
ples. However, most of the existing deep learning meth-
ods [19, 36, 43, 35] are supervised and require paired and
registered data to perform style transfer. Such methods also
need a large number of motion samples to extract a specific
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style. Therefore, these methods are limited by a tedious pre-
process to collect a large amount of motion data for training.
For example, actors have to perform several motion cycles
in different styles with almost identical steps, followed by a
motion registration step.

Recently, Aberman et al. [1] propose a style transfer
method, which does not require paired and registered train-
ing data. However, the method still requires motion samples
with manual labeling styles. It encodes input content and
style motions into latent codes for content and style, which
are then recombined and decoded to output a stylized mo-
tion. Since they use a deterministic model to extract style
and content latent codes, the output motion is also deter-
ministic. Moreover, their model is built upon 1D temporal
convolutional layers. Thus, its raw outputs have some arti-
facts, which should be resolved with additional efforts. For
example, the foot contact positions of the output motion are
corrected in accordance with the input content motion to
address the problem of foot skating during walking. Then,
dynamic time warping is used to make the global velocity of
the output motion to properly reflect the style of the input
style motion (e.g., when transferring the style from “old”
walking to “neutral” walking, the global velocity should de-
crease).

In this paper, we propose an unsupervised method
for motion style transfer by synthesizing stylized motions
based on a generative flow modelM.M is trained to max-
imize the exact log-likelihood (rather than a lower bound of
it in other models such as variational autoencoders (VAEs))
over unlabeled motions of different styles captured in re-
ality. Therefore, the synthesized motions from M are hu-
manlike and have no artifacts such as foot skating. Com-
pared to [1], the distinguishing feature of our method is to
be trained via unsupervised learning and output a high qual-
ity stylized motion in a probabilistic way. The probabilistic
nature of the generative flow model offers more flexibility
to remove the artifacts appearing in the deterministic results
in [1]. Through invertible flow transformations, the latent
codes that encode deep properties of motion styles are ef-
fectively inferred from the input style motion. Then, the
inferred latent codes are combined with the input content
motion for synthesizing various plausible stylized motions
directly. To the best of our knowledge, we are the first to in-
troduce the generative flow model into stylized motion syn-
thesis. We improve the efficiency ofM by performing the
flow transformation on one half of the motion features and
keeping the other half unchanged, based on the affine cou-
pling layers [6, 7, 22]. A transformer is further imposed
into the invertible flow transformation to extract autoregres-
sive features. Experiment results show that the transformer
enables the generative flow model to learn a flexible latent
distribution properly.

In summary, we make three contributions in this paper:

(1) We introduce the generative flow model for motion style
transfer by synthesizing stylized motions with input style
and content motions. The probabilistic nature of the model
offers more flexibility to generate high quality stylized mo-
tions; (2) Thanks to the invertible flow transformations in
the generative model, the latent codes are efficiently in-
ferred from the input style motion to encode deep style fea-
tures; (3) We impose the transformer into each invertible
flow transformation in our generative model. The model
learns a flexible latent distribution, in which the latent vec-
tors are able to encode deep properties of the motion style
that is unseen during training, and thus it successfully trans-
fers the unseen style to the content motion.

2. Related Work

2.1. Motion Synthesis

Motion synthesis methods can be broadly categorized
into deterministic and probabilistic methods. The determin-
istic methods [5, 15, 24, 44] yield a single motion for a given
condition (prior poses and/or control signals). They usually
regress towards the mean pose, failing to produce distinct
and lifelike motions. In contrast, the probabilistic motion
synthesis methods are able to generate a range of possible
output motions with the given information, by building mo-
tion models of all plausible pose sequences. Next, we focus
on the probabilistic motion synthesis methods, which are
closely related to our work.

Traditional methods [4, 30] assume a Gaussian or Gaus-
sian mixture distribution for motion samples, and use lo-
cal linear models for probabilistic motion synthesis. In re-
cent years, VAEs have been applied to model human mo-
tions along a given path [14] and to generate head mo-
tions from speech [11, 12]. Generative adversarial net-
works (GANs) [34], and adversarial training [9, 42] were
also applied to generate motions and similar tasks, such as
generating speech-driven videos of talking faces [40, 41,
32, 31]. GANs avoid regression towards the mean pose.
However, GANs still have some limitations, such as in-
tractable or ill-defined likelihoods [13]. On the contrary,
a less explored methodology normalizing flows (or flows),
especially a variant called generative flows, permit tractable
and efficient inference [23, 28, 16]. In particular, the gener-
ative flow model can be trained efficiently using exact max-
imum likelihood to describe highly complex motion distri-
butions. Normalizing flows have been used for motion syn-
thesis and motion reconstruction [16, 45]. The aforemen-
tioned researches mainly focus on motion synthesis given
the movement condition (prior poses and/or control sig-
nals). In our work, we develop a generative flow model
for stylized motion synthesis based on both the style from
the input style motion and the movement condition from the
input content motion.
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2.2. Motion Style Transfer

Early works for motion style transfer designed hand-
crafted features in the frequency domain [38] or in the time
domain [2] to manipulate styles. Instead of using the hand-
crafted features, machine learning methods that infer style
features from training data have been proposed [19, 36, 43,
35]. Hsu et al. [19] represented the relationships between
different styles with a linear time-invariant model [25]. Tay-
lor et al. [36] used restricted Boltzmann machines condi-
tioned on a specific style label to model motion styles. Xia
et al. [43] constructed a mixture of regression models by a
KNN search over a database of motions to transfer style be-
tween motion pairs. Smith et al. [35] later improved the
method [43] by using a neural network trained on regis-
tered motion pairs. All above methods required a complex
collection procedure for pair-wise motion samples in dif-
ferent styles. As a comparison, our proposed method uses
unpaired motion collections without style labels for train-
ing.

More recently, deep learning has become popular to
tackle the problem of character animation controlled by
styles [17, 18]. Specifically, the flourishing image style
transfer techniques [10, 20] have been successfully adapted
to the task of motion style transfer [18, 17, 8, 1]. Gatys
et al. [10] showed that image styles can be described by
the statistics of features extracted from a pre-trained im-
age classification network. Inspired by the idea of Gatys
et al. [10] for image style transfer, Holden et al. [18] pro-
posed a deep learning framework, which enables motion
style transfer. They extracted style features by an au-
toencoder, which was pre-trained based on paired motion
clips. However, the method was not efficient, because
a slow optimization procedure was required for motion
style transfer between each pair of style and content mo-
tions. Holden et al. [17] and Du et al. [8] improved the
efficiency of the method [10] by replacing the optimiza-
tion with a feed-forward network for motion style trans-
fer. Huang et al. [20] proposed an Adaptive Instance Nor-
malization (AdaIN) layer to impose different style statistics
into a deep learning network, thus enabling apply different
styles to an image directly. Aberman et al. [1] proposed
to use temporally invariant AdaIN parameters to learn mo-
tion styles [20]. They constructed a style transfer network
to encode motions into two latent codes for the content and
style [1]. Specifically, the style code is extracted by the
AdaIN mechanism from the style motion, and is used to
modify the second-order statistics of the features of the en-
tire content motion.

The aforementioned methods either require a dataset of
paired and registered motion data [18, 17, 8], or a dataset of
labeled motion data [18, 17, 8, 1]. These methods are thus
not well suited for practical applications. In this paper, we
propose a generative flow model that can be trained via un-

supervised learning over a collection of unlabeled motions.

3. Method

In this paper, we propose a new approach for motion
style transfer by synthesizing various plausible stylized mo-
tions based on generative flows. The generative flows en-
able maximisation of the exact log-likelihood of data sam-
ples and efficient inference of latent codes (Sec. 3.1). To
synthesize stylized motions (Sec. 3.2), the model is trained
on a collection of motion samples in different styles. In
more details, we train the model to parameterise the con-
ditional probability distribution of a pose based on an au-
toregressive context (the previous poses) and a control
signal (root joint movement in the current and previous
frames). A stylized human motion is synthesized autore-
gressively, by generating the pose in each frame from the
probability distribution with the latent codes inferred from
the input style motion (instead of random sampling), given
the autoregressive context and the control signal from the
input content motion. Since the generative flows are in-
vertible, the latent codes that represent deep properties of
different motion styles are inferred efficiently. In addition,
we propose a novel flow architecture to make the genera-
tive flow more efficient and expressive for modeling motion
samples in different styles, as demonstrated in our experi-
ments (Sec. 4.2).

3.1. Generative Flow Model

In this subsection, we briefly review the notation of gen-
erative flows. Generative flows are conceptually attractive,
due to tractability of the exact log-likelihood and efficient
latent-code inference. Tractability of the log-likelihood is
beneficial for training on motion samples, and we can in-
fer the latent style codes for stylized motion synthesis effi-
ciently.

Given a dataset X = {x1, ..., xN} with an unknown
complex distribution, it is typical to perform maximum
marginal likelihood to learn its parametric model [23]:

log p(X) =

N∑
i=1

log p(xi). (1)

To make the marginal likelihood easy to compute and dif-
ferentiate directly, normalizing flow (or flow) has been in-
troduced in previous works [33, 6, 7].

The key idea of the flow is to transform a simple, fixed
distribution Z to obtain a new, more complex distribution
X. In flow-based generative models [33, 6, 7], a data sam-
ple x from a complex distribution can be generated as:
x = gθ(z). Here, z is a latent variable from the simple
distribution Z modeled as pθ(z), which has tractable den-
sity with parameters θ. The function gθ is invertible to
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allow not only efficient sampling but also efficient infer-
ence. Then, the inference of the latent variable z is done
by z = g−1θ (x) = fθ(x).

To make the invertible function f (with parameter θ
omitted for brevity) flexible and expressive, numerous sim-
pler nonlinear transformations {fk}Kk=1 are chained to-
gether: f = f1◦f2◦ ...◦fK . Thus, the relationship between
x and z can be defined as follows:

z
fK−→ hK−1

fK−1−→ ...
f2−→ h1

f1−→ x, (2)

x = f(z) = f1(f2(...fK(z))), (3)

z = f−1(x) = f−1K (f−1K−1(...f−11 (x))), (4)

where the transformation fk is named as flow and parame-
terized by θk (omitted in fk for brevity). Using the change-
of-variables formula [27], the log-likelihood of a data sam-
ple x can be computed as:

log pθ(x) = log pθ(z) +

K∑
k=1

log |det
∂hk
∂hk−1

|, (5)

where log |det ∂hk

∂hk−1
| (called log-determinant) is the log-

arithm of the absolute value of the determinant of the Ja-
cobian matrix ∂hk

∂hk−1
. Computing the log-determinant in-

curs the complexity close to O(D3), which is infeasible
for data of high-dimension D [27]. Many flow transfor-
mations [33, 23, 22] have been explored to reduce the com-
putation complexity. Based on these works, we propose a
novel generative flow architecture for learning motion sam-
ples, and it will be described in the following subsection.

3.2. Stylized Motion Synthesis

Here, we introduce how to design the architecture of our
network based on the notation of generative flows to syn-
thesize realistic stylized human motions.

Motion Representation. We represent the motion data
by 3D Cartesian coordinates of all joint positions in a skele-
ton. Specifically, the coordinates are expressed in a root-
relative coordinate system, whose origin is on the floor be-
low the root joint. In our implementation, there are in total
21 joints in a human skeleton, resulting in 63 degrees of
freedom for the motion. Thus, a motion clip m ∈ RT×d
is represented as a sequence of T frames, where each pose
mt has d = 63 channels. Moreover, we use a control sig-
nal c ∈ RT×3 to represent the movement of the root joint,
which is encoded by the forward, sideways, and angular ve-
locity of the root [18].

Motion Generative Model. Similar to previous autore-
gressive generative models [23, 28, 16], our model for mo-
tion synthesis is developed as:

p(m|c) = p(m1:τ |c1:τ )ΠT
t=τ+1p(mt|mt−τ :t−1, ct−τ :t),

(6)

Generative 
Flow

tc1-tc 1+tc 2+tc2-tc⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅

Control Signal

{

Autoregressive 
Context

Synthesized Pose

tm1-tm 1+tm 2+tm2-tm

Figure 2. Illustration of our autoregressive motion generative
model. The output motion (in orange) mt at time t is synthesized
by the generative flow model with the inputs (in purple) including
the autoregressive context of previous poses and the control signal.

where the motion distributionmt at frame t depends only on
τ previous motions mt−τ :t−1 and the control signal values
from the current and previous frames ct−τ :t, as illustrated
in Figure 2. Next, we describe how to use flows to learn the
generative model effectively.

Flow Architecture. Real-valued non-volume preserv-
ing (RealNVP) models [6, 7] adopt a type of bipartite flow,
which performs nonlinear transformations to one part of the
input. It is efficient to do the flow transformation by using
one part of the input, because the remaining part is kept un-
changed. Inspired by these models, we propose a new type
of flow for motion generation, and show its architecture in
Figure 3.

In our flow, we denote its input motion features and out-
put latent codes as a and b, respectively. Firstly, the input
is split into two equal parts a = [a′, a′′]. Then, we trans-
form half of the input based on the scale and translation
parameters extracted from the remaining half with an affine
coupling layer, similar to the bipartite flow [6, 7]. Mathe-
matically, the affine coupling operation is defined as:

[b′, b′′] = [a′, (a′′ + µ)� δ], (7)

where δ > 0 and µ denote the scaling and translation pa-
rameter terms, respectively. The transformation with the
affine coupling is invertible as: a′′ = δ−1b′′ − µ. In ad-
dition, the calculation of its log-determinant is efficient for
training and evaluation [23, 28].

The affine coupling layer described above is not expres-
sive, because a stack of coupling layers alone compute only
an affine transformation on half of the input, while doing
nothing to the other half [6, 7]. Dinh et al. [6] proposed to
shuffle the order of variables between each flow to learn
more flexible distributions. A linear transformation with
equal number of input and output channels can be seen as
a generalization of a permutation operation [22], so we use
a linear transformation W as the permutation operation be-
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Figure 3. Architecture of our proposed flow. The input motion
features of the flow is firstly split into two parts a′ and a′′. A
coupling layer applies a transformer to a′,mt−τ :t−1 and ct−τ :t, to
extract two transformation parameters, consisting of a translation
µ and a scaling δ. The output of the transformations is b′′ from a′′.
mt−τ :t−1 denotes the autoregressive context of τ previous poses,
and ct−τ :t denotes the control signal representing movement of the
root joint. Finally, b′′ is concatenated with the other part b′, which
keeps the same as the input part a′. The direction of each arrow
shows the transformation of features in the forward propagation.
� denotes element-wise product and ⊕ denotes element-wise sum.

tween coupling layers. As illustrated in [22], W is de-
fined by an LU-decomposition W = LU to simplify the
log-determinant. The non-fixed elements in L and U are
trainable parameters.

To make our flow more expressive, we further improve
the affine coupling by imposing a transformer [39] to ex-
tract parameters for the invertible transformation. In more
details, the invertible transformation is proposed based
on autoregressive functions, such as recurrent neural net-
works (RNNs) and Transformers [39]. The autoregressive
functions have been successfully applied to many domains
for modeling sequential data [26, 3, 37]. Specifically, RNNs
have been widely used for the task of modeling motion se-
quences [26, 3]. However, RNNs generally have a critical
drawback of error accumulation. Transformers outperform
RNNs by constructing long-range dependencies based on
attention mechanisms, and enabling parallelizable training.
In this way, we use the transformer for encoding autore-
gressive information and extracting transformation param-
eters, i.e., µ, δ = T (a′,mt−τ :t−1, ct−τ :t), where the trans-
former T (Figure 3) computes a location-scale transforma-
tion based on the input motion features a′, the autoregres-
sive context mt−τ :t−1 and the control signal ct−τ :t.

In our model, we improve the flow by imposing the trans-
former into the coupling layer. Moreover, the linear trans-
formation is adopted between the coupling layers. Finally,
we apply a normalization operation to the whole coupling
output to facilitate a deeper architecture and avoid instabil-
ity problems [6, 7]. Specifically, we adopt an affine trans-
formation using a scale and bias parameter per channel [22]
to normalize the output, instead of using batch normaliza-

tion [6, 7], to save the memory consumption.
Style Inference and Transfer. The proposed flow-based

generative model is trained to learn the motion distribution
at frame twith previous poses and control signals in the cur-
rent and previous frames. Thus, we can use the generative
model to synthesize motion sequences autoregressively. To
control the style of the synthesized motion, we use the la-
tent code z inferred from the input style motion, instead of
a random variable or sampling from a reduced-temperature
model [29]. As discussed in Sec. 3.1, invertible flows en-
able efficient inference (Eq. 4). Given the input style mo-
tion, its latent code can be inferred by our flow-based gener-
ative model efficiently. Then, the style is transferred to the
content motion by using the latent code of the style motion,
the autoregressive context and the control signal of the con-
tent motion to synthesize output motions autoregressively.
Moreover, we can edit the style latent code inferred from the
style motion in the latent space to generate various plausible
stylized motions.

4. Experiment and Evaluation
4.1. Implementation Details

We use two different datasets with various types of mo-
tions [1] to train our generative flow model. The first
dataset, captured by Xia et al. [43], contains eight types
of motion sequences with different contents (e.g., walking
and jumping). The second dataset [1] contains more mo-
tion samples, which were performed by a single person in
16 distinct styles. In the following discussions, we refer to
the first and second datasets as A and B, respectively. All
the motion sequences in both the datasets are downsampled
to 30 frames per-second, and sliced into short overlapping
clips of 32 frames with overlap of 8. As a result, there are
about 1500 motion clips in dataset A, and the clips are split
into a train set and a test set with the split ratio of 9:1. In
dataset B, the motion clips are split into a train set (18830
clips) and a test set (256 clips).

In the whole network, 16 steps of flow are used in the
generative model. The transformer in each coupling layer
consists of two layers, followed by a linear transformation.
We implement the model in PyTorch, and train the model
to maximize the log-likelihood (minimize the negative log-
likelihood) on motion samples of the training dataset by the
Adam optimizer.

4.2. Latent Code Visualization

We show several representative results of stylized motion
synthesis by our model in Figure 4. Please find the full
motion clips in the supplementary video. The results show
that our model can synthesize a motion sequence based on
a given style from an input style motion, while retaining the
content of an input content motion.
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(a) (b) (c)

Figure 4. Samples of two representative style transfer results. In each example, a style motion input (a) and a content motion input (b)
are used to synthesize an output motion (c). The style of a kicking motion (in a “strutting” style) is transferred to a jumping motion (in a
“sexy” style) in the first row, and the style of a running motion (in an “old” style) is transferred to a walking motion (in an “angry” style)
in the second row.

(a) (b) (c)

Figure 5. Style latent codes extracted by our generative flow model are projected onto 2D space using t-SNE, and colored according to their
style labels. In the generative flow model, different settings of the coupling layer (i.e., without imposing an autoregressive function (a),
with an autoregressive LSTM (b) and with a transformer (c)) are evaluated. The model is trained on dataset A, which has eight different
styles of motions. The latent codes of motions in “sexy” style are clustered more properly by imposing the transformer into the coupling
layer, compared to the other settings.

Setting SC CHI
Baseline 0.36 727.51
LSTM 0.42 1049.95
Transformer 0.48 1245.48

Table 1. Evaluation of clustering results of latent codes inferred by
our generative flow model with different settings. Silhouette Co-
efficient (SC) and Calinski-Harabaz Index (CHI) are used for the
evaluation. Higher SC and CHI values represent better clustering
results.

We infer the latent codes by our proposed generative flow
model from walking motion samples of dataset A. Then,

the latent codes are projected onto a 2D space by using t-
distributed stochastic neighbor embedding (t-SNE) [1]. We
plot the projected latent codes in 2D to get a better under-
standing of how the generative flows learn to synthesize
stylized human motions.

Latent Style Code. As previously discussed (Sec. 3.2),
we use the latent codes inferred from the generative flow
model to control motion styles. We project style latent
codes onto 2D space, and color each action sample based
on its style label. As shown in Figure 5, the latent codes
are clustered into groups of different styles. It demonstrates
that our proposed generative flows can learn distributions
of motions in different styles, and the latent codes encode
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(a) (b)

Figure 6. Illustration of latent codes from unseen styles. The latent
codes are extracted by the network of Aberman et al. [1] (a) and
our generative flow model (b). Both of the models are trained on
dataset A excluding the action samples in the “strutting” style to
evaluate their generalization abilities.

deep properties of motion styles. Thus, the motions in the
same style may be manipulated in a similar way based on
the corresponding latent codes. What’s more, it is obvious
that the latent codes of the “neutral” style are more central-
ized in the style latent space than the other styles (as shown
in Figure 5). It demonstrates that generative flows tend to
learn to branch from the neutral style into the other styles,
and it is consistent with common sense.

Next, we evaluate different settings (i.e., without im-
posing an autoregressive function, with an autoregressive
LSTM and with a transformer) of the invertible transforma-
tion in the coupling layer of the flow architecture, as illus-
trated in Figure 5. We use the flow architecture, in which the
coupling layer has no autoregressive function as the base-
line. As shown in Figure 5, the latent codes of motions with
the “sexy” label are clustered more properly by the gen-
erative model with the transformer, compared to the other
two settings. Specifically, we calculate Silhouette Coeffi-
cient (SC) and Calinski-Harabaz Index (CHI), to evaluate
the clustering results of the latent style codes, which are
extracted by our generative flow model with different set-
tings. The clustering results are better with higher values
of SC and CHI. In Table 1, it shows that the clustering re-
sults of the latent style codes inferred from our generative
flow model with the Invertible Transformer outperform the
other settings. As illustrated in Sec. 3.1, flows are defined
to transform a simple, fixed distribution to obtain a more
complex distribution. The more flexible the latent distribu-
tion, the better the generative model for parameterising the
exact distribution of real motion samples. Consequently,
the more proper clustered latent codes (motions in the same
styles are close to each other in the latent space) can be in-
ferred from the generative flows. The comparison results of
latent codes (shown in Table 1 and Figure 5) confirm that
our proposed flow transformations with the transformer is
more expressive for encoding motion styles in latent space.

Unseen Styles. In practice, our model may be used to
extract styles from arbitrary motions. However, it is uncer-

Method CC SC
Holden et al. [18] 21.6± 6.6 11.3± 5.0
Aberman et al. [1] 57.9± 21.4 69.5± 18.1
Ours (Zero Initialize) 20.0± 5.2 23.3± 5.5

Table 2. Quantitative comparison of our method to the approaches
of Holden et al. [18] and Aberman et al. [1]. Content consis-
tency (CC) and style consistency (SC) are used as evaluation met-
rics. Lower CC and SC values represent better results .

tain whether the model can be successfully used for daily
applications, when it is trained on motion samples in lim-
ited styles. To verify this, we train our model on dataset
A without the motions that are labeled by the “strutting”
label, and then test it using the motions including the “strut-
ting” style. As seen in Figure 6, the network of Aberman
et al. [1] successfully clusters the samples with styles that
can be seen during training. However, the motions in style
“strutting” that is never seen during training are adapted to
a visually similar style “proud”. For example, the “proud”
style codes are close to those of “strutting” in Figure 6 (a).
On the contrary, our generative flows can not only learn to
cluster the action samples in the same style, but also gener-
alize to the samples in an unseen style during training. The
experiment demonstrates that the generative flows can infer
latent style properties from even unseen style motion sam-
ples, implying that the proposed generative flow model has
a good generalization ability.

4.3. Comparison

We compare our method with the related works of
Holden et al. [18] and Aberman et al. [1], both of which
perform a similar task for motion style transfer. Similar to
the seminal work of Gatys et al. [10] for image style trans-
fer, Holden et al. [18] perform style transfer by optimizing
a motion sequence to satisfy the constraints of both the con-
tent and the style. Aberman et al. [1] perform style transfer
by encoding motions into two latent codes, one for content
and the other for style. During the process of style transfer,
the style code modifies the content features by adopting the
temporally invariant AdaIN [21]. Then, a post processing is
required to match the foot contact and global velocity of the
output motion and those of the input motions.
Quantitative Evaluation. If the input content motion and
the input style motion share the same style label, it is more
reasonable that the output motion of style transfer is more
close to the content motion. With this observation, we
use all pair-wise motion sequences from the test collec-
tion (containing 56 motion sequences) in dataset A with the
same style labels to generate output motions, and compute
the average Euclidean distance between the output motions
and the corresponding content motions along the temporal
dimension, to evaluate the content consistency (CC). Since
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Input Style Input Content Aberman et al.[2020]Holden et al.[2016] Ours

Figure 7. Qualitative comparison of our method to the approaches of Holden et al. [18] and Aberman et al. [1]. The input and content
motions are from dataset B. The full video sequences and more results can be found in the supplemental video.

the test motion clips in dataset A may have different lengths,
we make the pair-wise test motions with the same style la-
bels consistent in length for evaluating the SC.

We compare the CC of our method with the state-of-
the-art methods [18, 1] to evaluate the superiority of our
method. As shown in Table 2, the stylized motions synthe-
sized by our model with input motions outperform those by
the other methods in retaining the content input. Specifi-
cally, we can generate plausible motions with different mo-
tions in the previous initialized frames, such as initialized
with zero. As the generative flows learn to parameterise
the exact log-likelihood on motion data samples, the output
motion is realistic and retains content consistency very well
for the same label. Similarly, we also evaluate the style con-
sistency (SC). In case the content input and the style input
share the same content, it is expected that the output motion
of style transfer is close to the style motion.

In Table 2, it can be seen that the approach of Holden
et al. [18] can keep the style consistency well, but strug-
gles to keep the content consistency. The main reason is
that both content and style representations are manually de-
fined and derived from the same deep features. Specifically,
they represent the content as a set of deep features that are
extracted by a motion autoencoder, and describe the style
by the Gram matrix of those features. This may lead to a
dependency of content and style. Generally, the method of
Holden et al. [18] tends to produce an output motion that
is more consistent with the input style motion. Aberman
et al. [1] impose a content consistency term into their loss
function to extract deep properties that are shared among
samples of the same style class in a more proper way, and
their method performs better in keeping the content consis-
tency than keeping the style consistency. However, the CC
and SC values are higher compared to the other two meth-
ods. The result may due to considering no specific control-
ling over the movements of the root joint, which have great
effect on the whole motions.
Qualitative Evaluation. Qualitatively, we perform the
comparison with the related approaches [18, 1] for motion
style transfer. We choose input style and content motions
from dataset B, in which the motion samples have complex
rotations in the root joint. We use the motions from dataset

B to evaluate the superiority of our model to control the
motion content. As shown in Figure 7, the content of the
motion sequence generated by our method is retained better
than the previous work [18, 1]. Specifically, the root rota-
tion movements of our synthesized motion are more similar
to those of the content motion compared to the results by
the other two methods, though the output motion is gener-
ated from our model directly, without any further steps for
manipulating the global velocity. Moreover, the motions
generate by the related method [1] may have some draw-
backs like crossing hands, while the motions generated by
our model are more realistic.

5. Conclusion

In this paper, we present a novel method based on gen-
erative flows for motion style transfer by synthesizing styl-
ized motions directly, with the latent code (inferred from
the input style motion), the autoregressive context and the
control signal (from the input content motion). Specifically,
our model can be trained on a collection of motion samples
in different styles in an unsupervised manner. As no style
labels are required during training, the model can be eas-
ily applied in daily life. Moreover, our experiments show
that the proposed generative flow model has a good gener-
alization capability for encoding latent style codes, since it
can successfully synthesize motions in styles that are un-
seen during training.

Our model has a limitation in synthesizing stylized mo-
tions of characters that have body proportions from those
which are not seen during training. However, the problem
can be solved by performing motion retargeting before mo-
tion synthesis. We notice that motion retargeting is another
important topic in the scope of human motion study, and we
will study it in the future work. Another future work is to
solve the problem of synthesizing stylized human motions
in different skeletal structures in an end-to-end manner.
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