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Figure 1: Given a man-made object (a), structure-preserving shape editing produces shape variation (b). In some scenarios, when the
original structure does not match the shape variation (c), structure-varying shape editing might be more preferred (d). Our structure-adaptive
editing tool automatically decides whether a structure should be preserved (b) or changed (d).

Abstract
One of the challenging problems for shape editing is to adapt shapes with diversified structures for various editing needs. In
this paper we introduce a shape editing approach that automatically adapts the structure of a shape being edited with respect
to user inputs. Given a category of shapes, our approach first classifies them into groups based on the constituent parts. The
group-sensitive priors, including both inter-group and intra-group priors, are then learned through statistical structure analysis
and multivariate regression. By using these priors, the inherent characteristics and typical variations of shape structures can
be well captured. Based on such group-sensitive priors, we propose a framework for real-time shape editing, which adapts the
structure of shape to continuous user editing operations. Experimental results show that the proposed approach is capable of
both structure-preserving and structure-varying shape editing.

1. Introduction

Shape editing, which aims to generate new variations of existing
shapes via a moderate amount of user interactions, has been ex-
tensively studied in the past decades. The recent efforts have been
mainly put to the design of editing frameworks for man-made ob-
jects, which often exhibit rich structural information.

Among the existing shape editing approaches for man-made ob-
jects, some of them [GSMCO09, ZFCO∗11] leverage the geomet-
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rical characteristics of an input shape as constraints to optimize the
edited shapes, while others [FAvK∗14, YK14] are proposed to ex-
tract editing constraints from a shape collection via statistic anal-
ysis. However, the edited shapes by most of these approaches are
structure-preserved. That is, editing manipulation on a given mod-
el leads to continuous shape variations, while the shape structure,
namely the constituent parts of the model, keeps unchanged during
editing. On the other hand, many shape synthesis approaches [S-
FCH12, KCKK12] focus on the creation of structure variations vi-
a parts replacement. This inspires us that the shape structure, in
many real-world scenarios, needs to be varied in the editing process
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Figure 2: Chairs in three structure groups with different colors.

(i.e., structure-varying editing, see Figure 1). Therefore, it is nec-
essary to develop a unified framework that supports both structure-
preserving and structure-varying shape editing.

To address this problem, this paper introduces a novel ap-
proach for structure-adaptive shape editing. Given a dataset of pre-
segmented shapes, with editable parts and sufficient structure vari-
ations, we cluster the editable parts by their spatial positions and
enumerate all part types in each shape category. As a consequence,
the structure of each shape can be represented by a binary vec-
tor with each component indicating whether the shape contains a
specific type of part. We define a distance metric to measure the
similarity of structures, with which each shape category is divided
into multiple structure groups by using spectral clustering (Figure
2). Based on these groups, we learn the inter-group and intra-group
priors through statistical structural analysis and multivariate regres-
sion, respectively. Such group-sensitive priors enable an interactive
tool for structure-adaptive shape editing. This is achieved through
a two-step approach: after the user edits a certain part, the inter-
group prior is first employed to determine a proper structure for the
edited shape, and then all parts of the shape are refined according to
the intra-group prior. Experimental results show that the proposed
editing framework is simple and easy to use, and can be used to
create interesting shape- and structure-variations.

Our work has made two main contributions: 1) we propose a
unified framework that adaptively combines both structure-varying
and structure-preserving shape editing; 2) we learn group-sensitive
priors from each category of 3D models and use such priors for
structure-adaptive shape editing.

2. Related Work

We focus our review on existing editing techniques for man-made
objects.

Shape manipulation. Several methods have been proposed to
facilitate the manipulation of man-made objects, especially for
structure-aware shape processing [MWZ∗13]. The analyze-and-
edit approaches like iWIRES [GSMCO09] and Component-wise
Controllers [ZFCO∗11] used the relations between shape part-
s or features to constrain the shape during editing. Yang et al.

[YXG∗13] proposed a framework for multidomain subspace defor-
mation. Lin et al. [LCOZ∗11] performed structure-preserving re-
targeting of irregular 3D architecture models by decomposing the
input model into a set of 1D structures. Shao et al. [SLZ∗13] used
shape editing to interpret concept sketches. However, the structure
in these approaches is preserved by the characteristics from the s-
ingle input shape, but not inferred from a set of shapes as our goal.

Recently a few approaches like Meta-representation [FAvK∗14]
and Co-Constrained Handles [YK14] have been proposed to lever-
age a category of database shapes to learn the deformation con-
straints for shape manipulation. These data-driven shape editing
approaches are most related to our work. Their pairwise parameter
constraints perform well in structure-preserving editing. However,
they mainly focus the parameter pairs in the same kind (e.g., the
width of backrest and the width of seat), possibly missing some la-
tent relations between different kinds of parameters (e.g., the ro-
tation of backrest and the length of seat). In contrast, our work
employs multivariate regression to reveal the richer relations with-
in different kinds of parameters associated with a shape catego-
ry. Besides, compared to all the above works, our work support-
s structure-adaptive shape editing, enabling the creation of more
variations that are structurally valid.

Analysis of shape collection. With the growing abundance of
3D shape collections, many approaches have been proposed to
shape co-analysis to get semantic parts and even their structure
hierarchy. Strategies, such as spectral clustering [SvKK∗11], sub-
space clustering [HFL12], active analysis [WAvK∗12], sparse re-
construction [XSX∗14], have been employed in shape segmenta-
tion, which is of great benefit to our work. Some other literatures
such as [WXL∗11, VKXZ∗13] focused on the hierarchical struc-
ture of man-made shapes, and inspired us to handle the structure
types with the constituent parts. Besides, Xu et al. [XLZ∗10] pro-
posed style-content separation by analyzing the objects at the part
level. Ovsjanikov et al. [OLGM11] presented a method for discov-
ering and exploring continuous variability in a shape collection.
Huang et al. [HSS∗13] presented a method for organizing a het-
erogeneous collection of 3D shapes for overview and exploration.
Kim et al. [KLM∗13] produced a set of probabilistic part-based
templates that capture the styles and variations in a category of
3D shapes. Averkiou et al. [AKZM14] directly parameterized the
template space for coupled shape exploration and synthesis. In our
work, we use the shape’s constituent parts to encode the structure,
and cluster the shapes into several groups to learn the priors for
structure-adaptive shape editing.

Assembly-based modeling. There have also been many works on
assembly-based modeling, which automatically synthesizes novel
shapes by recombining a set of part-based shapes. Funkhouser et
al. [FKS∗04] proposed a Modeling by Example system to form new
objects with retrieved source models. Kreavoy et al. [KJS07] used
common component structures to create new models by exchanging
parts. Shen et al. [SFCH12] presented a bottom-up structure recov-
ery approach based on part assembly with respect to raw depth da-
ta. A Sketch-to-Design system [XXM∗13] was proposed to design
models guided by user sketches. Smart Variations [ZCOM13] was
a purely geometric approach based on functional substructures for
part reshuffling. Alhashim et al. [ALX∗14] introduced an algorithm
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Figure 3: Overview of our framework. Two major stages are involved in the proposed editing framework, including a learning stage (offline)
and an editing stage (online). The learning stage learns group-sensitive priors that describe the shape and structure variations among
a category of shapes, while the editing stage employs such priors to adaptively refine the shape and/or structure driven by user editing
operations. Note that in the given cases of shape editing, the original parts are highlighted in green, and the edited parts are highlighted in
blue.

for generating novel 3D models via topology-varying shape blend-
ing. Chaudhuri et al. [CKG∗13] presented an approach for users
to create visual content using relative semantic attributes expressed
in linguistic terms. Schulz et al. [SSL∗14] proposed a data-driven
method for designing actual physical objects that can be fabricated.
Another way to shape synthesis is to learn the probabilistic models
from a shape repository such as [CKGK11,KCKK12]. In our paper,
when the structure of a shape needs to changed, a part replacement
step is employed with the proper new parts suggested based on the
relevant existing parts, and a deformation optimization step is then
employed to ensure all parts well connected.

3. Overview

In this work we propose an interactive shape editing approach that
automatically adapts the structure of a shape being edited with re-
spect to user edits. The same as [SFCH12], we focus on four cate-
gories of man-made objects, including chairs, airplanes, tables and
bicycles. Most models are from the datasets in [SFCH12]. We also
insert some new models like benches and tricycles into the datasets
to enrich each category. As a preprocessing step, the centers, scale,
and front and upright orientations of all shapes in the same category
are normalized. Every model in each category is also decomposed
into several meaningful parts, which can be edited by users. This
can be achieved by using the state-of-the-art segmentation tech-
niques [ARSF09, WAvK∗12]. Note that, we expect each shape to
be adequately segmented to provide meaningful editable parts, and

it is not necessary to consistently or semantically label each part in
the preprocessing step.

As illustrated in Figure 3, our framework consists of two major
stages: an offline learning stage and an online editing stage. In the
learning stage, shapes in each category are clustered into multiple
groups according to their structures (i.e., the constituent parts). In
the clustering process, a binary vector structure descriptor is first
extracted to characterize the constituent parts of each shape. Based
on such descriptors, a distance metric is then defined to measure
the similarity of two structures so that each category of shapes can
be divided into groups via spectral clustering [LZ04]. As a conse-
quence, the shapes in the same group have similar structures, while
the shapes in different groups have remarkably different structures
(see Figure 2). Given these groups, two kinds of prior knowledge
are learned through statistic analysis of structure and multivariate
regression, respectively. These priors capture the inherent charac-
teristics of inter- and intra-group variations of shapes, which will
be used as the guidance for shape editing.

In the editing stage, each part of the input 3D model is first repre-
sented by an OBB (Oriented Bounding Box) by using the approach
in [FAvK∗14]. Each OBB is characterized by 9 parameters, includ-
ing the 3D scale, position and orientation (see Figure 4 for OBBs
and their parameters). Based on these OBBs, various user editing
operations, including adding, removing, translating, rotating and s-
caling, can be applied to the OBBs so as to edit the input shape.
The structure of the edited shape might be inappropriate after vari-
ous editing operations (see Figure 1 (c)). Then a structure-adaptive
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Figure 4: Each part of the shape is represented by an oriented
bounding box (OBB). The part’s scale and position parameters are
respectively described by the OBB’s axial lengths and the central
position (relative to the model center), and the rotation parameters
are described by the projection angle between the OBB’s axis and
global coordinate axis as shown in right.

shape editing process is employed to automatically refine both the
structure and the geometry of the edited shape. In this process,
structure adaption is first applied to determine a proper structure for
the edited shape. After that, a shape refinement step is employed to
optimize the geometry of all parts based on the determined struc-
ture to obtain visually pleasing models.

To achieve structure-adaptive shape editing, we need to address
two key problems:

• How to learn the group-sensitive priors that capture the geomet-
ric and structural variations of shapes in the same category?
• How to adaptively edit shapes with the assistance of the learned

group-sensitive priors?

In the next two sections, we will show our detailed solutions to
these two problems.

4. Learning Group-sensitive Priors

In this section we first introduce how to cluster shapes into group-
s according to their structures. We then describe how to learn
the group-sensitive priors, namely the inter-group prior which de-
scribes how to change the structure of the edited shape from one
group to another group, and the intra-group prior which describes
how to refine the edited results inside a shape group.

4.1. Clustering Structure Groups

The component-based structure of shapes has been studied via hi-
erarchical analysis [VKXZ∗13] or probabilistic model [KCKK12].
In our implementation, all input models have been adequately seg-
mented to provide meaningful editable parts. We attempt to cluster
structure groups with the components not semantically labeled.

Our key observation is that the similar parts are always position-
dependent in man-made shapes, and some components cannot co-
exist in man-made objects due to the same function (e.g., the legs of
a swivel-chair and a four-legged chair, the rear-wheel of a bicycle
and a tricycle), which leads to the structural variations in a shape
category. Therefore, we first cluster the parts into some types, and
then use a distance metric to separate the shapes with incompatible
types of parts into different structure groups.

1 1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 0 1 1 0 0 0

1 1 1 1 0 0 0 0 1 1 1

1 2 3 4 5 6 7 8 9 10 11

Figure 5: Structure descriptors (partial) of three representative
shapes from different structure groups.

Since the shape categories in our experiments largely lie in a
low-dimensional shape space defined with respect to the relative
sizes and positions of shape parts [OLGM11], we first scale al-
l shapes to a same size (i.e., making all shapes’ OBBs be the same
size of cubes) and then perform a simple position-based clustering
approach to establish part correspondence. Note that we heuristi-
cally choose the number of clusters by observing whether the dif-
ferent groups have different component parts. Alternatively, some
advanced approaches like [KLM∗12, ZCAM14] can also be used
to cluster the parts in a shape category. Let {S1, . . . ,SK} be the K
models from a specific shape category (e.g., chairs). These shapes
contain N types of parts which have been clustered, denoted as
P1, . . . ,PN . As a consequence, we can represent the structure of
a shape Si with a binary vector xi with N components, where the
n-th component xi(n) equals to 1 if the shape Si contains the part
Pn, and 0 otherwise (Figure 5).

Then we need to define a distance metric φ(·) between two struc-
ture descriptors xi and x j. To ensure that shapes with similar struc-
tures can be clustered into the same group, we define φ(xi,x j) as

φ(xi,x j) = ∑
(n1,n2)

xi(n1)(1−x j(n1))(1−xi(n2))x j(n2)

· (1−max(ϕ(n1,n2),ϕ(n2,n1))),

(1)

where the first term xi(n1)(1−x j(n1))(1−xi(n2))x j(n2) is used to
detect if both two structures have a specific component which does
not belong to the other one. The conditional probability ϕ(n,n′) =
P(x(n) = 1|x(n′) = 1) is statistically calculated with all shapes in
a category and indicates whether two types of parts can coexist or
not. We introduce the second term to separate the shapes with the
incompatible types of parts.

Based on such a distance metric, we employ the spectral cluster-
ing algorithm [LZ04] to divide the shapes in the same shape cate-
gory into groups, denoted as {Sm}M

m=1. M is the number of groups,
which is manually fine-tuned for each shape category to provide the
best editing performance. See Figure 5 for an illustration of shapes
in different groups and their structure descriptors. In Figure 6, we
visualize all existing structures and shape examples for the three
structure groups of chairs in our datasets. We can also broaden the
scope of structures by adding new shapes into the existing datasets.
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(a)

(b) (c)

Figure 6: Structures and corresponding shape examples of the
three structure groups ((a), (b) and (c)) in the chair dataset.

4.2. Learning Inter-group Prior

Shapes from two different groups may still share some common
parts, e.g., the seat of chair, the body and wings of airplane, etc. If
there exist large gaps between some parameters of such parts, these
parameters might be used to control “switching” of the structures
between two groups. This observation motivates us to model the
inter-group prior to capture the structural variations between shapes
in different groups.

Here we represent such prior knowledge with a set of M×M
matrices, denoted as {Tt

n|t = 1, . . . ,9}N
n=1. The matrix Tt

n describes
whether the structure of a shape can be changed between any two
of the M groups with respect to the t-th parameter for the OBB of
part Pn. That is, Tt

n(i, j) is a threshold obtained by the statistics of
the database models, determining whether a shape in the group Si
should be re-clustered into the group S j if the t-th parameter for the
OBB of its part Pn is changed during user editing operations.

Assume that Pn is a part shared by shapes in both groups Si
and S j. The sets of possible values for the t-th parameter of Pn in
Si and S j are defined as {Bi|bi

1, . . . ,b
i
Ni
} and {B j|b j

1, . . . ,b
j
N j
}. We

define d(B) as the maximum distance within a group and ∆(b,B)
as the point-to-set distance between parameter value b and set B as
follows:

d(B) = max
i, j

(|bi−b j|), and ∆(b,B) = min
bi∈B

(|b−bi|). (2)

With this distance definition, we use the averaged maximum dis-
tance on two groups λ =

d(Bi)+d(B j)
2 to estimate whether the t-th

parameter of Pn can be used as the switching parameter, and calcu-
late the threshold Tt

n(i, j) for structure switching between groups
Si and S j as

Tt
n(i, j) =

{
λ if maxb j

n∈B j
∆(b j

n,Bi)> λ,∀i 6= j
∞ otherwise

, (3)

where maxb j
n∈B j

∆(b j
n,Bi) > λ indicates some shapes in group B j

have a large gap for the t-th parameter of part Pn. Such a prior will

be used as a threshold for structure-adaptive editing (Section 5.1).
Note that T depends on the numbers of clustered parts and structure
groups. We will provide some statistics on T matrices in Section 6.

4.3. Learning Intra-group Prior

Beyond the inter-group prior, we also learn the intra-group prior
that describes how shapes can change inside each group. Different
from the inter-group prior that focuses on the variation of struc-
tures, the intra-group prior emphasizes the geometric variations of
shapes while the structure is preserved.

The geometric relationships between the parts of man-made ob-
jects can be leveraged as constrains for shape editing. Fish et al.
[FAvK∗14] proposed to encode the relations between part pairs,
and used such relations to refine the edited models. Yumer et al. [Y-
CHK15] used a set of semantic attributes learned by user study to
create geometric deformations. We observe that some part relations
such as symmetry and parallelism are linear. Therefore, we aim to
use multivariate linear regression to learn the relations between d-
ifferent parts’ parameters in each structure group as the intra-group
prior. Since the relations between some part parameters might not
be linear, we use a weight based on the regression to alleviate the
influence of such parameters (see more discussions in Section 5.2).
Note that such relations also involve different types of parameters
such as the relation between rotation and scale. For example, the
rotation of a deck-chair’s backrest has a positive correlation with
the length of the seat as a result of ergonomics design. In this way,
some design knowledge of man-made shapes can be captured with-
out being semantically predefined. However, there exist two prob-
lems to learn such a prior: 1) the constituent parts of each shape
in one structure group are not always the same, e.g., some swivel-
chairs have armrests while others may not, making it impossible
to directly learn the regression coefficients with all member shapes
as samples; 2) some parts’ parameters like the orientations of the
chairs’ seats are nearly invariable, which might lead to inaccurate
parts’ relationships captured by regression analysis.

To address these problems, we first select the parts which are not
shared by all group members, and establish unitary regression be-
tween each parameter of such parts and each parameter of the parts
shared by all group members. The parameter pair with the largest
coefficient of determination of regression is chosen to estimate the
parameter of the part which does not belong to a shape. For exam-
ple, if the position of the armrest is strongly correlated to the width
of the seat, we can use the seat which is shared by all shapes in a
group, to estimate the position of the armrest for the shape which
has no armrest (see Figure 7 top). Hence, all member shapes can
be used as samples to learn the regression coefficients. Second, we
ignore the invariable parameters by calculating the mean square er-
rors. Such parameters would not be edited or influence other parts
during the editing process (see Figure 7 bottom).

With the parts’ relations encoded by multivariate regression, we
represent the intra-group prior with a set of regression coefficient
matrices for each structure group, denoted as {A(m)|m = 1, . . . ,M}.
The matrix A(m) consists of all the regression coefficients of al-
l parts’ parameters b = [b1, · · · ,bn] in the structure group Sm. Let
ai = [α0, . . . ,αn] denote the i-th row of A(m), which is the regres-
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Figure 7: Top: for a set of shapes in the same structure group
(top), we estimate the parameters of the parts (brown) which are
not shared by all shape members, and show the OBBs with the es-
timated parameters (bottom). Bottom: two examples, in which we
ignore the invariable parameters of scale and orientation.

sion coefficients of bi. We use the following function to learn ai
with all shape members of the structure group Sm as samples:

ai = argmin
ai
‖bi−α0−∑

j 6=i
α j ·b j‖2

2. (4)

Not that, for all part parameters, some regression results which have
low goodness of fits, should be filtered out when the intra-group
regression prior is employed (Section 5.2). If the sample size (i.e.,
the number of shapes in a group) is less than the number of the
part parameters, we take an approximation approach to learn the
regression coefficients: we set α j = 0 for the parameter b j that is
irrelevant to bi by calculating the correlation coefficient between b j
and bi, until the number of the rest of part parameters is equal to
the sample size.

5. Structure-adaptive Shape Editing

In this section we introduce how to apply the learned group-
sensitive priors to structure-adaptive shape editing. We first use the
inter-group prior for structure adaption to determine the valid struc-
ture of the edited shape, and then use the intra-group prior for shape
editing and refinement.

5.1. Structure Adaption

Given an input model from a category of shapes already pro-
cessed in the learning stage, the editing operations are performed
by changing individual parameters associated with model parts. Af-
ter a parameter b is edited, the edited shape might be re-clustered
into another group through structure switching based on the inter-
group prior Tt

n (Equation 3). Let Si be the original structure group
which the edited shape belongs to, and S j be a new group. To de-
termine whether a shape should be re-clustered from Si into S j, we

Figure 8: Top: structure preserved or changed with respect to the
part parameter edited. Bottom: two cases of structure varying with
new part explicitly added or original part removed. The edited part-
s are highlighted in blue, and the added box or introduced parts are
highlighted in brown.

compute

K(b) =
{

1 if ∆(b,B j)≤ Tt
n(i, j) and ∆(b,Bi)> Tt

n(i, j)
0 otherwise

,

(5)
where K(b) = 1 makes the structure changed from group Si to S j,
while K(b) = 0 makes the original structure preserved. In this way,
our approach automatically adapts the structure of the edited shape
with the help of the inter-group prior learned from the same catego-
ry of shapes. Take the case of structure switching shown in Figure
8 (Top) as an example, where the seat’s width is edited. When it
is widened too much (right), the original structure is switched to
a bench’s structure. Otherwise, the original structure is preserved
(middle).

Besides, explicitly adding new parts by placing OBBs or remov-
ing existing parts might also trigger structure switching. That is,
if the user adds a new part which does not belong to the curren-
t structure group, or removes a part which is indispensable to the
current structure group, the edited shape would also be re-clustered
into another group. For instance, as shown in Figure 8 (bottom), if
the user adds a new box under the seat, our tool predicates that this
box represents a swivel-chair’s base, which does not belong to the
current structure group, then the structure is switched by removing
the four legs which does not belong to the new structure group, and
introducing a gas lift to complete the new structure. Likewise, when
the user removes one foreleg of a chair which is indispensable to
that structure group, the original structure group turns to the one
with only one base part.

A part suggestion step is necessary in this process. The new OB-
B added by the user is firstly labeled based on its position, and then
we search for proper parts from the dataset, by calculating the d-
ifference of the scale between the added box and all parts’ OBBs
with the same label. For the missing parts which are indispensable
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Figure 9: The seats of chairs from different structure groups share
their contacts (left), hence the seat can be conjoined with different
types of legs (right).

to the new structure, they are suggested by the similarity of scale
to the remaining parts. For example, when a structure with one leg
turns to another structure with four legs, we search for a four-leg
chair with a similar seat and backrest to the edited shape to provide
four legs for the edited shape.

5.2. Shape Editing and Refinement

When the structure of the edited shape is determined, a structure-
preserving shape editing and refinement step is then performed to
make the edited shape well connected and visually pleasuring. The
purpose of this step is to leverage the regression relation to refine
the model with respect to user inputs.

For the structure group Sm, we have obtained the intra-group pri-
or A(m) as the constraints. In this manner, for all parts’ parameters
b = [b1, · · · ,bn], assuming that the user adjusts a certain parame-
ter bc to B0, we obtain the parameters b by solving the following
equation using a least-square method:

argmin
b

n

∑
i=1
||bi− (ωib

′
i +(1−ωi)b̃i)||22 +ωc||bc−B0||22, (6)

where b̃i is the original value of parameter bi, and b′i is the estimat-
ed value by the regression equation b′i = ∑ j 6=i α j · b j +α0, whose
coefficients ai = [α0, . . . ,αn] is obtained from the intra-group prior
A(m). ωi is the coefficient of determination of this regression equa-
tion, as a weight to alleviate the influence of the parameters without
linear relations having low goodness of fits. The term ωc||bc−B0||22
is used to constrain the edited parameter to user inputs (ωc = 10
in our experiment). We show several editing results in Section 6
to demonstrate the effectiveness of our shape refinement with the
intra-group regression prior.

Though our intra-group prior performs well in optimizing the s-
cale, orientation and position of each part, some parts may not be
well connected especially for the ones introduced by part replace-
ment. To address this problem, we employ the contact-based defor-
mation [ZLDM15] to conjoin those parts together. This method us-
es the contacts (in terms of 3D points) of each part as the constraints
to enforce the contact relations to get a well connected shape. The
parts with the same labels in different structure groups share their

Figure 10: Two comparison examples with (right) and without
(left) contact-based refinement. The contact-based deformation re-
fines the position of adjacent parts (red circle).

contacts and the related parts, so that the introduced parts can easi-
ly find the contacts from the other parts in the original structure as
illustrated in Figure 9. Note that we use such contact-based defor-
mation to refine only the position of adjacent parts, and keep the s-
cale and orientation of these parts unchanged. Figure 10 shows two
comparison examples with and without contact-based refinement.

6. Experiments

In this section we first evaluate the efficiency of our framework,
and then compare our approach with the state-of-the-art technique
[FAvK∗14]. Our dataset consists of four categories: chairs (64), air-
planes (58), tables (39) and bicycles (20). Such man-made object-
s have interesting part-level characteristics such as symmetry and
coaxially, and also have some structure characteristics like stabil-
ity, functionality, etc., which should be considered during shape
editing. Our experiments were conducted on an Intel Core i7-4790
3.60GHz PC with 16GB RAM. On average it took 7 seconds for
part suggestion and replacement for structure-varying editing, and
structure-preserving refinement ran in real-time.

Structure groups. Shapes in each of the four categories are gath-
ered into 3 structure groups for chairs, airplanes and tables, and
2 groups for bicycles. We calculate the T matrices only using the
parts shared by any two groups as the thresholds for structure adap-
tion (Section 4.2). Note that, we also ignore the invariable param-
eters of the shared parts in this process. To better understand the T
matrices, we compute the ratios of the number of lambda values to
the number of infinity in T: 10/62 (chairs), 6/12 (tables), 2/38 (bi-
cycles) and 1/62 (airplanes). Note that the T matrices for the chair,
table and airplane categories are 3×3 matrices and for bicycle 2×2
matrices. By ignoring the diagonal elements which are identical to
infinity, we got the ratios of structure switching: 20.83% (chairs),
50% (tables), 10% (bicycles) and 2.38% (airplanes). It indicates
that, for the categories like chairs and tables, the shared parts have
obvious differences of part configurations, giving users more op-
portunities to change the original structure by editing the part pa-
rameters. Since the configurations of the shared parts are similar
in categories like bicycles and airplanes, only a small number of
part parameters can be used to change the original structure. Thus
it might be easier for users to change the structure by adding new
part or removing the existing part in these cases.

Editing results. We first give several results produced by our
structure-adaptive shape editing tool. Figure 11 shows four results
whose structures have no need to switch based on the inter-group
prior, and Figure 12 shows six results whose structures are changed
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(a)

(c)

(b)

(d)

Figure 11: Gallery of shape editing examples with structure preserved. In each case, we show the input model (left), the model with user
operation (middle) and the editing result (right). Note how the rest of the parts are changed with respect to the edited parts highlighted in
blue.

(a)

(c)

(b)

(d)

(e) (f)

Figure 12: Gallery of shape editing examples with structures changed. The parts with user operations (scaling, translating or removing) are
highlighted in blue, and the added boxes and the introduced parts are highlighted in brown. Note that how the structures of the input models
are changed due to implicit or explicit structure editing operations.

Table 1: The number of operations and the time of both parameter editing and part adding/removing (in seconds) for each example.

Figure 11 12
Example (a) (b) (c) (d) (a) (b) (c) (d) (e) (f)

Operations 1 1 1 1 1 1 1 1 2 3
Time (s) 4+0 5+0 3+0 2+0 5+0 4+0 1+0 1+0 14+5 25+10

due to adjusting one part’s parameter ((a) and (b)), removing an in-
tegrant part ((c) and (d)), or explicitly requesting new parts ((e) and
(f)). Figure 12 (e) and (f) also show that our approach enables the
creation of nontrivial variations with multiple simple manipulation-
s (translating the front wheel of the tricycle, scaling the wing of the
plane, and adding new boxes). Table 1 shows the number of oper-
ations (rotating, translating, scaling, adding and removing) and the
timings of the above results with our approach. Most results were
generated with only one user operation.

Figure 13 shows the individual effects of group-sensitive priors
in structure-adaptive shape editing. Figure 13 (b) and (c) are the
editing results using only the intra-group prior and only the inter-
group prior, respectively. It suggests that such two priors should be
used together in order to produce structurally valid, visually pleas-
ing results (d).

Comparisons. We compared our method with [FAvK∗14] in a
guided shape editing application. For fairness, the same level of

part segmentation was used. Both of the methods performed well
in structure-preserving shape editing, while our approach was able
to capture more complex relations. Four comparison examples are
presented in Figure 14. The top two examples clearly show that
our approach supports structure-adaptive shape editing, which ex-
tends the ability of structure-preserving shape editing. In the third
example when rotating the backrest of a deck-chair, our intra-group
prior refines the shape as well as stretching the length of the seat
and shortening the legs making the chair more comfortable for the
lying posture. The last example shows that when translating a bi-
cycle’s front wheel forward, our approach rotates the suspension
without changing the distance between the handle and the seat, to
suit for the riding posture. Such interesting effects are impossible
to achieve without using the learnt intra-group prior.

Limitations. Our approach relies on correct part clustering and
requires good-quality pre-segmentation of repository models. All
shapes in a category should be decomposed into meaningful parts
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(a) (c)(b) (d)

Figure 13: Editing a part of input models (a) using only the intra-
group prior (b), only the inter-group prior (c), and both priors (d).

User operations [FAvK*14]Ours

Figure 14: Comparisons with [FAvK∗14].

in the same level, and a proper number of clusters should be chosen
to ensure that different groups have different parts. Figure 15 shows
a case where the too small number of clusters ignores the rich struc-
ture variations, making structure-adaptive editing impossible. Be-
sides, since our approach employs the same method as [FAvK∗14]
to obtain part-level OBBs, we also meet the same problem of pos-
sibly incorrect alignment of OBBs in some cases like the base of
the swivel chairs. In these cases, slight user assistance is helpful to
improve the alignment of box’s orientation.

Our approach is largely based on the assumption that the struc-
ture variations within a shape category can be explained in terms of
the constituent parts. Therefore, our approach might fail for certain
man-made objects with permanent constituent like some appliances
and tools (e.g., a television or a fork). Besides, since the structure
groups in our approach depend on a conditional probability based
distance metric, a shape category without the incompatible types of
parts, needs user assistance to increase the distance between some
parts. For example, no parts are incompatible in the category of air-
plane. We thus need to increase the distance between the horizontal
and vertical tails to separate them into two groups (see Figure 16
left), and the shapes with both the horizontal and vertical tails are
clustered into another group. Moreover, since the structure adaption
needs obvious differences of part configurations between different
structure groups, shapes with unusual configurations might invali-
date the structure adaption. As illustrated in the right of Figure 16,
if there exist several deck chairs with only one leg in the dataset,

Figure 15: Left: clustering the parts of chair into only three groups
will make all shapes have the same structure. Right: in this case,
the structure cannot be changed adaptively and the regression con-
straint might not be properly derived.

Figure 16: Left: user assistance is needed to increase the distance
between the vertical tail (red) and the horizontal tail (blue) to sep-
arate the structures of the airplanes. Right: adding shapes with un-
usual configurations (e.g., the left deck chair) into the dataset will
invalidate the structure adaption by lengthening the seat of chairs
with one leg.

lengthening the seat will not change the original structure of the
edited shape from one leg to four legs.

Furthermore, although our approach can reasonably well capture
the statistical priors of shapes from a moderate number of models,
too small datasets might make the multivariate regression sensitive
to noisy data (e.g., by a strangely designed chair). It will also in-
fluence the group clustering performance when lacking of various
structures. Our tool allows users to manually disable some regres-
sion constraints to alleviate the above problems for improving the
editing performance.

7. Conclusions

We introduced a structure-adaptive shape editing for man-made ob-
jects. With the group-sensitive priors learned from the classified
structure groups, we combine the structure-varying and structure-
preserving editing into a unified framework. This is accomplished
with an interactive shape editing tool, which is easy to use for non-
professional users. We have evaluated our approach with sever-
al shape editing results, and compared it with the advanced data-
driven shape editing technique. We demonstrate that our approach
enables the creation of more variations that are structurally valid.

As a future work, we are interested in extending our approach to
the inputs across different categories, which can not only increase
the diversity of the editing results but also explore the universal
editing regularity of man-made shapes especially for the parts with
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similar function. With the growing accessibility of man-made ob-
jects, we expect this data-driven shape editing approach could en-
able more non-professional users to experience the creation and de-
sign benefited from the rich knowledge contained in the database.
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