
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Sketch-R2CNN: An RNN-Rasterization-CNN
Architecture for Vector Sketch Recognition

Lei Li Changqing Zou Youyi Zheng Qingkun Su Hongbo Fu† Chiew-Lan Tai

Abstract—Sketches in existing large-scale datasets like the recent QuickDraw collection are often stored in a vector format, with
strokes consisting of sequentially sampled points. However, most existing sketch recognition methods rasterize vector sketches as
binary images and then adopt image classification techniques. In this paper, we propose a novel end-to-end single-branch network
architecture RNN-Rasterization-CNN (Sketch-R2CNN for short) to fully leverage the vector format of sketches for recognition.
Sketch-R2CNN takes a vector sketch as input and uses an RNN for extracting per-point features in the vector space. We then develop
a neural line rasterization module to convert the vector sketch and the per-point features to multi-channel point feature maps, which are
subsequently fed to a CNN for extracting convolutional features in the pixel space. Our neural line rasterization module is designed in a
differentiable way for end-to-end learning. We perform experiments on existing large-scale sketch recognition datasets and show that
the RNN-Rasterization design brings consistent improvement over CNN baselines and that Sketch-R2CNN substantially outperforms
the state-of-the-art methods.

Index Terms—Freehand sketching, RNN, CNN, neural rasterization, object classification, QuickDraw.

F

1 INTRODUCTION

F REEHAND sketching is an easy and quick means of
communication because of its simplicity and expressive-

ness. While we human beings have the innate ability to
interpret drawing semantics, it is still a challenging task for
machines. Sketch analysis has been an active research topic
in the computer vision and graphics fields, spanning a wide
spectrum including sketch recognition [1], [2], [3], sketch
segmentation [4], [5], [6], [7], sketch-based retrieval [8], [9],
[10], [11] and modeling [12], etc. In this paper, we focus on
developing a novel learning-based approach for freehand
sketch recognition.

The goal of sketch recognition (or classification) is to
identify the object category of an input sketch, which is
more challenging than natural image classification largely
due to the inherent ambiguities, geometric variations and
lack of rich texture details in the input. Traditional stud-
ies [1], [13], [14] mostly cast sketch recognition as an image
classification task by converting sketches to binary images
and then extracting hand-crafted local features from the
images. With the quantified image features, a typical clas-
sifier such as Support Vector Machine (SVM) is trained for
object category prediction. Recent years have witnessed the
impressive success of deep learning techniques in image
classification [15], [16], [17], [18], and convolutional neural

† Corresponding author

• L. Li and C.-L. Tai are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology.
E-mail: {llibb, taicl}@cse.ust.hk

• C. Zou is with the HMI Lab, Huawei Technologies.
E-mail: aaronzou1125@gmail.com

• Y. Zheng is with the State Key Lab of CAD&CG, Zhejiang University.
E-mail: youyizheng@zju.edu.cn

• Q. Su is with the A.I. Labs, Alibaba Group.
E-mail: suqingkun@gmail.com

• H. Fu is with the School of Creative Media, City University of Hong
Kong.
E-mail: hongbofu@cityu.edu.hk

networks (CNNs) have also been applied to the recognition
of sketch images [2], [10]. Although these deep learning-
based methods outperform the traditional ones, the unique
properties of sketches, as discussed in the following, are
often overlooked, leaving room for performance improve-
ment.

Thanks to the ubiquity of input devices, sketches are
often acquired digitally and stored in a vector format [19],
[20], represented as a sequence of strokes (polylines) with
each stroke consisting of a point sequence in the drawing
order (Fig. 1). Such vector sketch data, like those in the
QuickDraw dataset [19], includes (1) positional information
of points, (2) temporal order (stroke order and point order
within each stroke) and (3) grouping of points as strokes
(or pen states). The latter two types of information, how-
ever, cannot be effectively accessed by existing CNNs [2],
[10], [21], which deal with the rasterized version of vector
sketches.

The recently proposed SketchRNN [19] and its follow-
up studies have shown that recurrent neural networks
(RNNs) can directly take vector sketches as inputs to learn
descriptive feature representations, enabling various tasks
like vector sketch synthesis [22], [23] or segmentation [6].
Motivated by this, researchers have also incorporated the
vector format, serving as a complement to the pixel format,
in sketch-based retrieval [11], [24]. They typically adopt a
two-branch network architecture: a CNN branch for the
pixel sketch and an RNN branch for the vector sketch; a con-
catenation layer at last is used to fuse feature representations
from the two branches. However, the RNN and CNN barely
have learning interactions in such a design, and it demands
the networks to learn to balance contributing weights of the
two types of features in the concatenated feature space.

In this work, we seek to boost the synergy between the
RNN and CNN with more information flow during end-to-
end learning. To this end, a key step is to convert input vec-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

tor sketches to pixel images within neural networks. Con-
ventional rasterization of sketches is a fixed discretization
operation lacking gradient definitions for back propagation,
thus it cannot be directly incorporated in neural networks.
Inspired by [25], we utilize linear interpolation and propose
differentiable line rasterization. Building upon this, we de-
sign a novel end-to-end single-branch network architecture
RNN-Rasterization-CNN (Sketch-R2CNN for short) for vector
sketch recognition, as illustrated in Fig. 1.

Specifically, Sketch-R2CNN takes as input only a vector
sketch and employs an RNN to extract feature represen-
tations for each point of the sketch. The RNN is similar
to the RNN encoder used in [11], [19] for learning latent
representations of vector sketches. We then develop a neural
line rasterization (NLR) module, which converts the vector
sketch with the per-point features to multi-channel point
feature maps in a differentiable way. Subsequently, an off-
the-shelf CNN consumes the resulting point feature maps
and predicts the target object category as output. The NLR
module allows the CNN to access the features of vector
sketches at early stages, bridging the gap between the vector
sketch space and pixel sketch space in neural networks.
The module is comparatively lightweight and can be easily
attached to various CNN backbones with little modification.
Experiments on existing crowd-sourced datasets [1], [19]
show that by leveraging the vector format of sketches,
our RNN-Rasterization-CNN architecture can consistently
improve the recognition performance of CNN-only meth-
ods. Particularly, on the million-scale testing dataset of
QuickDraw [19] (similar to the scale of ImageNet [26]),
Sketch-R2CNN outperforms CNN counterparts (including
ResNet [17] and DenseNet [18]) by 19K - 31K recognition
successes (2.2 - 3.6%).

In summary, our contributions in this work are: (1) the
first single-branch architecture with sequentially-arranged
RNN and CNN for vector sketch recognition, achieving
the state-of-the-art accuracy; (2) a differentiable line raster-
ization module that connects the vector sketch space and
pixel sketch space in neural networks, allowing end-to-end
learning. We will make our code publicly available.

2 RELATED WORK

To recognize sketched objects, traditional methods gener-
ally take preprocessed pixel sketches as inputs. To quan-
tify a sketch image, existing studies have tried to utilize
various hand-crafted local features originally intended for
photos (e.g., bag-of-features [1], Fisher Vectors with SIFT
features [13], or HOG features [14]). With the extracted
features, classifiers (e.g., SVMs) are then trained to recognize
unseen sketches [1], [13]. Different learning schemes, such
as multiple kernel learning [14] or active learning [27], may
be employed for performance improvement. Another line of
traditional methods has attempted to exploit additional cues
for sketch recognition, such as prior knowledge of specific
domains [28], [29], [30], [31], [32], [33] or object context of
sketched scenes [3], [34]. Although progress has been made
in sketch recognition, these methods still cannot robustly
handle freehand sketches with large abstraction variations,
especially those hastily drawn in dozens of seconds [19],

struggling to achieve performance on par with human on
the existing TU-Berlin dataset [1].

Recently, deep learning has revolutionized many re-
search fields, including sketch recognition, with state-of-the-
art performance. Research efforts [2], [10], [35] have been
made to employ deep neural networks (e.g., AlexNet [15]
or GoogLeNet [16]) to learn more discriminative image
features from pixel sketches to replace hand-engineered
features. Yu et al. [2] proposed Sketch-a-Net, an AlexNet-
like architecture specifically adapted for sketch images by
using large kernels in convolutions to accommodate the
sparsity of stroke pixels. Their method achieved superior
classification accuracy (77.95%) on the TU-Berlin dataset [1],
surpassing human performance (73.1%) for the first time.
Their method still follows the existing learning paradigm
of image classification, i.e., using converted binary sketch
images as CNN inputs, and thus cannot end-to-end learn
from the additional information contained in vector sketches
by design. In contrast, our approach uses an RNN to directly
take the vector format of sketches as input for analysis
and then produces informative point feature maps for the
subsequent CNN.

The vector format of sketches has been considered in
several deep learning tasks, such as sketch synthesis [19],
[20], [22], [23], [36], [37], sketch abstraction [37] and sketch
segmentation [6]. Notably, SketchRNN proposed by Ha
and Eck [19], which receives much attention recently, is a
Sequence-to-Sequence Variational Autoencoder built upon
RNNs for vector sketch synthesis. This work shows that
RNN can encode a vector sketch as a descriptive low-
dimensional latent vector, from which a sketch of similar
shape and drawing order can be reconstructed. Several
follow-up studies have extended this idea to other sketch-
related problems [6], [22], [23], [37]. For example, the work
of Song et al. [22] learns an RNN-based translation model
with shortcut cycle consistency to generate vector sketches
from real photos. Li et al. [6] adopted an RNN encoder to
learn feature representations for each single stroke, which
are then used to group semantically similar strokes in a
sketch.

There exist a few studies that try to combine the vector
and pixel formats of sketches to learn more descriptive
fused features. The two-branch late-fusion network used
in sketch-based retrieval [11], [24] is probably the most
relevant to ours. In this design, the pixel format of an input
sketch is fed to a CNN branch and the corresponding vector
format is fed to a parallel RNN branch. A concatenation
layer at last aggregates feature representations from the two
branches. Although the retrieval performance benefits from
the fused features, the RNN and CNN individually work
on two different sketch spaces with little learning interac-
tion, except at the last concatenation layer. In contrast, our
single-branch RNN-Rasterization-CNN design brings more
information flow between the RNN and CNN, which is
enabled by our differentiable neural line rasterization (NLR)
module. The evaluation (Sec. 4.3) shows that our approach
outperforms the two-branch late-fusion network.

Our network is also related to CNN with an attention
mechanism. Attention has been widely employed in many
visual tasks, such as image classification [38], [39], [40],
[41] and image captioning [42], [43]. An attention module



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 1: Illustration of our Sketch-R2CNN architecture for vector sketch recognition. A neural line rasterization (NLR)
module is designed to convert per-point features, produced by the RNN with the input vector sketch, to multi-channel
point feature maps, which are then consumed by an off-the-shelf CNN for recognition.

in CNN generally works by computing soft masks over
the spatial image grid [40], [42] or feature channels [41] to
obtain weighted combination of features. This technique has
also been applied to the sketch domain. For example, Song
et al. [44] have incorporated a spatial attention module in
Sketch-a-Net for fine-grained sketch-based image retrieval.
While their work strives to estimate attention from the pixel
format that contains limited visual information, our method
derives attentive point feature maps from the vector format
with in-network rasterization.

3 METHODOLOGY

The architecture of our Sketch-R2CNN is illustrated in
Fig. 1. Given a vector sketch S as input (Sec. 3.1), our net-
work seeks to interpret its object category by jointly consid-
ering the feature representations learned in the vector sketch
space as well as in the pixel sketch space. Existing CNN-
based approaches [2], [10] perform recognition only with
the pixel version of S, which is a structured but reduced
input representation complying with CNNs. To exploit the
drawing cues in S, we resort to an RNN for analyzing the
points of S sequentially and extracting features for each
point (Sec. 3.2). To inform the CNN with the learned RNN
features, we design a neural line rasterization (NLR) module
that converts S with the per-point features to multi-channel
point feature maps in a differentiable way (Sec. 3.3). The
NLR module is the key enabler for connecting the two
sub-networks that operate in completely different spaces.
Compared to the pixel sketch input, the point feature maps
are capable of delivering more drawing cues to the CNN.

3.1 Input Representation

We consider the input vector sketch S to be a sequence
of strokes, each stroke comprising of a sequence of points.
This vector format is widely adopted for sketches in many
existing crowdsourced datasets [1], [10], [19], [45].

Following [20], we represent S as an ordered point
sequence S = {pi = (xi, yi, si)}i=1···n, where xi and yi are
the 2D coordinates of point pi, si is a binary pen state, and n
is the total number of points in all strokes. Specifically, state
si = 0 indicates that the current stroke has not ended and
that the stroke connects pi to pi+1; si = 1 indicates that pi

is the last point of the current stroke and pi+1 is the starting
point of another stroke.

3.2 Network Architecture

In the initial stage of Sketch-R2CNN, an RNN is adopted
to perform analysis on the point sequence of S and then
produce a feature vector for each point pi. At time step i,
the recurrent operation of the RNN can be expressed in a
general form as

[hi; ci] = Gr(pi, [hi−1; ci−1]),

fi = Gf (hi),
(1)

where h represents the hidden states of the RNN, c is
optional cell states, and fi ∈ Rd is a d-dimensional point
feature output for pi. The symbol Gr denotes a nonlinear
mapping for recurrently updating the internal states, and
Gf denotes a nonlinear function that projects the hidden
states to the desired outputs. This vector sketch encoding
scheme follows the encoder network of SketchRNN [19]. In
our implementation, we use a bidirectional Long Short-Term
Memory (LSTM) [46] unit with two layers as Gr . We set the
sizes of hidden states and cell states to both be 512 and adopt
dropout with probability = 0.5. For Gf , we employ a fully-
connected layer followed by a sigmoid function. Similar
to [19], instead of using absolute coordinates, for each pi

fed into the RNN, we compute the offsets from its previous
point pi−1 as its 2D coordinates.

As described in Eq. 1, the RNN progressively evaluates
the point sequence in S along the temporal dimension, and
thus it might fall short in discovering correlations of points
that are temporally distant but spatially close to each other
in 2D. In contrast, CNNs are known to excel at construct-
ing hierarchical representations for 2D inputs [47], where
neighboring pixels interact at lower layers and distant pixels
interact at high layers. To allow CNNs to gain access to the
per-point features learned by the RNN for 2D analysis, we
perform in-network rasterization for S with a differentiable
NLR module as detailed in Sec. 3.3.

We pass the point sequence along with the point features,
i.e., {(pi, fi)}i=1···n, through our differentiable NLR mod-
ule. Conceptually, the NLR module “draws” the per-point
features from RNN onto a multi-channel image, following
the rasterization process of a vector sketch to a pixel sketch.
The output of NLR is d-channel point feature maps of
size h × w × d, with each channel corresponding to one
component of the point features. The symbols h and w are
the height and width of the resulting maps respectively.
The dimension d is a flexible hyper parameter. For example,
attention maps estimated by CNNs in existing studies [44]



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

are similar to a special case of our design (i.e., d = 1),
but differently, our design exploits a new attention source
(i.e., feature representations in the vector sketch space).
Apart from attention maps, our design can also deliver non-
trivial feature patterns discovered by the RNN to CNNs, as
illustrated in Sec. 4.2.

The subsequent sub-network, a deep CNN, takes the d-
channel point feature maps as inputs for hierarchical feature
extraction. A wide range of CNNs for image recognition
on ImageNet [26] (e.g., ResNet [17] or DenseNet [18]) can
be used. At last, the CNN backbone is attached to a fully-
connected layer to predict object categories. We use the cross
entropy loss for optimizing the whole Sketch-R2CNN.

3.3 Neural Line Rasterization
The goal of our NLR module is to perform in-network
vector-to-pixel sketch conversion. The module is designed
to be differentiable so that it can be easily attached to exist-
ing CNNs for end-to-end learning. The NLR module takes
as input the point sequence of S with per-point features
{(pi, fi)}i=1···n. Let f ci ∈ R (c ∈ [1, d]) denote the c-th
component of fi, and Ic ∈ Rh×w be the c-th channel of the
resulting feature maps. In the following, for ease of expla-
nation, we describe the rasterization process of {(pi, f

c
i )} to

Ic, which can be done independently and similarly for each
feature component c. To simplify notations, the symbol c in
f ci and Ic is omitted in the remainder of this section.

In the forward pass, the basic operation of NLR is to
draw each valid line segment pipi+1 (i.e., si = 0 as defined
in Sec. 3.1) onto the canvas I . Similar to the conventional
line rasterization, to determine whether or not a pixel Ik
is covered by the line segment pipi+1 (Fig. 2), we simply
compute the distance from the pixel’s center to the line
segment and check whether it is smaller than a predefined
threshold ε (we set ε = 1 in our experiments). If Ik is a stroke
pixel, we compute its feature value by linear interpolation;
otherwise its feature value is set to zero. More specifically,
let pk be the projection point of Ik’s center onto pipi+1, and
the feature value of Ik is defined as

Ik = (1− αk) · fi + αk · fi+1, (2)

where αk = ‖pk − pi‖2/‖pi+1 − pi‖2, and pk, pi and
pi+1 are in absolute 2D coordinates. If a pixel is covered by
multiple line segments, we perform visibility test according
to the drawing order.

Through the above process, a vector sketch can be easily
converted into a pixel image (or point feature maps) in
the forward pass. In order to propagate the gradients (w.r.t
the loss function) from CNN to RNN in the backward
optimization pass, we need to derive gradients for the above
rasterization process. Owing to the simplicity of linear in-
terpolation in Eq. 2, the gradients for the rasterization of
pipi+1 with fi and fi+1 can be computed as follows:

∂Ik
∂fi

= 1− αk,
∂Ik
∂fi+1

= αk. (3)

Let L be the loss function and δIk be the gradient w.r.t L
back-propagated into Ik through CNN. By the chain rule,
we have

∂L

∂fi
=

∑
k

δIk · (1− αk),
∂L

∂fi+1
=

∑
k

δIk · αk, (4)

Fig. 2: Rasterization of line segment pipi+1 and linear
interpolation of the feature value for stroke pixel Ik.

where k iterates over all the stroke pixels covered by the line
segment pipi+1. If segment pi−1pi exists (i.e., si−1 = 0),
we accumulate the gradients for pi. With the computation
in Eq. 4, the gradients (w.r.t L) can continue to flow into
RNN for optimizing the learning of point features in the
vector sketch space. Note that fi and fi+1 are scalar compo-
nents of the point features fi and fi+1 respectively, which are
independently derived from the hidden states hi and hi+1

according to Eq. 1. The recurrent relations between hi and
hi+1 are already modeled by the RNN (i.e., Gr). Therefore,
no gradient computation is needed between fi and fi+1 in
NLR.

The NLR module is non-parametric as it emulates the
conventional line rasterization. NLR enables the unification
of the two sketch spaces in a single neural network, and
its differentiability allows learning interactions between the
RNN and CNN. Unlike a two-branch design [11], the RNN
and CNN arranged sequentially in Sketch-R2CNN can co-
operate more effectively and work towards the same goal.
On one hand, the CNN, serving as an abstract visual concept
extractor, is the main workhorse for recognition, and the
RNN complements the CNN with feature representations
extracted from a sequential data format. On the other hand,
the CNN informs the RNN with 2D spatial relationships of
the points, which aid the RNN in learning correlations of
temporally-distant but spatially-close points.

4 EXPERIMENTS

4.1 Datasets and Settings
Datasets. We evaluated the performance of Sketch-R2CNN
on two existing crowd-sourced sketch datasets. The first one
is the TU-Berlin dataset [1], which contains 250 object cate-
gories with only 80 sketches per category (i.e., 20K sketches
in total). Each sketch in TU-Berlin was created within 30
minutes by a participant from Amazon Mechanical Turk.
While most previous recognition methods have been evalu-
ated on TU-Berlin, since it is a relatively small-scale dataset,
CNNs with millions or tens of millions of parameters (e.g.,
ResNet [17] and DenseNet [18]) tend to overfit the data
(Sec. 4.2). Thus, for more reliable evaluations with deep
CNNs, we also performed experiments on a recently intro-
duced million-scale dataset - the QuickDraw dataset [19],
which contains 345 categories with 75K sketches per cate-
gory (25.8 million sketches in total). Since during acquisition
the participants were given only 20 seconds to draw an



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

object, sketches in QuickDraw are more abstract and contain
fewer strokes than those in TU-Berlin. Detailed statistics of
the number of strokes per sketch of the two datasets are
listed in Table 1.

Sketches in QuickDraw have already been preprocessed
with the Ramer-Douglas-Peucker (RDP) simplification algo-
rithm [19], and the maximum number of points of a sketch
is 321. For sketches in TU-Berlin, we performed similar
simplification with the RDP algorithm, and the maximum
number of points of a sketch is 448. Table 1 lists more
detailed statistics of the number of points per sketch of the
two datasets.

Dataset #strokes per sketch #points per sketch
Median Mean Stdev Median Mean Stdev

TU-Berlin 13.0 17.5 16.4 179.0 203.6 113.3
QuickDraw 4.0 5.1 3.8 47.0 52.9 29.0

TABLE 1: Statistics of the TU-Berlin and QuickDraw
datasets after preprocessing: the number of strokes and the
number of points per sketch.

Implementation. We implemented our Sketch-R2CNN
with PyTorch. The dimension d of point features produced
by the RNN is set to 8 (Sec. 4.3). We tested Sketch-R2CNN
with various CNN backbones to show consistent improve-
ments brought by our single-branch design. Specifically,
Sketch-a-Net v2 [2] (SN v2 for short) achieved the state-
of-the-art performance on TU-Berlin, but its original im-
plementation based on Caffe is not compatible with our
NLR implementation. Thus we reproduced and re-trained
SN v2 with PyTorch for evaluation (Sec. 4.2). Furthermore,
we also performed experiments with several off-the-shelf
CNNs pre-trained on ImageNet, including ResNet50 [17],
ResNet101 [17], and DenseNet161 [18]. Compared to SN v2,
these CNNs are significantly larger in terms of network size
and thus require longer training time.

Training. Comparable to the scale of ImageNet [26], the
QuickDraw dataset has already been divided into training,
validation and testing sets with sizes of 24.1 million, 862K
and 862K, respectively. Due to the relatively small scale
of TU-Berlin, following [2] we used data augmentation
(including horizontal reflection, stroke removal and sketch
deformation) during training, and adopted three-fold cross
validation on this dataset (i.e., two folds for training and
one fold for testing, 6.6K sketches per fold).

For training on TU-Berlin, due to the limited data, Yu
et al. [2] used edge maps extracted from the photos of
ImageNet as the pre-training data for SN v2. However,
the synthesized drawings might contain various noise (e.g.,
edges from cluttered image backgrounds) and lack the artis-
tic styles from human [45]. Instead, we used QuickDraw as
the pre-training data for its fidelity to human drawing styles
and ease of preparation to train the CNNs (the reproduced
SN v2, ResNet50, ResNet101, and DenseNet161) on TU-
Berlin. We observe that SN v2 pre-trained on QuickDraw
achieves similar performance to [2] without additional net-
work ensemble [48]. For Sketch-R2CNN, a similar training
schedule was used: our network was first trained on Quick-
Draw (the RNN initialized with uniformly sampled weights
and the CNN backbone with the pre-trained weights), and
then fine-tuned on TU-Berlin. Note that the RNN and

CNN in Sketch-R2CNN were jointly trained in an end-to-
end manner on the two datasets. We adopted Adam [49]
(β1 = 0.9, β2 = 0.999) with a learning rate of 0.0001 for
stochastic gradient descent update. For training with the
reproduced SN v2, ResNet50 and ResNet101, a batch size
of 48 was used; for training with DenseNet161, a batch size
of 24 was used. The network training and evaluation were
performed with an NVIDIA GTX 1080Ti GPU.

Metrics. Similar to [2], evaluation results are reported
with top-1 recognition accuracy (Table 2). We also report
accuracies of partial sketch recognition (Table 3), since in
real applications users complete a drawing stroke by stroke,
and recognition can be done on partially drawn sketches
iteratively (like the Google Quick, Draw! Experiment1). For
each testing sketch from TU-Berlin or QuickDraw, recogni-
tion of its 25%, 50%, or 75% strokes (at least one stroke in a
partial sketch) in the drawing order was performed.

4.2 Comparison Results

TU-Berlin. Even though pre-training and data augmenta-
tion were used, we found that the compared networks easily
overfit the training data, as shown in Fig. 3, and thus hardly
gain any useful gradients for further optimization. Never-
theless, for completeness of comparisons, we still report the
performance of Sketch-R2CNN and its CNN counterparts in
Table 2 (the bottom part) and Table 3.

Tables 2 & 3 show that Sketch-R2CNN consistently im-
proves the recognition performance across different CNN
backbones on both complete and partial sketch inputs (6.6K
testing sketches in total). Specifically, in Table 2, Sketch-
R2CNN (79.4%, 5.24K successes) outperforms the repro-
duced SN v2 (77.5%, 5.12K successes), which has simi-
lar performance to the original SN v2 model [2]. Sketch-
R2CNN with DenseNet161 achieves the best performance
(85.4%, 5.64K successes) on TU-Berlin. It is also observed
that ResNet50 alone surpasses SN v2. This indicates the
effectiveness of skip connections [17], which deliver lower-
level features to higher layers, thus alleviating the loss
of stroke details in convolutions [50]. However, increasing
CNN depth (ResNet101 - 83.7%, DenseNet161 - 84.2%) leads
to slightly better performance (ResNet50 - 83.4%). Compar-
atively, Sketch-R2CNN (84.5%) can improve ResNet50 with-
out adding more convolutional layers. For partial sketches
(25% and 50%), more than 2% improvement brought by
Sketch-R2CNN is observed for most CNN backbones in
Table 3.

SN v2 ResNet50 ResNet101 DenseNet161
75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Training and Testing on TU-Berlin

CNN Training
CNN Testing
Sketch-R2CNN
Training
Sketch-R2CNN
Testing

Fig. 3: A large gap between training and testing accuracy of
CNNs and Sketch-R2CNN on TU-Berlin due to overfitting.

1. https://quickdraw.withgoogle.com



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Model Accuracy
TU-Berlin QuickDraw

Humans [1] 73.1 -

HOG-SVM [1] 56.0 -
Ensemble [51] 61.5 -
MKL-SVM [14] 65.8 -
FV-SP [13] 68.9 -
LeNet [52] 55.2 -
AlexNet-SVM [15] 67.1 -
AlexNet-Sketch [15] 68.6 -
SN v1 [21] 74.9 -
SN v2 [2] 77.95 -

SN v2 (reproduced) [2] 77.5 74.8
ResNet50 [17] 83.4 82.5
ResNet101 [17] 83.7 83.1
DenseNet161 [18] 84.2 83.0
Ours (w/ SN v2 reproduced) 79.4 78.4
Ours (w/ ResNet50) 84.5 84.8
Ours (w/ ResNet101) 85.0 85.3
Ours (w/ DenseNet161) 85.4 85.2

TABLE 2: Recognition accuracy (%) of different methods on
the TU-Berlin and QuickDraw datasets. The middle part
lists the performance of the models reported in [2], among
which only SN v2 adopts pre-training with ImageNet edge
maps. Differently, CNNs in the bottom part are pre-trained
with QuickDraw. Please refer to the main text for training
details.

Model TU-Berlin QuickDraw
25% 50% 75% 25% 50% 75%

SN v2 (reproduced) [2] 37.5 61.5 73.5 23.8 43.4 64.4
ResNet50 [17] 40.1 66.2 78.3 25.1 47.5 71.1
ResNet101 [17] 41.5 66.9 78.9 25.0 47.4 71.4
DenseNet161 [18] 41.8 67.6 79.5 25.4 48.1 71.7
Ours (w/ SN v2 reproduced) 38.6 62.8 74.7 23.7 44.8 67.4
Ours (w/ ResNet50) 42.5 68.5 80.2 24.8 48.4 73.1
Ours (w/ ResNet101) 43.2 69.1 80.3 24.8 48.2 73.2
Ours (w/ DenseNet161) 44.1 69.7 81.2 25.1 48.7 73.5

TABLE 3: Partial sketch recognition accuracy (%) of our
Sketch-R2CNN and its CNN-only counterparts on the TU-
Berlin and QuickDraw datasets. For a testing sketch, its 25%,
50% or 75% strokes in the drawing order (as partial sketches)
were used for recognition.

QuickDraw. To further validate the performance, we
conducted experiments on the million-scale QuickDraw
dataset. Its voluminous data can help to address the over-
fitting issue (24.1 million training samples) and offer more
statistically significant results (862K testing samples). The
results in Tables 2 & 3 show the consistent improvement of
Sketch-R2CNN over corresponding CNNs on QuickDraw.

In particular, Sketch-R2CNN (78.4%) outperforms the
reproduced SN v2 (74.8%) by 3.6% (31K successes) on com-
plete sketch inputs. Note that the original SN v1 and v2 were
not tested on QuickDraw in [2]. Results with about 2.2%
(19K successes) improvement brought by Sketch-R2CNN
are obtained using the deeper networks (i.e., ResNet and
DenseNet). Sketch-R2CNN with ResNet101 obtains the best
performance (85.3%) on QuickDraw. Notably, for CNN-only
methods, even with sufficient training data, increasing net-
work depth (ResNet101 - 83.1%, DenseNet161 - 83.0%) only
brings about 0.5% (4K successes) improvement (ResNet50 -

82.5%), which is 1/4 of the improvement of Sketch-R2CNN
(84.8%) over ResNet50. Since the number of strokes in each
sketch of QuickDraw is 5.1 on average (Table 1), partial
sketch inputs (25% and 50%) contain fewer strokes than the
ones from TU-Berlin and are thus difficult to recognize for
both CNNs and Sketch-R2CNN. Even so, for all the CNN
backbones, the improvement of Sketch-R2CNN increases
consistently with more strokes in the partial sketch inputs.

The above results of various CNN-only methods suggest
that with the increased network depth and complexity,
the performance of CNNs tends to saturate, and mining
discriminative cues from pixel sketches for recognition be-
comes more difficult. By making the drawing cues in vec-
tor sketches accessible to CNNs, Sketch-R2CNN effectively
boosts the performance even with smaller CNN backbones,
which require less training time and smaller memory foot-
print. Sketch-R2CNN barely introduces modification to the
CNN backbone, and the RNN-Rasterization design is rela-
tively lightweight. With the active development of CNNs,
we foresee that Sketch-R2CNN can achieve even better per-
formance with more advanced emerging CNN architectures.

Qualitative Results. Fig. 4 shows some sample sketches
that cause confusion to ResNet101 but are successfully rec-
ognized by Sketch-R2CNN (ResNet101). We also visualize
the multi-channel point feature maps (Sec. 3.3) produced by
the RNN-Rasterization module. It is observed that channels
including I3 - I5 tend to have higher feature values at pixels
covered by long curved strokes, which are important for
depicting rough shapes, for example, the circle strokes in the
cake or the arc stroke for the nose of the elephant. Channels
like I1, I2, I6 and I8 tend to have higher feature values at
pixels covered by short lines or endpoints of strokes, which
are mostly for depicting details, for example, the strokes
for the face of the lion or the sprinkles on the cake. There
is also a certain channel (I7) that has higher values for
all stroke pixels except endpoints of strokes, and it may
help to deliver the overall visual appearance information,
as contained in binary pixel sketches, to CNNs. The above
encoding scheme of vector sketches was learned by the
RNN and CNN jointly owing to our NLR module through
stochastic gradient descent. By analyzing in the vector space
and in-network rasterization with NLR, the RNN constructs
a nontrivial representation that differentiates levels of de-
tails in sketches. As input to CNNs, such a representation is
obviously more informative than the binary pixel format of
sketches used in existing studies [2] and can help CNNs to
develop the awareness of hierarchical representations even
at early stages for feature extraction.

4.3 Alternatives and Ablation Study

In this section, we performed experiments on network de-
sign alternatives and ablations of contributing factors for
point feature extraction. We mainly used ResNet50 as the
backbone here for its competitive performance and fast
training, and trained the networks on QuickDraw for its
sufficient data.

Point Feature Dimension. The dimension d of point fea-
tures introduced in Sec. 3.2 is a hyper-parameter of Sketch-
R2CNN. We tested a range of values for d on QuickDraw,
and the results are shown in Table 4. We found that using



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 4: Recognition samples and visualizations of point feature maps. The green labels are correct predictions by our
Sketch-R2CNN (ResNet101), and the red labels in parentheses are wrong predictions by ResNet101. The multi-channel
point feature maps (I1 - I8) produced by our RNN-Rasterization module are color-coded for visualization. Note that only
stroke pixels have valid point features; non-stroke pixels are automatically set to have a feature value of zero by NLR and
are not color-coded.

d = 8 offers a good tradeoff between accuracy and running
time. For a smaller CNN backbone SN v2, setting d = 8
increases the accuracy of Sketch-R2CNN from 77.3% (d = 1)
to 78.4%, while for a larger CNN backbone ResNet50, the
configuration slightly improves the performance from 84.4%
to 84.8%. We adopted d = 8 for all the experiments.
Setting d = 3 can be an alternative choice, since it brings
no modification to the existing pre-trained CNNs. What is
more, for d = 3, if the pre-trained weights of the first CNN
layer are reused, the performance of Sketch-R2CNN is 78.1%
with SN v2 and 84.7% with ResNet50, respectively (Table 4);
otherwise, the performance is 77.9% and 84.7%, respectively.
Thus, reusing the first CNN layer in training for d = 3 only
has slight influence on SN v2.

w/ SN v2 w/ ResNet50
d 1 3 8 16 1 3 8 16

acc. 77.3 78.1 78.4 78.3 84.4 84.7 84.8 84.8
time 5.1 5.2 5.4 6.1 9.4 9.5 9.6 10.5

TABLE 4: Recognition accuracy (%) and forward time (ms,
batch size = 1) of Sketch-R2CNN with different point
feature dimensions (d) on QuickDraw.

Ours
SN v2 ResNet50 w/ SN v2 w/ ResNet50

forward 2.0 7.1 5.4 9.6
backward 2.4 10.4 7.5 17.0

TABLE 5: Running time comparisons (ms, batch size = 1) of
the forward (inference) and backward (optimization) passes
on QuickDraw.

Running Time. Table 5 lists the running time of the
forward (inference) and backward (optimization) passes of
Sketch-R2CNN and its CNN counterparts. It is observed
that the additional time incurred by our RNN-Rasterization
module is 2~3ms for the forward pass and 5~6ms for
the backward pass, mainly due to recurrent processing of
each stroke point in the bidirectional RNN. Nevertheless,
Sketch-R2CNN can run in real time, allowing integration to
interactive drawing systems.

Two-Branch Late-Fusion. Different from the single
branch design of Sketch-R2CNN, a two-branch late-fusion
network [11] incorporates feature representations, learned
by the CNN and RNN in parallel, through simple concate-
nation. For comparison, we followed [11] to construct a sim-
ilar two-branch late-fusion network, which uses the same
RNN cell and CNN backbone as Sketch-R2CNN (ResNet50).
The network was trained on QuickDraw as well, and the
softmax cross entropy loss was used for optimization. As
shown in Table 6, the accuracy of the two-branch late-fusion
network is 82.1%, significantly lower than the accuracy
of Sketch-R2CNN (84.8%) by 2.7% (23.3K sketches). This
shows that our proposed single-branch architecture allows
the CNN, which works as a visual concept extractor, and
the RNN, which models point features in vector sketches,
to complement each other better than the two-branch archi-
tecture. Surprisingly, it is also observed that the two-branch
late-fusion network achieves slightly lower accuracy than
the CNN-only method (i.e., ResNet50 in Table 2). There
is a gap between the reported effectiveness of the two-
branch architecture in [11] and the subpar performance
of our reimplementation in the experiments. Due to the
lack of implementation details of [11], we postulate that
some differences in data preparation and training procedure



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

may affect the learning of feature fusion and lead to the
performance degradation.

Model Accuracy

SN v2 (reproduced) [2] 74.8
ResNet50 [17] 82.5
Ours (w/ SN v2 reproduced) 78.4
Ours (w/ ResNet50) 84.8

Two-Branch Late-Fusion [11] 82.1
DSSA (SN v2) [44] 75.2

w/o Temporal Order 83.2
w/o Pen State 84.6
w/o Temporal Order + Pen State 83.0

TABLE 6: Recognition accuracy (%) of alternative design
choices and ablation studies on QuickDraw.

Spatial Attention. Since the output of our RNN-
Rasterization module can be viewed as a form of attention
(Sec. 2), we also performed a comparison with the spatial
attention module proposed by Song et al. [44]. The inputs
to their network (SN v2) are pixel sketches, and the soft
spatial attention is computed on the feature maps of the
fifth convolutional layer. We implemented this attention
mechanism (DSSA in Table 6) but found that it offers limited
improvement (0.4% or 3.6K successes) to SN v2, which
is lower than the improvement of Sketch-R2CNN (3.6%
or 31K successes). This result further shows the difficulty
of extracting additional information (attention) only in the
pixel sketch space and the usefulness of vector sketches.

Contributing Factors in Vector Sketch. As confirmed
by existing studies [6], [11], [19], [24] and our experiments,
RNNs are capable of learning descriptive features from
vector sketches. We further investigated the contributing
factors in vector sketches to the point feature extraction.
A vector sketch S = {(xi, yi, si)}i=1···n (Sec. 3.1) includes
positional information, temporal order and pen states. Point
coordinates {(xi, yi)} are clearly the most informative part
for RNNs to work. In the following, we only performed
ablation experiments on the temporal order and pen states.

To study the contribution of temporal order, we pro-
cessed S with the following randomization scheme that
disrupts order information in the vector format while pre-
serving visual appearance in the pixel format. We consider
every successive constituent points of a stroke as a tiny line
segment and randomly reorder all the resulting line seg-
ments (note that NLR requires valid line segments as input
(Sec. 3.3)). We trained Sketch-R2CNN (ResNet50) with the
data, and the experiment result in Table 6 (w/o Temporal
Order, 83.2%) shows that this scheme degrades the accuracy
(84.8%) of Sketch-R2CNN (ResNet50) by 1.6%. To study the
contribution of pen states, we trained the network on vector
sketch inputs without {si}. The evaluation result (w/o Pen
State in Table 6) shows that removing pen states results in
minor influence (0.2%) on Sketch-R2CNN (ResNet50). Fi-
nally, we combined the above two ablations (w/o Temporal
Order + Pen State in Table 6), and the accuracy of Sketch-
R2CNN (ResNet50) drops by 1.8%.

We reiterate that even with the above perturbations in
the vector format, our NLR does not change the appearance
of the rasterized sketch, of which the subsequent CNN
takes advantage for recognition. In other words, the outputs

of the RNN-Rasterization module, as visualized in Fig. 4,
are at least as good as the binary sketch images, and this
ensures no performance degradation of the CNN (the main
workhorse for recognition). It is also worth noting that we
studied the contributing factors in the context of sketch
recognition. In other sketch-related tasks, for example, the
sketch synthesis task [19], [22], [23], pen states, together
with positional information and temporal order, are all
indispensable in generating realistic human drawings in the
vector format.

4.4 Limitations
Fig. 5 shows some failure cases of Sketch-R2CNN. Due to
the abstract and textureless nature of sketches, RNNs may
fail to extract descriptive point features to guide CNNs,
leading to recognition failures (e.g., the crab). Sketches with
seemingly ambiguous categories (e.g., the toaster or the pig)
may also pose challenges to our method. It is expected that
human would make similar mistakes on such cases. One
possible solution to address such ambiguity is to put the
sketched objects in context (i.e., scenes), and integrate our
method with context-based recognition methods [3], [34].

Fig. 5: Recognition failures of our method. The green labels
are correct predictions by ResNet101, and the red labels are
wrong predictions by Sketch-R2CNN (ResNet101).

5 CONCLUSION

In this work, we have proposed a novel single-branch net-
work architecture named Sketch-R2CNN for vector sketch
recognition. Our RNN-Rasterization-CNN design allows
CNNs to leverage the per-point features in vector sketches
at early stages, which is enabled by a differentiable NLR
module. Experiments show that Sketch-R2CNN brings con-
sistent improvement over CNN baselines, especially on the
million-scale QuickDraw dataset.

Despite the encouraging improvements on TU-Berlin,
addressing the overfitting issue for fully optimizing large
networks will be an important future task. Besides, our idea
of in-network vector-to-pixel sketch conversion with NLR
can be beneficial to other sketch-related tasks like sketch
retrieval [11], sketch synthesis [22], [23] or sketch simpli-
fication [37]. For example, in the photo-to-sketch synthesis
task, to generate vector sketches with more plausible spatial
arrangement of strokes, it would be easier for generative
networks to evaluate the plausibility in the image domain



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

by performing the in-network vector-to-pixel conversion.
The NLR module developed in this work handles differen-
tiability with respect to point features but not positions, thus
the module needs to be improved with dedicated gradient
formulations for the above application. We will investigate
these extensions in future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their constructive comments as well as Aleksey
Nozdryn-Plotnicki for his valuable suggestions on the pre-
liminary version of the manuscript. This work was sup-
ported by grants from the Research Grants Council of
the Hong Kong Special Administrative Region, China (No.
HKUST 16210718, CityU 11212119), City University of Hong
Kong (No. 7005176), and the Centre for Applied Computing
and Interactive Media (ACIM) of School of Creative Media,
CityU. Youyi Zheng was supported in part by the Funda-
mental Research Funds for the Central Universities and the
China Young 1000 talent program.

REFERENCES

[1] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?”
ACM TOG, vol. 31, no. 4, pp. 44:1–44:10, Jul. 2012.

[2] Q. Yu, Y. Yang, F. Liu, Y.-Z. Song, T. Xiang, and T. M. Hospedales,
“Sketch-a-Net: A deep neural network that beats humans,” IJCV,
vol. 122, no. 3, pp. 411–425, May 2017.

[3] J. Zhang, Y. Chen, L. Li, H. Fu, and C.-L. Tai, “Context-based
sketch classification,” in Proc. Expressive. ACM, 2018, pp. 3:1–
3:10.

[4] Z. Sun, C. Wang, L. Zhang, and L. Zhang, “Free hand-drawn
sketch segmentation,” in Proc. ECCV. Springer, 2012, pp. 626–
639.

[5] Z. Huang, H. Fu, and R. W. H. Lau, “Data-driven segmentation
and labeling of freehand sketches,” ACM TOG, vol. 33, no. 6, pp.
175:1–175:10, Nov. 2014.

[6] K. Li, K. Pang, J. Song, Y.-Z. Song, T. Xiang, T. M. Hospedales, and
H. Zhang, “Universal sketch perceptual grouping,” in Proc. ECCV,
2018.

[7] L. Li, H. Fu, and C.-L. Tai, “Fast sketch segmentation and labeling
with deep learning,” IEEE CG&A, 2018.

[8] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa,
“Sketch-based shape retrieval,” ACM TOG, vol. 31, no. 4, pp. 31:1–
31:10, Jul. 2012.

[9] F. Wang, L. Kang, and Y. Li, “Sketch-based 3d shape retrieval using
convolutional neural networks,” in Proc. IEEE CVPR, 2015.

[10] P. Sangkloy, N. Burnell, C. Ham, and J. Hays, “The Sketchy
Database: Learning to retrieve badly drawn bunnies,” ACM TOG,
vol. 35, no. 4, pp. 119:1–119:12, Jul. 2016.

[11] P. Xu, Y. Huang, T. Yuan, K. Pang, Y.-Z. Song, T. Xiang, T. M.
Hospedales, Z. Ma, and J. Guo, “SketchMate: Deep hashing for
million-scale human sketch retrieval,” in Proc. IEEE CVPR, June
2018.

[12] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-based
modeling: A survey,” Comput. & Graph., vol. 33, no. 1, pp. 85 – 103,
2009.

[13] R. G. Schneider and T. Tuytelaars, “Sketch classification and
classification-driven analysis using Fisher Vectors,” ACM TOG,
vol. 33, no. 6, pp. 174:1–174:9, Nov. 2014.

[14] Y. Li, T. M. Hospedales, Y.-Z. Song, and S. Gong, “Free-hand sketch
recognition by multi-kernel feature learning,” CVIU, vol. 137, pp.
1 – 11, 2015.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012,
pp. 1097–1105.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. IEEE CVPR, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE CVPR, June 2016.

[18] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE CVPR,
2017.

[19] D. Ha and D. Eck, “A neural representation of sketch drawings,”
in Proc. ICLR, 2018.

[20] A. Graves, “Generating sequences with recurrent neural net-
works,” CoRR, vol. abs/1308.0850, 2013.

[21] Q. Yu, Y. Yang, Y.-Z. Song, T. Xiang, and T. M. Hospedales,
“Sketch-a-net that beats humans,” in Proc. BMVC, 2015, pp. 7.1–
7.12.

[22] J. Song, K. Pang, Y.-Z. Song, T. Xiang, and T. M. Hospedales,
“Learning to sketch with shortcut cycle consistency,” in Proc. IEEE
CVPR, June 2018.

[23] C. Nan, Y. Xin, S. Yang, and C. Chaoran, “AI-Sketcher: A deep
generative model for producing high quality sketches,” in Proc.
AAAI, 2019.

[24] J. Collomosse, T. Bui, and H. Jin, “LiveSketch: Query perturbations
for guided sketch-based visual search,” in Proc. IEEE CVPR, 2019.

[25] H. Kato, Y. Ushiku, and T. Harada, “Neural 3d mesh renderer,” in
Proc. IEEE CVPR, 2018.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet large scale visual recognition challenge,”
IJCV, vol. 115, no. 3, pp. 211–252, Dec 2015.

[27] E. Yanık and T. M. Sezgin, “Active learning for sketch recognition,”
Comput. & Graph., vol. 52, pp. 93 – 105, 2015.

[28] C. Alvarado and R. Davis, “SketchREAD: A multi-domain sketch
recognition engine,” in Proc. ACM UIST. ACM, 2004.

[29] J. J. LaViola, Jr. and R. C. Zeleznik, “MathPad2: A system for the
creation and exploration of mathematical sketches,” ACM TOG,
vol. 23, no. 3, pp. 432–440, Aug. 2004.

[30] T. Y. Ouyang and R. Davis, “ChemInk: A natural real-time recog-
nition system for chemical drawings,” in Proc. ACM IUI. ACM,
2011.

[31] T. Lu, C.-L. Tai, F. Su, and S. Cai, “A new recognition model for
electronic architectural drawings,” CAD, vol. 37, no. 10, pp. 1053 –
1069, 2005.

[32] T. M. Sezgin and R. Davis, “Sketch recognition in interspersed
drawings using time-based graphical models,” Comput. & Graph.,
vol. 32, no. 5, pp. 500–510, 2008.

[33] R. Arandjelović and T. M. Sezgin, “Sketch recognition by fusion of
temporal and image-based features,” Pattern Recogn., vol. 44, no. 6,
pp. 1225–1234, 2011.

[34] C. Zou, Q. Yu, R. Du, H. Mo, Y.-Z. Song, T. Xiang, C. Gao, B. Chen,
and H. Zhang, “SketchyScene: Richly-annotated scene sketches,”
in Proc. ECCV, September 2018.

[35] H. Zhang, S. Liu, C. Zhang, W. Ren, R. Wang, and X. Cao,
“SketchNet: Sketch classification with web images,” in Proc. IEEE
CVPR, 2016.

[36] Y. Chen, S. Tu, Y. Yi, and L. Xu, “Sketch-pix2seq: a model to gen-
erate sketches of multiple categories,” CoRR, vol. abs/1709.04121,
2017.

[37] U. Riaz Muhammad, Y. Yang, Y.-Z. Song, T. Xiang, and T. M.
Hospedales, “Learning deep sketch abstraction,” in Proc. IEEE
CVPR, June 2018.

[38] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent
models of visual attention,” in NIPS, 2014, pp. 2204–2212.

[39] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The
application of two-level attention models in deep convolutional
neural network for fine-grained image classification,” in Proc. IEEE
CVPR, 2015.

[40] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” in
Proc. IEEE CVPR, 2017.

[41] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE CVPR, 2018.

[42] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdi-
nov, R. S. Zemel, and Y. Bengio, “Show, attend and tell: Neu-
ral image caption generation with visual attention,” CoRR, vol.
abs/1502.03044, 2015.

[43] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing when to look:
Adaptive attention via a visual sentinel for image captioning,” in
Proc. IEEE CVPR, 2017.

[44] J. Song, Q. Yu, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Deep
spatial-semantic attention for fine-grained sketch-based image
retrieval,” in Proc. IEEE ICCV, 2017.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

[45] M. Li, Z. Lin, R. Mech, E. Yumer, and D. Ramanan, “Photo-
Sketching: Inferring contour drawings from images,” WACV, 2019.

[46] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[47] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in Proc. ECCV, 2014, pp. 818–833.

[48] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face
revisited: A joint formulation,” in Proc. ECCV, 2012, pp. 566–579.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[50] B. Graham and L. van der Maaten, “Submanifold sparse convolu-
tional networks,” CoRR, vol. abs/1706.01307, 2017.

[51] Y. Li, Y.-Z. Song, and S. Gong, “Sketch recognition by ensemble
matching of structured features,” in Proc. BMVC, 2013.

[52] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Neural
Networks: Tricks of the Trade: Second Edition, 2012, pp. 9–48.

Lei Li is working toward the Ph.D. degree at
the Department of Computer Science and Engi-
neering, Hong Kong University of Science and
Technology. He received the B.Eng. degree in
software engineering from Shandong University.
His research interests include computer graph-
ics and data-driven techniques.

Changqing Zou is with the HMI Lab of Huawei
technologies. He was an Assistant Research
Professor (PI) at UMIACS of the University
of Maryland at College Park. He received the
B.E. degree from Harbin Institute of Technology,
and the M.E. degree from Institute of Remote
Sensing and Digital Earth, Chinese Academy of
Sciences, and the Ph.D. degree at the Shen-
zhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences. His research in-
terests include computer vision and computer

graphics.

Youyi Zheng is a Researcher (PI) at the State
Key Lab of CAD&CG, College of Computer Sci-
ence, Zhejiang University. He obtained his Ph.D.
from the Department of Computer Science and
Engineering at Hong Kong University of Science
and Technology, and his M.Sc. and B.Sc. de-
grees in Mathematics, both from Zhejiang Uni-
versity. His research interests include geometric
modeling, imaging, and human-computer inter-
action.

Qingkun Su is with the A.I. Labs, Alibaba Group.
He received the B.S. degree in software engi-
neering from Shandong University, and the Ph.D.
degree in computer science and engineering
from Hong Kong University of Science and Tech-
nology. His research interests include computer
graphics, human-computer interaction, and im-
age processing.

Hongbo Fu is a Professor with the School of
Creative Media, City University of Hong Kong.
He received the B.S. degree in information sci-
ences from Peking University, and the Ph.D.
degree in computer science from Hong Kong
University of Science and Technology. He has
served as an Associate Editor of The Visual
Computer, Computers & Graphics, and Com-
puter Graphics Forum. His primary research in-
terests include computer graphics and human
computer interaction.

Chiew-Lan Tai is a Professor at the Department
of Computer Science and Engineering, Hong
Kong University of Science and Technology. She
received the B.Sc. degree in mathematics from
University of Malaya, the M.Sc. degree in com-
puter and information sciences from National
University of Singapore, and the D.Sc. degree
in information science from the University of
Tokyo. Her research interests include geometry
processing, computer graphics, and interaction
techniques.


