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Abstract—Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute
significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy
workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling
diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur
users to model free-style and high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying
algorithm. First, curvature-aware strokes are introduced to better support the controllability of detail carving. Second, considering the
key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed “Implicit and Depth
Guided Mesh Modeling” (IDGMM). It combines the advantages of mesh, implicit, and depth representations to achieve high-quality
results with high efficiency. In addition, to further support usability, we present a coarse-to-fine interface design and a data-driven
stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use
and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency.

Index Terms—Sketch-based 3D Modeling, Face Modeling, Neural Network.
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1 INTRODUCTION

C REATING 3D virtual avatars is a prolonged research topic in
computer graphics and virtual reality, and benefits various

usage scenarios such as filming, gaming, and art designing. In this
paper, we focus on character face modeling, which plays the most
significant role in avatar creation. In the current stage, experi-
enced artists could spend days or even months formally sculpting
high-fidelity 3D faces with vivid surface details using powerful
commercialized 3D modeling tools, e.g., ZBrush, MAYA, and 3D
MAX.

To assist amateur users in freely instantiating their ideas
as professional modelers, researchers in computer graphics and
human-computer interaction have designed systems that allow
users to model 3D shapes with freehand sketches. Although
existing sketch-based 3D modeling systems such as Teddy [1]
and FiberMesh [2] enable amateur users to create 3D models,
they usually require tremendous manual work to create complex
geometry. Thanks to the recent progress in deep learning, the
understanding of freehand sketches and the quality of single-view
generations have reached an unprecedented level.

Based on the amazing inference ability of deep learning-based
models, several intelligent sketching modeling systems have been
proposed to allow novice users to create visually plausible 3D
faces within a few minutes [3], [4], [5], [6], [7], [8]. Closest to
our work, DeepSketch2Face [3] presents the first deep learning-
based sketching system for modeling 3D caricatures or real faces.

• Z. Luo, D. Du, H Zhu and X. Han are with the School of Science and
Engineering, The Chinese University of Hong Kong, Shenzhen, China. Y.
Yu is with the Department of Computer Science at the University of Hong
Kong. H. Fu is with the School of Creative Media, City University of Hong
Kong.

• X. Han is the corresponding author. E-mail: hanxiaoguang@cuhk.edu.cn

Manuscript received xxxx.

The key contribution of DeepSketch2Face is a learning-based
model that maps 2D sketches onto a parametric morphable model
space. Limited by the capability of the parametric model, DeepS-
ketch2Face suffers from two major drawbacks. First, it can only
model 3D faces with fixed styles, while users expect to customize
3D faces with diversified styles. Second, it cannot produce skin
wrinkle details reflecting the appearance of the sketch input.

In this paper, we design and present SketchMetaFace, a pow-
erful sketch-based 3D face modeling system that addresses the
following challenges:

Accuracy. Recent learning-based sketch modeling systems [7],
[9], [10] allow novice users to create visually-plausible 3D models
with a few strokes. However, they are not capable of designing
shapes with fine-grained details. To assist users in conveying their
ideas more accurately, we propose a novel interactive scheme, i.e.,
the curvature-aware strokes. Users may tune the curvature (bulge
or sunken) intensity and the width of each stroke. We will also
demonstrate how the curvature-aware strokes significantly boost
the quality of detailed surfaces generated from sketches.

Apart from curvature-aware strokes, we contribute to a novel
geometric inference back-end model to generate detailed 3D faces
from curvature-aware sketches. Although existing models [11],
[12], [13], [14], [15], [16], [17], [18] can map 2D images,
including sketch images, to 3D shapes, they may fail to gen-
erate watertight 3D meshes with delicate details. To produce
shapes with fine-grained details, a straightforward way is to
blend high-quality multi-view depth maps generated by image
translation [19]. However, it is nontrivial to fuse the generated
depth maps seamlessly into a watertight mesh. Alternatively, one
could adopt pixel-aligned implicit function (PIFu) [17], [18] to
reconstruct watertight 3D shapes from single images, though it
exhibits bounded performance in generating detailed geometry. In-
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Fig. 1: We present SketchMetaFace, a novel sketching system designed for amateur users to create free-style and high-fidelity 3D
character faces. With curvature-aware strokes (valley strokes in green and ridge strokes in red), novice users can smoothly customize
free-style detailed 3D heads. Note that our system only outputs geometry without texture and texturing is achieved using commercial
modeling tools.

spired by the fact that the depth map produced by image translation
contains more intriguing details compared with PIFu-generated
shapes, we propose IDGMM, which combines the merits of both
depth map and implicit representations to produce high-quality 3D
shapes from curvature-aware sketch images.

Usability. While introducing curvature-aware strokes may
empower users to create 3D faces with fine-grained geometry
details, it may increase their cognitive load. To this end, we
thoroughly analyze users’ requirements through interviews with
potential users and design our system. We adopt a coarse-to-fine
interactive scheme where users get used to the system with mono-
typed sketches. Soon as users get familiar with the system, they
may switch to fine-detail crafting with curvature-aware strokes.
Specifically, we carefully design a stroke suggestion component
that bridges the gap between coarse sketching and detailed sketch-
ing. Moreover, to further improve the intuitiveness of our system,
we keep the placement of ears as the only 3D interaction in our
system.

To demonstrate the effectiveness of our system, we carefully
design user studies, from which we can see that our proposed
system exhibits better usability than existing sketch-based 3D
face modeling systems [3], [8]. It also shows that our system
allows amateur users to create more diverse shapes. By conducting
comparisons against existing inference algorithms for mapping a
single sketch to a 3D model, we demonstrate that results generated
by our proposed IDGMM better reflect the appearances of the
input sketches. Ablation studies are conducted to justify each
design in both our interface and algorithm. The contributions of
our paper can be summarized as follows:

• We design a novel, easy-to-use sketching system that
allows amateur users to model free-style and high-fidelity
3D character faces in minutes (as seen in Fig. 1).

• We develop a carefully-designed user interface: 1) the face
modeling work is separated into a coarse-to-fine stage; 2)
the curvature-aware stroke is involved for modeling geo-
metric details; 3) a data-driven suggestion tool is designed
to ease the sketching process.

• We propose a novel method, i.e., Implicit and Depth
Guided Mesh Modeling (IDGMM), which combines the

advantages of mesh, implicit, and depth representations
for detailed geometry inference from 2D sketches.

2 RELATED WORK

In this section, we will present relevant studies on 3D avatar
modeling, geometrical sketch-based modeling, and data-driven
sketch-based modeling. We are aware of the breathtaking progress
in sketch-based 2D image generation of faces [20], [21]. However,
we will not discuss these in detail due to the page limit.
3D Face from A Single Image. Creating visually plausible 3D
avatars is a long-standing computer graphics and vision problem.
Compared with 3D face reconstruction methods, which take multi-
view [22], [23] or monocular video [24], [25] as input, single
image reconstruction (SVR) and sketch-based modeling provide
more casual means for novices to customize 3D faces. The
research on single image 3D face reconstruction can be roughly
divided into two streams, namely, photo-realistic human face
reconstruction and caricature face reconstruction.

The works on single-image photo-realistic face reconstruction
can be further separated into two genres, i.e., parametric and
shape-from-shading methods. However, neither can be directly
adopted for modeling freestyle and detailed 3D faces. Parametric-
based models [26], [27], [28] fall short in representing shapes with
novel and customized surface details. Shape-from-shading-based
methods [29], [30] suffer from deriving geometric clues from non-
photo-realistic image inputs, e.g., caricature images and sketches.

Compared with single-image photo-realistic 3D face gener-
ation, which has been extensively studied and achieved excep-
tionally high quality, the researches on 3D avatars are relatively
sparse. A possible reason is that caricature 3D faces are shapes
with more diversified geometry, making them extremely hard to
be regularized into a single parametric model losslessly. Some
works [31], [32], [33] introduced deformations to increase the
capability of parametric models. However, their works are still
far from generating high-fidelity 3D caricature shapes of various
styles. More importantly, given that most single-image caricature
face modeling methods require high-quality caricature images as
input, novice users cannot further customize the shape as they
wish.
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In line with our work, DeepSketch2Face [3] proposed a sketch
modeling system that allows users to create caricature head avatars
from scratch. Once users finish drawing with DeepSketch2Face, a
CNN-based system back-end model parses a user-drawn sketch as
the parameters for the morphable caricature face model. However,
since the 3D caricature avatar shape is confined to the parametric
caricature face model, it cannot faithfully reflect the large defor-
mations and the wrinkle details presented in the sketch. To address
this issue, SAniHead [6] proposed a view-surface collaborative
mesh generative network, which turns dual-view freehand sketches
into animalmorphic head avatars. Nevertheless, it falls short in
controllability mainly due to the ambiguity of sketch strokes and
the capacity of their shape generation model. SimpModeling [8]
proposed a novel two-phase sketch modeling scheme where users
may create their desired animalmorphic head models with 3D
sketch strokes and on-surface sketching. However, we argue that
2D sketching would be more intuitive than 3D sketching as most
users are more familiar with 2D interactions and user interfaces.
Therefore, in this paper, our system allows users to create high-
fidelity 3D faces across different styles with only 2D freehand
sketches.
Geometrical Sketch-based Modeling. Designing free-form 3D
shapes via freehand sketching has drawn considerable attention
in recent decades. Igarashi et al. [1] pioneer by proposing the
first sketch-based modeling system that allows users to create
3D shapes from scratch by sketching 2D contour lines. A large
stream of subsequent researches [34], [35], [36], [37], [38], [39]
has mainly focused on designing novel interpolation functions
to interpolate sketched contours lines smoothly. To emboss in-
terpolated surfaces with sharper details, several methods [40],
[41], [42] introduce sketches with different semantics to formulate
more determined constraints though such additional inputs may
significantly increase novice users’ cognitive load. Unlike the
sketch-based modeling systems mentioned above, which take 2D
sketches as input, Fibermesh [2] allows users to model free-
form surfaces by sketching and manipulating 3D curves. While
Fibermesh [2] and its follow-up systems [43], [44] reduce the
ambiguity remarkably with explicitly defined 3D curves, they are
not capable of or are not friendly for novices users to carve organic
surface details (e.g., skin wrinkles).

Our system allows users to draw with curvature-aware strokes,
which act as a less ambiguous means for users to specify the bulge
and sink on faces. Moreover, we introduce a carefully designed
sketch suggestion module to support amateurs get familiar with
our system intuitively.
Data-driven Sketch-based Modeling. The recent decade has wit-
nessed the emergence of data-driven methods for sketch-based
3D shape generation thanks to large-scale 3D datasets. The data-
driven sketch-based modeling systems can be roughly divided
into two streams regarding the shape generation approaches, i.e.,
retrieval-based and learning-based methods.

Retrieval-based methods [45], [46] consume a freehand sketch
for the query and search for the most similar shape from the data
warehouse as the reconstruction output. Fan et al. [47] propose
a suggestive interface with shadow guidance to guide object
sketching. However, shadow guidance may introduce severe visual
cluttering for sketches with different semantics. Xie et al. [48] pro-
posed to retrieve candidate object parts from a database with part
sketches for further assembly. More recently, deep convolution
neural networks have been applied for retrieval-based sketch mod-
eling systems [49], which have shown their superiority compared

to their traditional learning-based counterparts in handling noisy
sketch input created by novice users. However, limited by the
capacity of the data warehouse, retrieval-based sketch modeling
may produce shapes that drift away from input sketches.

In recent years, deep learning-based solutions have been
popular for 3D shape generation and analysis [50]. Nishida et
al. [51] proposed inferring urban building parameters from free-
hand sketches with convolutional neural networks, while Huang
et al. [52] presents an interactive modeling system that infers
parameters for procedural modeling from input sketches. DeepS-
ketch2Face [3] proposed a deep regression model that converts
a sketch image into the parameters of a morphable 3D carica-
ture face model. However, the above parametric regression-based
methods only work for 3D shapes within a specific category that
can be easily parameterized. SimpModeling [8] allows users to
create animalmorphic heads using unfriendly 3D interactions. Du
et al. [7] adopted implicit learning to produce artificial object parts
from sketches and proposed a deep regression model to predict
the position of the parts, while sketch2cad [5] supports users to
achieve controllable part-based CAD object modeling. However,
none of the above systems is designed to create freestyle and
detailed 3D faces with sketching intuitively.

3 USER INTERFACE

This section first summarizes the requirements of designing
sketch-based modeling for novice users to customize high-fidelity
faces of highly diversified styles. On top of the design goals, we
will introduce the crucial designs of our system and justify how
they reflect the design goals. Please refer to the accompanying
video for sketch-based modeling in action.

3.1 Design Requirements and Analysis
In the design process of our sketch-based 3D face modeling
system, we interviewed 11 participants with different levels of
modeling experience to analyze the demands for a user-friendly
sketch-based modeling interface. Three of these participants were
modelers with more than five years of experience in 3D modeling,
while the rest were novice users with no or little knowledge of 3D
modeling. Based on the responses, we summarize the following
design goals and the corresponding design choices for our system:

Coarse to fine (R1). After briefly introducing the background
knowledge about sketch-based 3D shape modeling, we first
discuss whether users prefer working in a top-down or bottom-up
manner. All of the experts and most novice users preferred to
model the shape in a top-down manner. Therefore, our proposed
sketch-based modeling system allows users to model 3D faces in
a coarse-to-fine manner. In the coarse-shape modeling stage, users
can design the contour and the attachment of the faces (e.g., ears).
After users finish designing a coarse head shape, they will move
on to the fine-grained shape modeling stage, where they can carve
geometrical details such as wrinkles, mouths, eyes, etc. Note that
we treat ears as attachments and adjust their position through 3D
interactive operations in the coarse stage, since it is difficult to
determine the 3D location of attachments just via frontal-view
sketching.

As 2D as possible (R2). When discussing whether 3D
interactions should be dominant in the system, most novice
users mentioned that they prefer to express their ideas through 2D
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Fig. 2: An illustration of the interactions supported by our system. In the Coarse Shape Modeling stage, users may define coarse 3D
faces with frontal-view contouring, profile depth editing, and ear modeling. In the Fine Detail Sketching stage, users can further carve
fine-grained surface details with the proposed curvature-aware strokes.

drawings. Interestingly, even professional modelers agree that 2D
interactions should be the dominant interaction for the system, as
they believe novices may get bored manipulating the cameras and
the 3D shapes. To this end, our system is designed following the
”as 2D as possible” principle. That is, users can finish most of
the design only with a 2D sketch pad, and 3D interactions (e.g.,
tuning the layout of ears) are introduced only when necessary.

Agile and precise (R3). While some amateurs mentioned that
they want to carve a 3D face carefully according to a reference
character face, others only intend to customize a visually-plausible
3D face with a few strokes. Hence, our system allows users to cus-
tomize 3D faces with different degrees of interaction complexity,
as shown in the demo video. Novice users can quickly orchestrate
a visually plausible 3D face with the dedicated sketch stroke
suggestion module. The sketch stroke suggestions also serve as
a decent initialization for detailed face modeling. For users who
are interested in carving customized surface details, we propose
a carefully designed curvature-aware sketch stroke that allows the
specification of surface details to be more precise.

3.2 Coarse Shape Modeling

To support the design requirements mentioned in Section 3.1, in
our system, the modeling of high-fidelity 3D faces is decomposed
into coarse shape modeling and fine detail sketching (R1). Users
may kick off designing a coarse 3D face by drawing face contour
lines on the 2D sketching pad view, as illustrated in Fig. 2. Novice
users could switch to the symmetric sketching mode. Under this
mode, mirror-symmetrical strokes will be generated as the user
draws on the sketch pad. In this stage, our system can produce a
3D model in a real-time manner by responding to each drawing
operation.
Profile Depth Editing. The essence of our system lies in eliminat-
ing 3D user interactions (R2). However, the generated 3D faces
with single-view contour strokes lack depth variances along the
z-axis due to the missing constraints on the depth channel. To
this end, we deliberately design a profile depth editing interaction

scheme that allows users to specify the face contours in the
lateral view. Once users switch to the depth editing mode, a new
canvas will appear with an initial side-view rendered 3D face
contour. As seen in Fig. 2, by revising the profile sketch, novice
users may design shapes with sharp-variant depth without directly
manipulating the 3D shapes.
Ear Modeling. The attachments of 3D faces, i.e., the ears, play
an essential role in shaping a virtual character’s characteristics
and styles. Unlike nose, eyes, and mouth, ears (and other face
attachments) are of greater diversity in 3D layout, making it
challenging to use frontal-view sketching only to express. To this
end, our system uses separate meshes to represent the face and
the ears for better expressiveness. Users may customize the ears
by drawing their contour lines on the 2D sketch pad view, like
specifying the coarse head shape. Specifically, the ears (also for
other attachments like horns) are sketched on individual canvas
layers, which may facilitate users to manipulate their 2D attach-
ment layouts and also help the backend models learn diversified
attachment shapes.

Moreover, as illustrated in Fig. 2, users can modify the 3D
layout of the ears in the 3D view for more precise control
of the generated shape. Users can also copy attachments as
RigMesh [53]. It is worth mentioning that layout manipulation
and attachment copying are the only 3D operations in the whole
modeling procedure (R2).

3.3 Fine Detail Sketching

After the user finishes customizing the coarse face shape, they may
further characterize the detailed facial geometry, e.g., eyes, noses,
mouth, and wrinkles. Although previous works, e.g., DeepS-
ketch2Face [3] and SimpModeling [8], allow users to edit surface
details through 2D and 3D sketching, they fall short in generating
diversified and controllable surface details due to the ambiguous
mono-typed sketch strokes.
Curvature-aware Strokes. We adopt curvature-aware strokes to
alleviate the sketch’s ambiguity, enabling users to carve surface
details precisely (R3). Specifically, two types of strokes (i.e., ridge
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and valley) are defined. Before each stroke drawing, the user
needs to pick a type first. Different stroke types are visualized
with different colors (i.e., red for ridge and green for valley).
Our system also supports two tunable attributes for each stroke:
“width” reflects the scope of influence and “depth” defines the
curvature amplitude, i.e., greater depth (darker color) means higher
ridge or deeper valley.
Stroke Suggestions. While the curvature-aware strokes signifi-
cantly improve the controllability of our system, they inevitably
bring additional cognitive load for novice users. To address this
issue, we carefully design a data-driven stroke suggestion tool.
Consider a scenario when a user wishes to draw a pig nose on the
face, as illustrated in Fig. 3. Our system allows the user to pick the
‘nose’ type and select a ‘pig’ style first, and then draw a contour
to specify the rough shape and the location where they wish to
place the nose. After that, a set of prepared strokes in the database
with the specified category and similar shapes are retrieved and
shown as “suggestions”. The user then picks one which can be
placed either automatically or after a manual adjustment of the
location and size. Users were default provided 20 suggestions
each time. Note that the retrieved sketches are editable. With such
a suggestion tool, amateurs can quickly compile a neat 3D face
model with the high-quality sketch strokes in the database and
kick off instantiating their ideas on a decent basis. The suggestion
tool is implemented by a retrieval neural network based on the
auto-encoder structure, please refer to the supplemental materials
for details.
Instant Shape Preview. An instant preview of the 3D shape could
serve as guidance for further sketching. However, due to the
geometry complexity, the model inference in the stage of fine-
detail sketching takes around 0.5s, making it unable to support
real-time response. As shown in our video, we adopt image space
rendering and generate the frontal-view normal map as a real-time
shape preview. Please refer to the supplemental materials for the
implementation details of the instant preview module.

...

Suggestion

...

Fig. 3: An illustration of our stroke suggestion component. Soon
after users specify the style, target region, and facial components
to be modeled, the stroke suggestion component retrieves the
relevant curvature-aware strokes. Users may also manipulate the
layout for the retrieved strokes through dragging and scaling.

4 METHODOLOGY

In this section, we present the details of the backend models that
support the interactive sketching interface.
Overview. Following our coarse-to-fine interface design, we dis-
cuss the algorithms used for the two stages accordingly. In the
coarse stage, as illustrated in Fig. 4, we propose a part-separated
implicit learning method that maps the coarse input sketch Sr to

𝑝

MLP 2

feature

𝑆𝑟

𝑆𝐷𝐹𝑠

𝑀𝑐

Parts

Encoder

MLP 3

MLP 1

Fig. 4: An illustration of o our part-separated coarse modeling of
a 3D face with an outline sketch input Sr . It shows the generation
of three parts of a face region and two ears using PIFu, and then
assembles and merges them to obtain a coarse model Mc.

separated part meshes (i.e., face and attachments). After the user
tunes the part layout, these separated meshes are merged into a
single mesh Mc. We then render the outer contour [54] of Mc

into the sketch image Sc, on which users can add fine strokes in
the detail sketching stage.

In the detail sketching stage, users may further craft fine-
grained surface details through sketching on the rendered coarse
sketch image Sc. To generate detailed geometry Mf from the fine
sketch Sf , as shown in Fig. 5, we propose IDGMM, which learns
a progressive deformation from Mc to Mf , under the guidance of
both the learned implicit field (SDF) and the learned depth map
from Sf .

4.1 Preliminary
Before introducing the proposed model, we will briefly review
some relevant concepts and building blocks.
Pix2Pix. Given a source image Is, Pix2Pix [19] learns a mapping
from Is to a target image It, i.e., f : Is → It in an adversarial
manner. Commonly, a U-Net is adopted to model this translation,
and the conditional GAN loss and the reconstruction loss (L1 or
L2 loss) are used for training. In our model, the Pix2Pix module
is adopted for translations among sketch images, depth maps, and
normal maps.
Implicit Learning. Recently, various deep representations have
been used for 3D shape reconstruction, e.g., voxels, point clouds,
meshes, and implicit fields. Among them, implicit field-based
methods achieve the state-of-the-art performance [14], [15], [16].
There are two commonly used formulations to model implicit
surfaces, namely, occupancy and signed distance function (SDF).
Occupancy is a continuous function go that maps a query point
p ∈ R3 to a binary status o ∈ {0, 1}, indicating inside/outside of
the surface. SDF is a function gs that maps p to its signed distance
s to the underlying surface. A multi-layer perception (MLP) is
usually adopted for approximating go or gs.
PIFu. Among the works relevant to single image 3D shape
reconstruction, pixel-aligned implicit function (PIFu) outperforms
its counterparts in generating results better matching input images.
Specifically, PIFu models a function h to map p ∈ R3 together
with a projected pixel-aligned feature fp to an occupancy o or
SDF value d, i.e., h : {p, fp} → o/d. Firstly, an hourglass
architecture [55] is applied on I to obtain a feature map If . Then,
p is projectd onto If to obtain fp. MLP is used to model h.
As our system also requires input-aligned results, we adopt PIFu
as the base module for shape inference from sketch images. In
our method, SDF-based PIFu is used since it is more suitable to
provide deformation guidance. In the following sections, we will
use PIFu to denote our SDF-based PIFu.
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PIFu with Normal Input. As a follow-up work of PIFu, PI-
FuHD [18] proposed a coarse-to-fine pixel-aligned implicit shape
learning pipeline to generate more geometry details. More specif-
ically, it utilizes PIFu as the coarse-level learning and adopts gen-
erated normal maps for fine-level learning. Inspired by PIFuHD,
we infer normal maps from the input sketch images with Pix2Pix
to assist in the learning of fine-grained surface details. Similar
to the design proposed in PIFuHD, we maintain a tiny MLP that
extracts local image features from the inferred normal maps to
generate high-frequency details. In the following sections, we will
use PIFu-N to denote our PIFu with normal input.

4.2 Coarse Modeling
In the coarse stage, users only need to draw a rough outline for
a desired face, i.e., the face contour and attachment contours
(e.g., ears). A straightforward way to generate a coarse model
from the outline sketch Sr is to use PIFu, which maps Sr to
an implicit field. Subsequently, Marching Cubes [56] can be
adopted to extract a mesh from the implicit field. However, as
the attachments and the face are represented with a single mesh,
users cannot directly manipulate the layout for the attachments,
thus significantly weakening users’ control over modeling results.
Part-separated PIFu. To boost the controalibity of our system, we
present a novel part-separated PIFu. Let’s first consider a common
scenario where a face contains a left ear and a right ear. As shown
in Fig. 4, three different PIFu modules are used to model the three
parts separately. Note that they use different MLPs but share a
common encoder that maps Sr to feature maps.
Part Assembly. The 3D location of each ear is kept without any
normalization during training, which makes the network learn the
layout of ears automatically. After obtaining the implicit field
of each part, we extract separated meshes from them (for better
efficiency, 643 resolution is used for marching cube). After users
manipulate 3D ear placements, those meshes are merged into a
single one with a corefine-and-compute-union operation provided
by CGAL 1. After this step, we apply a remeshing method [57] to
get Mc.
Depth Editing with Profile Sketching. Although our curvature-
aware stroke contains a “depth” attribute for depth controlling, it
can only model local depth. Thus we provide a profile sketching
tool for global depth editing (as seen in Fig. 2). Specifically, the
profile contour is treated as the handle to define a Laplacian
deformation [58]. Since Mc in the coarse stage is in a low
resolution, the Laplacian deformation can be performed in real-
time.
Training. The part-separated PIFu is trained in a fully-supervised
manner. For each character face mesh M in the dataset, we render
its contours as a sketch image input. To prepare the ground truth
data for training our part-separated PIFu used in the coarse stage,
we smooth faces meshes M , and then segment them into distinct
parts (i.e., faces and attachments). The ground-truth SDF values
for each part are calculated in the world coordinates. We use the
L1 metric during training to measure the difference between the
predicted SDF values and the ground truth.

4.3 IDGMM: Implicit and Depth Guided Mesh Modeling
In the fine stage, Mc is first rendered into a new contour map
Sc. Then users will draw curvature-aware strokes over Sc, and we

1. CGAL: the Computational Geometry Algorithms Library.
https://www.cgal.org/.

denote the updated sketch image as Sf . This section discusses the
method to map Sf to a model denoted as Mf . It resembles the
shape of Sc but contains local geometric details reflected by Sf ,
as illustrated in Fig. 5.

Recently, there are many existing deep learning-based meth-
ods [14], [15], [16], [17], [18] can map a sketch image to a 3D
model. Among them, PIFu-based methods [17], [18] can generate
better results in terms of both the alignment with the input and the
ability to model details. A straightforward solution is to apply PIFu
for this task. However, generating a high-resolution mesh from
the learned implicit field with Marching Cubes (MC) [56] needs
a heavy computation burden. For example, it costs around 5s to
apply MC on a 2563 implicit field. Our key strategy is to convert
the problem into a mesh deformation formula. Specifically, our
method takes Mc as input and learns the movement of each vertex
on Mc to let Sf fit well to the implicit field. Before conducting
deformation, we make subdivisions [57] on the regions where
detail strokes are drawn for better modeling geometric details. For
simplicity, we still use Mc to represent the mesh after subdivision.
Implicit-guided Mesh Updating. Inspired by the work [59], Simp-
Modeling [8] proposed a strategy for mesh deformation under the
guidance of implicit fields, but it is inefficient: 1) SimpModeling
utilizes an occupancy field and needs to determine the updated
vertices by a dense sampling way; 2) to stabilize the deformation,
the Laplacian deformation technique [58] is adopted.

In constrast, we update Mc directly with the guidance of
the continuous SDF field to keep smoothness during deforma-
tion, which dramatically reducing the computational cost of the
Laplacian deformation (i.e., updating each vertex v ∈ Mc via
v′ = v + gs(v)n, where n indicates the normal of v). The
above updating mechanism could be performed iteratively for
multiple times, but its enhancement was slight. Hence, we only
perform one iteration to reduce the computational burden and
leave the remaining detail enhancement work to the depth-guided
deformation stage. We denote the new mesh after updating as M ′

c.
A direct way to learn the SDF function from Sf is by applying

PIFu-N on Sf . However, It may lead to a misalignment between
the generated SDF field and the coarse mesh Mc, thus challenging
the deformation. Therefore, as illustrated in Fig. 5, we render Mc

into a depth map Dc, and feed Dc and Sf together into a Pix2Pix
module to infer a normal map N for conducting PIFu-N.
Depth-guided Mesh Refinement. Although normal-assisted PIFu
has a better capability to model details than other existing meth-
ods, generating details as reflected in the normal map is still practi-
cally challenging. In our experiments, we found the learned depth
maps contain richer geometric details than the learned implicit
fields. Thus we propose a depth-guided deformation method to
enhance M ′

c further. Specifically, as illustrated in Fig. 5, we first
render M ′

c into a depth map D′
c and feed it together with N

into a new Pix2Pix module for generating a depth map Df with
sharper details than D′

c. Here, we use N instead of Sf since N
has already captured the geometric information from Sf and can
ease the learning procedure. D′

c is used to ensure output results
align with M ′

c well to ease the subsequent deformation.
Then, we convert Df to a point cloud P and employ ICP

to register M ′
c to P . Specifically, for each vertex v of M ′

c, we
retrieve K closest points in P and employ the inverse distance
weighting algorithm [60] to directly update the position of v. In
our experiments, we set K = 8 to reach a trade-off between
efficiency and accuracy.
Flow-based Local Depth Alignment. Although the design of the
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Fig. 5: The architecture of our implicit and depth guided mesh modeling (IDGMM). (a) Taking a coarse mesh Mc as input, it is first
rendered into a depth map Dc. Dc together with the input fine sketch Sf are fed into Pix2Pix-1 to generate a normal map N . N is
applied to generate an implicit field using PIFu-N. Under the guidance of the SDF field, Mc is deformed to obtain an updated mesh
M ′

c. (b) We then render M ′
c into a depth map D′

c, which is enhanced to Df with a Pix2Pix-2 module. After a flow-based local depth
alignment, we obtain the point cloud P from the warped depth map. P is used to guide mesh refinement from M ′

c to the resulting mesh
Mf .

(a) (b) (c)

Fig. 6: An illustration of our flow-based local depth alignment
(M2), which resolves the artifacts caused without depth alignment
(M1). (a) the input sketch. (b) the front-view of the result. (c) the
top-view of the result.

method discussed above well guarantees global alignment between
P and M ′

c, there is no consideration of local alignment. Implicit-
guided mesh updating is hard to ensure the alignment of local
geometry (e.g., eyes) between the M ′

c and Sf (thus, both N and
Df may also suffer from misalignment). This makes the ICP
tend to cause artifacts and need to perform multiple iterations
to keep smoothness, as shown in Fig. 6. To address this issue,
we propose a flow-based alignment method. More specifically, we
train a FlowNet [61] to take Df and D′

c as input and output a
warping field, which is then applied to Df to generate the aligned
D′

f . Our depth-guided mesh refinement is performed based on
D′

f . Thanks to the local alignment, we found that one iteration of
the depth-guided mesh refinement is enough to reconstruct vivid
details stably (the improvement of multiple iterations is slight) ,
which also reduces the computational cost.

Training. To support the proposed IDGMM, there are four net-
works to be trained: Pix2Pix-1 that maps Sf ⊕ Dc (⊕ indicates
concatenation) to N , Pix2Pix-2 that maps D′

c ⊕N to Df , PIFu-
N and FlowNet. All the networks are trained separately and in a
fully-supervised manner. We adopt a standard way to train these
neural networks, but there are still some special things to clarify: 1)
To train Pix2Pix-1, for each ground-truth mesh M (which contains
rich details), we render its ridge and valley lines as input fine
strokes, using the tool provided by Suggestive Contours [54]. The
stroke types are encoded by the channel of red or green colors,

and the depth is encoded with the shades of the color. To be
specific, the ridge is encoded in (c, 0, 0) and the valley in (0,
c, 0), c = 255 − |k|, where k is the curvature of a line segment.
Thus the smaller value of c, the visually greater color depth (i.e.,
visually darker), representing the higher ridge or deeper valley. In
our experiments, the trained model can generalize well to strokes
of varying widths, though the strokes in the training set are in a
constant width. 2) We smooth M to be Ms and use it as Mc to
render depth maps as Dc for training Pix2Pix-1 (N is rendered
from M ). 3) We put M into a 1283 SDF field (noted as g128M )
and extract the mesh Ml. Then we render Ml into a depth map to
approximate D′

c for training Pix2Pix-2. 4) We subdivide M to get
M ′ with dense points and deform M ′ under the guidance of g128M

to generate a new mesh Mg . We render M ′ and Mg to depth maps
to approximate Df and D′

c. As Mg and M ′ are topologically
consistent, it is easy to obtain a dense flow as supervision to train
FlowNet.

5 RESULTS AND EVALUATION

In this section, we will evaluate our system from two aspects,
namely, system usability (Section 5.1) and algorithm effective-
ness (Section 5.2).

5.1 Evaluation on System Usability
Apparatus. Our front-end user interface was implemented with QT
and deployed on a desktop workstation with one Intel i5 @2.7GHz
CPU and 8GB of memory. Users can interact with the system
with a computer mouse or a pen tablet. The neural-network-based
backend model was implemented with Pytorch 1.8.1 and deployed
on a server with one Intel i7 @4.2GHz CPU, 16 GB of memory
and one NVIDIA GTX 3090 GPU graphics card. To support the
training of our proposed algorithms for modeling free-style and
high-fidelity 3D character faces, we merged the existing datasets
of 3DAnimalHead [8] and 3DCaricShop [62], resulting in 4,528
high-quality models in total. Then we split these data into 9:1
for training and testing in our experiments. Please refer to our
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supplemental materials for the implementation details of the neural
networks.
Participants. Our key objective is to create a 3D modeling system
that is easy to use for amateur users without 3D modeling
experience. To verify this, we invited 16 subjects (P1-P16, aged
18 to 32) to participate in this evaluation session, none of whom
had experience in 3D modeling. Six of them (P2, P3, P6, P7, P8,
P12) had professional 2D drawing experience, and the remaining
had limited drawing experience. Before the modeling session, each
participant was given 10 minutes to watch an instructional video
showing the basic operations of our system. After the tutorial,
each user had 20 minutes to get familiar with our system. All
the participants were asked to perform comparison and usability
studies.
Comparison Study. We firstly conducted a comparison study
on different modeling systems to demonstrate the superiority
of our system. After thoroughly reviewing existing sketch-based
character modeling systems, we chose DeepSketch2Face [3] and
SimpModeling [8] for comparison since these systems can be
easily accessed. For DeepSketch2Face, its released system was
used. We asked the authors of SimpModeling to provide their
system to us. ZBrush is a powerful commercial software for
assisting professional artists in creating arbitrary 3D models. We
also added ZBrush to our informal comparison on face modeling.
For a fair comparison, all the 16 subjects were also given 10
minutes to learn through a tutorial and 20 minutes to get familiar
with each of the other systems before the formal user study. In
the formal session, each user was given a shading image of a 3D
model as a reference. She/he was requested to create 3D models
referring to the given image using the four compared systems (i.e.,
DeepSketch2Face, SimpModeling, SketchMetaFace, and ZBrush)
in random order. Note that all the tools provided by SimpModeling
and ZBrush are 3D interactive operations, while most operations
of DeepSketch2Face and SketchMetaFace focus on the 2D canvas.

Fig. 7 shows the reference images, the created models with the
four systems, and the corresponding modeling time. Compared to
DeepSketch2Face and SimpModeling, our system supported users
to create visually more appealing shapes and craft more vivid
surface details. The geometric shape and surface details created
by our system are closer to the reference models. Compared to
ZBrush, our system took less time for users to create visually
reasonable 3D models. To complete each model, each user took
around 2-5 minutes to use DeepSketch2Face, around 7-15 minutes
with SimpModeling, around 5-9 minutes with our system, and
around 10-18 minutes with ZBrush. Most participants complained
that DeepSketch2Face was hard to use as it could only output
human faces (mainly because of the limited parametric space of
the human face). They mentioned that SimpModeling could create
coarse shapes and some minor details, but it was very difficult to
learn and use. We observed that most subjects got stuck in the
coarse shape modeling process with SimpModeling and ZBrush.
Some of them even gave up adjusting coarse shapes and directly
turned to sculpt surface details. “The 3D operations are difficult
to use, and I need to speed much time adjusting the shape. I am
disappointed with SimpModleing and ZBrush”, as commented by
P8. “3D interactions are extremely unfriendly to me. I need to
switch perspectives frequently. These frequent switching opera-
tions make me irritable” (P11). Most of the subjects enjoyed the
modeling process defined by SketchMetaFace. Some participants
reported that SketchMetaFace was user-friendly and allowed for
creating vivid avatar heads easily. They also pointed out that

our system saved much time and labor in generating 3D heads.
“SketchMetaFace is much better than SimModeling. The coarse
shape modeling operation provided by SketchMetaFace is easier
and can save me a lot of time. The curvature-aware strokes allow
me crafting details freely in an intuitive way” (P6). “It is very cool
to create 3D models by drawing sketches. I am looking forward
to using SketchMetaFace in the future.” P1 suggested that the 3D
sculpting tools (e.g., smooth and crease) provided by ZBrush could
be added to the fine stage, supporting users in further fine-tuning
geometric details.
Usability Study. In this study, each participant was asked to freely
create at least one model without restrictions on result diversity,
result quality, or time duration. Fig. 8 shows a gallery of models
created by these participants, which reflect the expressiveness and
wide design space of our system. It can be seen from this figure
that our system supports amateurs in geometrical modeling to
create character faces with diversified shapes and rich geometric
details. All of the participants felt that our system was powerful in
creating diversified avatar heads, and they were deeply impressed
by the simplicity, intuitiveness, and controllability of our system. It
is worth mentioning that two of the participants said they enjoyed
the process very much and expressed their desire to learn 3D
modeling.

Most of the participants liked the intuitive stroke suggestion
tool, which was quite helpful for them in figuring out the meaning
of curvature-aware strokes. We observed that the participants with
great drawing skills (i.e., P2, P3, P6, P7, P8, and P12) quickly
became used to working with the curvature-aware strokes thanks
to the suggestion tool. Once grasping curvature-aware strokes,
they preferred to paint each part of the model from scratch and
customize desired details by themselves, instead of searching
for a specific structure using the stroke suggestion module. P6
commented that “The stroke suggestion tool is a very nice and
useful function for assisting me in understanding the usage of
curvature-aware strokes.” We received similar positive comments
from P7 and P12: “With the help of the stroke suggestion function,
I can easily understand how to depict geometric structures using
curvature-aware strokes” (P7); “The curvature-aware strokes are
useful and powerful for carving models’ details, like wrinkles”
(P12). Other participants tended to use the stroke suggestion func-
tion throughout the whole modeling process, due to their limited
drawing skills. “The suggestion module is easy and intuitive to
use. I do not need to spend much time thinking about how to
paint a correct sketch. It avoids frequent modifying operations”
(P1). “The suggestion module is convenient and friendly for me.
It reduces a lot of manual operations and allows me to create
diversified results in a very easy way” (P5). “I can make funny
and realistic results by simply searching and integrating different
parts in minutes (two eyes, a nose, and a mouth)” (P10).

The participants also provided some constructive comments.
For example, P4 said “It would be better to allow me to search
for a suitable head contour in the coarse modeling stage, just like
searching for a nose or a mouth in the fine stage.” One potential
solution is collecting a coarse shape database and applying the re-
trieval mechanism in the coarse-shape modeling stage. “Although
the profile depth editing tool allows me to adjust models in the
side view, the system still fails to create an elephant’s nose. I
do not know how to create an elephant’s nose using the tools
provided by SketchMetaFace.” said by P2. Enlarging our datasets
and adopting multi-view drawing in the coarse stage would be a
possible solution for this problem.
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Fig. 7: Comparison of our system against three existing systems. Some representative examples are shown. The results in each row
were created by the same user given a reference in (a).

Questionnaire Analysis. At the end of the comparison study, each
participant was required to complete a System Usability Scale
(SUS) questionnaire and a NASA Task Load Index (NASA-TLX)
questionnaire to evaluate the usability and workload of our system.
We found that the overall SUS score of our system was 79, out of
a scale of 100 (DeepSketch2Face: 64, SimpModeling: 38, ZBrush:
41), indicating the good usability of our system [63]. In Fig. 9(a),
we show the mean scores for all the individual SUS questions. For
the questions with the odd numbers, the higher the SUS scores,
the better; for the rest of the questions, the lower the SUS scores,
the better. The scores of Q1 and Q9 suggest that the participants
appreciated our system and were satisfied with the models created
by our system. From Q2-4, Q7-8 and Q10, we can conclude that
our system supported amateur users creating desired 3D head
models in an easy and intuitive way, indicating the good user
efficiency and usability of our system. The scores of Q5-6 show
that the participants also recognized our system’s well-designed
modeling pipeline and tools. Although the high scores of Q3 and
Q7 indicate that DeepSketch2Face is easy to use, the participants
were disappointed with its results, leading to low scores for Q1
and Q9. The high scores of Q2, Q4, Q6, Q8, and Q10 and the
low scores of Q3, Q7, and Q9 all suggest that SimpModleing and
ZBrush are unfriendly for these amateur uses. Grasping these two
systems is extremely hard for them.

Fig. 9(b) illustrates the average score for each question in the
NASA-FLX questionnaire. The results of our systems are also
positive. Compared to SimpModeling and ZBrush, the mental de-
mand, physical demand, temporal demand, effort, and frustration
of our system are at an extremely low level. It implies that our
system does not require users to pay a lot of concentration and
effort when using our system. The higher performance score of our
system reflects that the participants were also more satisfied with
their modeling results with our system. The lower performance
score and the higher frustration score of SimpModeling and
ZBrush than those of our system suggest that it was hard for
the participants to create desired results using 3D operations. The
lower performance score of DeepSketch2Face demonstrates that
the participants were unsatisfied with the results generated by its

algorithm, which also leads to a high frustration level.
To evaluate the faithfulness (i.e., the degree of fitness to

reference images/models) of synthesized results, we conducted
a subjective user study. We randomly chose a set of results
from the comparison study, containing 15 reference models and
the corresponding results created by the participants using the
four above systems. We invited 50 subjects to participate in this
subjective evaluation through an online questionnaire. Most of the
subjects had no 3D modeling experience and none had participated
in the previous studies. We showed the participants five images
for each case (15 cases in total), including the input sketch and
the four modeling results by the compared systems, placed side
by side in random order. Each participant was asked to score
each result based on the faithfulness to the reference model (1
denoting the lowest fitness and 10 for the highest fitness). Fig. 9(c)
shows the mean score of each system for this study. This figure
shows that the 3D models created by amateurs with our system
in the comparison study received relatively higher marks than
the counterpart systems, implying that our system could assist
novice users in creating desired 3D heads. A statistical analysis
was also conducted to show that the scores significantly differed
across the compared systems. Specifically, we ran Shapiro-Wilk
normality tests on the collected data and found non-normality
distributions (p < 0.001). We thus conducted Kruskal-Wallis tests
on the faithfulness scores and found significant effects. Paired tests
between our system and each of the compared ones confirmed
that our system (mean: 6.28) could effectively support amateurs
in creating significantly more faithful results to the reference
models than the other systems, i.e., DeepSketch2Face (mean: 1.96,
p < 0.001), SimpModeling (mean: 3.64, p < 0.001) and ZBrush
(mean: 5.82, p = 0.008). More details can be found in our
supplementary material.

5.2 Evaluation on Algorithm Effectiveness
Comparison on Part-separated Mesh Inference. There are some
alternative methods [12], [13], [49] for inferring part-separated
meshes from an input sketch. To verify the generalization ability
of part-separated PIFu, we choose two representative alternative
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Fig. 8: The gallery of our results using curvature-aware stroke inputs. All the results are created by amateur users who are trained to
use our system with a tutorial. Thanks to the easy-to-use two-stage modeling design and the stroke suggestion component, the users
can complete each model design in 5-9 minutes. The three results in the first row were created using the same coarse mesh but applying
different surface details.

methods for comparison. One is a retrieval-based method [49],
denoted as Retrieval and the other one is a deformation-based
method [12], denoted as Pixel2Mesh. The qualitative comparisons
are presented in Fig. 10, where we can see that our results align
much better with the input sketches.
Comparisons on Sketch2Mesh. The core problem of our system
is to learn the mapping from Sf to a detailed mesh. To evaluate
the superiority of IDGMM, we selected four existing represen-
tative methods for comparison: 3D-R2N2 [11], Pixel2Mesh [12],
DeepSDF [15] and PIFuHD [18] (the method used by SimpMod-
eling). All these methods took Sf and Dc as input for fairness.
Fig. 11 and Tab. 1 show the results of this comparison. Both
qualitative and quantitative results demonstrate the superiority of
our method. Although PIFuHD performs not badly on quantitative
measurements, the qualitative results show that our proposed algo-
rithm (IDGMM) performs much better than PIFuHD on geometric
details synthesis. Meanwhile, PIFuHD requires a time-consuming
mesh extraction process from an implicit field (around 5.0s for
one result generation). SimpModeling slightly reduces PIFuHD’s
time consumption by sampling points along the normal directions
and then applying local Laplacian deformation (1.0s for one result

TABLE 1: Quantitative comparison with our proposed IDGMM
with four existing methods for Sketch2Mesh inference. We adopt
three metrics of IoU, Chamfer-L2, and normal consistency to
evaluate the results.

IoU ↑ Chamfer-L2 (×102) ↓ Normal-Consis. ↑
3D-R2N2 0.858 0.149 0.929
Pixel2Mesh 0.882 0.123 0.937
DeepSDF 0.894 0.117 0.949
PIFuHD 0.911 0.103 0.955
Ours 0.915 0.099 0.956

generation). Our IDGMM combines the advantages of mesh,
continuous SDF, and depth map representations, making it very
powerful not only in generating detailed 3D geometry but also in
inference efficiency (around 0.5s for one result generation).
Ablation Study on Implicit/Depth Guidance. There are two
key components in our proposed IDGMM: implicit-guided mesh
updating and depth-guided mesh refinement. To verify the indis-
pensability of these two modules, we compared IDGMM with
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Fig. 9: (a) Mean scores of SUS in a 5-point scale. (b) Mean scores of NASA-TLX in a 5-point scale. (c) Perceptive evaluation on
the results by the compared systems. (d) Perceptive evaluation on coarse shape modeling. (e) Perceptive evaluation on surface detail
generation. (f) Perceptive evaluation on implicit/depth guidance. Each error bar represents the standard deviation of the corresponding
mean.

(a) (b) (c) (d)

Fig. 10: Qualitative comparisons on part-separated mesh inference
from an input sketch (a). (b) The results of retrieval. (c) The results
of Pixel2Mesh. (d) The results of our part-separated PIFu.

two alternative settings: 1) without implicit guidance - we use
Dc and N as input to generate Df and corresponding warped
P , which is then used to guide the deformation from Mc. 2)
without depth guidance, i.e., M ′

c shown in Fig. 5. Qualitative
results are shown in Fig. 12. The resulting meshes with both
implicit and depth guidance outperform the other two options on
surface detail generation, implying the necessity of the implicit-
guided and depth-guided modules.

Ablation Study on Curvature-aware Strokes. The common option
to represent sketches is using strokes without any curvature-aware
attributes (e.g., DeepSketch2Face and SimpModeling), which is

(a) Input (b) 3D-R2N2 (c) Pixel2Mesh (d) DeepSDF (e) PIFuHD (f) Ours

Fig. 11: Qualitative comparisons of our IDGMM with four exist-
ing methods for Sketch2Mesh inference.

hard to depict complex surface details, as seen in the left part of
Fig. 13. The right part of Fig. 13 shows the great capability of our
curvature-aware strokes in representing rich geometric details.
Perceptive Evaluation Study. To further evaluate the effectiveness
and superiority of our proposed algorithm (part-separated PIFu
and IDGMM), we conducted another perceptive evaluation study.
We selected 10 samples from the experiments of Comparison
on Part-separated Mesh Inference (like Fig. 10), Comparisons on
Sketch2Mesh (like Fig. 11) and Ablation Study on Implicit/Depth
Guidance (like Fig. 12) respectively, resulting in three question-
naires. Each case in the questionnaires showed the input sketch
and the results generated by different algorithms, placed side by
side in random order. The 50 subjects mentioned above were also
asked to evaluate the faithfulness (i.e., the degree of fitness to
input sketches) of each synthesized model on a ten-point Likert
scale (1 = lowest fitness to 10 = highest fitness). Fig. 9(d) shows
that the results generated by part-separated PIFu fit the input
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(a) (b) (c) (d) (e)

Fig. 12: Ablation study on implicit/depth guidance. From left to
right: input sketches (a), generated Mc (b), resulting mesh without
implicit guidance (c), resulting mesh without depth guidance, i.e.,
M ′

c (d), and resulting mesh with both guidance (e).

(a) without curvature-aware strokes (b) with curvature-aware strokes

Fig. 13: Ablation study on without/with curvature-aware strokes.

sketches better than Retrieval and Pixel2Mesh. Fig. 9(e) suggests
that IDGMM could synthesize richer, more vivid and realistic
geometric details than the other methods. Fig. 9(f) indicates the ne-
cessity and superiority of combining implicit and depth guidance
for detailed geometry generation. For statistical analysis, we first
performed Shapiro-Wilk normality tests, respectively, for the three
collected data and found that all of them followed non-normality
distributions (p < 0.001). Therefore, we conducted a Kruskal-
Wallis test on the faithfulness scores for each perceptive evalu-
ation, and the results also showed significance across different
comparisons. For the evaluation of coarse shape modeling, paired
tests showed that our method (mean: 8.60) performs significantly
better on diverse shape generation than both Retrieval (mean: 3.85,
p < 0.001) and Pixel2Mesh (mean: 5.38, p < 0.001). For the
evaluation of surface detail generation, the results indicated that
IDGMM (mean: 8.90) led to significantly more faithful results
than the other methods, i.e., 3D-R2N2 (mean: 3.25, p < 0.001),
Pixel2Mesh (mean: 3.89, p < 0.001), DeepSDF (mean: 5.43,
p < 0.001), and PIFuHD (mean: 6.63, p < 0.001). For the

(a) (b)

Fig. 14: Limitations of our system. Our system also suffers from
limitations when a) modeling facial components or details with
complex depth changes; b) strokes are placed too densely.

evaluation of implicit/depth guidance, the tests suggested that
depth&implicit guidance (mean: 8.55) significantly performs bet-
ter on geometric detail synthesis than the alternative options, i.e.,
only implicit guidance (mean: 6.23, p < 0.001) and only depth
guidance (mean: 5.95, p < 0.001). It is worth mentioning that the
difference between depth and implicit guidance was not distinct
(p = 0.169). This is consistent with our expectation, since both
only using depth refinement and only using implicit refinement
can synthesize minor details. But they fail to depict high-quality
geometric details, further confirming the significant positive effect
of incorporating implicit and depth refinement. All these statistical
results confirmed that all our proposed algorithms significantly
outperform the corresponding alternative options. More details
about evaluation are provided in our supplementary material.

6 CONCLUSION

In this paper, we presented an easy-to-use sketching system for
amateur users to create free-style and high-fidelity 3D face models.
Both the user interface and the algorithm are carefully designed.
Firstly, a new curvature-aware stroke is defined, which helps
users to carve geometric details easily. Secondly, a coarse-to-
fine interface is designed. In the coarse stage, users only need
to model face contours and the 3D layout of ears. Then, in the
fine stage, all interactions are operated on a 2D canvas for detail
drawing. Thirdly, to support the accuracy and usability of the user
interface, a novel method, named Implicit and Depth guided Mesh
Modeling (IDGMM), is proposed. It combines the advantages of
the implicit (SDF), mesh, and depth representations, and reaches
a good balance between output quality and inference efficiency.
Both evaluations of the system and algorithm demonstrate that
our system is of better usability than existing systems and the
proposed IDGMM also outperforms existing methods.

Although our system is able to create 3D models with diversi-
fied shapes and rich details, it also has some limitations (Fig. 14):
a) As we only focus on frontal-view sketching for detail carving,
some organs with complex depth changing are hard to model,
such as the nose of an elephant; b) When the strokes are densely
placed, it cannot produce reasonable geometric details as a large
number of vertices are required in this scenario, which our current
system does not support. In the future, we will enlarge our dataset
to support users in modeling shapes with other categories, such as
cartoon character bodies and human garments. We will also try to
take multi-view sketches as input to further support the creation of
complex models, such as elephants. Meanwhile, we will explore
the possibilities to carve high-resolution models efficiently and
support richer detail crafting effectively.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 13

REFERENCES

[1] T. Igarashi, S. MATSUOKA, and H. TANAKA, “Teddy: A sketching
interface for 3d freeform design,” in Computer graphics proceedings,
annual conference series. Association for Computing Machinery
SIGGRAPH, 1999, pp. 409–416.

[2] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “Fibermesh: designing
freeform surfaces with 3d curves,” in ACM SIGGRAPH 2007 papers,
2007, pp. 41–es.

[3] X. Han, C. Gao, and Y. Yu, “Deepsketch2face: a deep learning based
sketching system for 3d face and caricature modeling,” ACM Transac-
tions on graphics (TOG), vol. 36, no. 4, pp. 1–12, 2017.

[4] C. Li, H. Pan, Y. Liu, X. Tong, A. Sheffer, and W. Wang, “Robust flow-
guided neural prediction for sketch-based freeform surface modeling,”
ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1–12, 2018.

[5] C. Li, H. Pan, A. Bousseau, and N. J. Mitra, “Sketch2cad: Sequential
cad modeling by sketching in context,” ACM Transactions on Graphics
(TOG), vol. 39, no. 6, pp. 1–14, 2020.

[6] D. Du, X. Han, H. Fu, F. Wu, Y. Yu, S. Cui, and L. Liu, “Sanihead:
Sketching animal-like 3d character heads using a view-surface collabora-
tive mesh generative network,” IEEE Transactions on Visualization and
Computer Graphics, 2020.

[7] D. Du, H. Zhu, Y. Nie, X. Han, S. Cui, Y. Yu, and L. Liu, “Learning part
generation and assembly for sketching man-made objects,” in Computer
Graphics Forum. Wiley Online Library, 2020.

[8] Z. Luo, J. Zhou, H. Zhu, D. Du, X. Han, and H. Fu, “Simpmodeling:
Sketching implicit field to guide mesh modeling for 3d animalmorphic
head design,” in The 34th Annual ACM Symposium on User Interface
Software and Technology, 2021, pp. 854–863.
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