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a b s t r a c t

3-D object modeling from single images has many applications in computer graphics and multimedia.
Most previous 3-D modeling methods which directly recover 3-D geometry from single images require
user interactions during the whole modeling process. In this paper, we propose a semi-automatic 3-D
modeling approach to recover accurate 3-D geometry from a single image of a piecewise planar object
with less user interaction. Our approach concentrates on these three aspects: (1) requiring rough sketch
input only, (2) accurate modeling for a large class of objects, and (3) automatically recovering the
invisible part of an object and providing a complete 3-D model. Experimental results on various objects
show that the proposed approach provides a good solution to these three problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, 3-D applications such as 3-D TV and movies, 3-D
city, and virtual reality are in rapid development. For these applica-
tions, the creation of 3-D models is still one of the main bottlenecks.
Generally, tools used to create 3-D models can be classified into two
categories: (1) hardware tools (e.g., 3-D cameras) and (2) computer-
aided design tools. Compared with the former approach, the latter is
less costly and has been extensively studied.

3-D object reconstruction from single images provides a signifi-
cant interface for a 3-D model design software, which has attracted
considerable attention recently, though this topic is challenging due
to the ill-posed nature of the problem. In this scenario, intensive
interactive 3-D modeling methods [4,7,8,10,13,18,21,22,24,25] have
been proposed to reconstruct 3-D objects in single images. In general,
some methods where user's interactions are needed throughout the
whole modeling process (e.g., [8], and [24]) obtain good modeling

results at the cost of intensive user interactions. Some other methods
need less user interaction but only focus on reconstructing some
special objects or object categories. For instance, the method in [22]
reconstructs inflectionally symmetric objects in single images, based
on a few user marks which are used to label the symmetric
information; the method in [7] assumes that the desired object can
be modeled as a polyhedron where the coordinates of the vertices
can be expressed as a linear function of a dimension vector. Some
other methods achieve efficient 3-D modeling but sacrifice or neglect
the accuracies of the results. For example, reconstruction errors
might accumulate easily during face-by-face propagation in [18].
The method by Xu et al. [21] only require reconstructed 3-D shapes
to be consistent with human perception. 3-D models generated by
the 3-sweep technique [4] are only rough approximations of target
objects.

In this work, we aim to provide an efficient tools to reconstruct
up-to-a-scale piecewise planar objects from single images (for
concision, we use “objects” to denote “piecewise planar objects” in
the remainder of this paper). In general, there are three main
challenges in this topic. The first one is how to provide a rapid
modeling of a desired object, i.e., the modeling system must be
easy to use for a common user who has less background knowl-
edge. The second one is how to precisely recover a up-to-a-scale 3-
D model. The last one is how to obtain a complete 3-D model for
an object with invisible parts in an image.
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To address the above three problems, several previous methods
called semi-automatic methods, such as [7,10,13,15], first manually
obtain the 2-D wireframe of a desired object and then automati-
cally reconstruct the complete 3-D object via recovering the 3-D
depths (z coordinates) of the vertices in the corresponding 2-D
wireframe. Given a 2-D wireframe of a desired object, the 3-D
reconstructions in semi-automatic methods are completely auto-
matic. Therefore, semi-automatic methods greatly simplify the
work of the users, compared to those methods where user
interactions are needed throughout the whole modeling process.
However, there are still several disadvantages for these methods.
Firstly, drawing a complete and precise 2-D wireframe of an object
is not very tractable and takes time; secondly, the positions of the
invisible vertices drawn by the user are imperfect in terms of
precision, and they are treated as constants, i.e., the 2-D positions
of the invisible vertices are fixed during the reconstruction, which
results in a consequent deterioration in reconstruction quality.

We propose a sketch-based 3-D modeling approach to address
all these three problems in a unified framework. The pipeline of our
method is shown in Fig. 1. Given an input image, the user first
roughly sketches the visible vertices and edges of an object of
interest. Based on the manually drawn sketch and the edge
information from a line segment detector, the system first generates
an initial 2-D wireframe of the visible part of the desired object
(Section 2). Then an optimization algorithm is proposed to recon-
struct the precise 3-D wireframe of the visible part (see Section 3).
Further, the invisible part of the object is automatically recovered
based on the 3-D structure of the visible part (Section 4).

Our approach also bears close resemblance to the previous
semi-automatic methods in [7,10,13,15], but is advantageous in
two aspects. First, in terms of the efficiency of user interface, our
method automatically derives initial 2-D wireframes from the
input users' sketches and detected line segments. Therefore, it is
more convenient to use and lessens the user interactions. Second,
in terms of the reconstruction accuracy, the good performance of
the proposed method mainly comes from two facts:

(i) the 2-D positions of the vertices in the 2-D wireframe whose
precise locations are uncertain are treated as variables, and they

are jointly optimized together with the depths of all the visible
vertices during the 3-D reconstruction of the visible part. There-
fore, our approach can reconstruct a more precise 3-D visible
part than those reconstructing the 3-D visible part from an
inaccuracy 2-D wireframe where the x- and y-coordinates of all
the vertices are fixed;

(ii) after the invisible topological structure is obtained, the 3-D
positions of the invisible vertices can usually be computed based
on the recovered 3-D visible part directly. Therefore, our method
usually produces a more precise 3-D invisible part than previous
methods.

The rest of this paper is organized as follows: Section 2 details
how to generate an initial 2-D wireframe W2di based on users'
sketches. Sections 3 and 4 present the algorithms which reconstruct
the visible partMv3dw and the invisible partMh3dw of a desired object,
respectively. Section 5 gives the experimental results and some
discussions.

2. Generation of initial 2-D wireframe

2.1. User's sketches and the initial 2-D wireframe

We require the user to provide three types of interaction
information (as shown in Fig. 2) to generate the initial 2-D wireframe
W2di. The first type includes (approximately) closed contours, we call
them sketch vertices. These sketch vertices encircle the possible
locations of the visible vertices, and are drawn by the user with
one stroke. The second type consists of the lines connecting two
sketch vertices, called sketch lines, which are used to represent the
connectivity of the vertices. The last type includes the artificial lines
used to indicate the coplanar relationship of two sketch lines (it can
be extended to cover more geometrical relationship). Note that the
artificial lines are not the components of the 2-D wireframe. The
sketch vertices and sketch lines are automatically recognized from
the following criteria:

(i) (approximately) closed contours finished by one stroke are
treated as sketch vertices;

Fig. 1. Flow chart of the proposed approach. (1) The original image. (2) Roughly sketched vertices and edges for the visible part of the desired object. (3) Automatically
generated 2-D initial wireframe W2di . Note that some vertices in W2di have no precise locations, which are highlighted with red stars. (4) Precise reconstruction of 3-D
wireframe Mv3dw from W2di . (5) Inference of the invisible 3-D geometries (marked with dotted lines). (6) Complete 3-D objects. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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(ii) a stroke which does not form a sketch vertex and connects
two sketch vertices is treated as a sketch line;

(iii) a stroke which does not form a sketch vertex (i.e., approxi-
mately closed contour) and only connects one sketch vertex,
called a broken sketch line, is treated as one part of a
sketch line;

(iv) a stroke which does not form a sketch vertex but connects a
broken sketch line is merged into the broken sketch line to
generate a new broken sketch line or sketch line;

(v) a stroke connecting two (broken) sketch lines belongs to an
artificial line;

(vi) a stroke which neither forms a sketch vertex nor connects any
sketch vertex or broken sketch line is treated as an
invalid input.

After the user finishing the sketch vertices and sketch lines, the
system obtains the connectivity of the vertices, i.e., the topology
information, and the coarse locations of the visible vertices. Then
segments are detected by a fast line segment detector algorithm [20]
from the contours generated by [1] (in this step the contour
generation algorithm in [23] is also a good alternative). From these
detected segments the system automatically computes the precise
locations of the vertices (encircled by sketch vertices) which are the
intersections of two or more distinct segments (some example cases
in our experiments are shown in Fig. 3(1–4)).

If there are multiple intersections inside a single sketch vertex,
we select the intersection closer to the centroid of the sketch
vertex as the vertex location. For a vertex which is not passed by
two or more segments, its initial location is set to the centroid of
the corresponding sketch vertex. If two detected line segments
have endpoints which are close but not quite intersect within the
encircled range of a sketch vertex, we first check if the distance of
these two endpoints d is shorter than the approximate radius r of
the sketch vertex. If dor, we stretch both of these endpoints and
set the vertex location to their intersection. Otherwise, the vertex
location is set to the centroid of the sketch vertex. Once the system
obtains the positions in the image for all the visible vertices of the
object, the segments of 2-D wireframe which connects two
vertices are generated according to the topological information
from sketch lines. Finally, the system generates the initial 2-D
wireframe W2di whose partial vertices have inaccurate positions
(2-D coordinates in the image).

In the next section, we describe how to jointly infer two kinds
of information: (1) the precise 2-D locations of the vertices with
rough positions (i.e., the vertices whose locations are set to the

centers of the corresponding sketch vertices) and (2) the precise
depths for all the vertices in W2di.

3. 3-D modeling of visible parts

3.1. Target problem, challenges, and motivation

The task that automatically reconstructs a 3-D object from its
2-D wireframe is challenging, even if the x- and y-coordinates of
all the vertices in this 2-D wireframe are fixed. The classical
solutions for this problem are to transform the 3-D reconstruction
problem into an optimization problem [7,21] or a problem solving
a system of equations [13] (to some extent, these two solutions are
similar since a system of equations is usually solved by an
optimization algorithm). In these solutions, geometrical and topo-
logical constraints are built from 2-D cues, based on image
regularities, to construct an objective function or a system of
equations. For example, Li et al. [13] used the constraints of
perspective symmetry and face connectivity to construct a system
of linear equations with a closed-form solution.

In general, the success of the reconstructions in these solutions
depends on whether enough valid constraints can be built for
objective functions or systems of equations. Actually, it is very
difficult to build enough constraints that are completely valid for a
large classes of objects because of two reasons. First, most
constraints only suit some special categories of objects, e.g., the
constraints of perspective symmetry in [13] only work for objects
with a certain number of bilateral symmetrical faces. Second, some
constraints may introduce outliers, e.g., it is possible that a
detected perspective symmetrical face in a 2-D wireframe corre-
sponds to an asymmetric planar face in space.

The target problem in this section is to reconstruct a precise
up-to-a-scale piecewise 3-D shape from the initial 2-D wireframe
W2di, which is more challenging compared to the similar problem
in [13]. That is because the positions of some vertices in W2di are
variable, while the positions of all the vertices in [13] are fixed. We
utilize a new RANSAC-like optimization scheme to solve the 3-D
reconstruction problem from the initial 2-D wireframe. To handle
a wider range of objects, we develop more geometrical properties
to build the objective function of the underlying optimization
problem. The pipeline of this scheme is as follows: Given W2di, we
first reconstruct a rough 3-D shape O3dr . We then analyze O3dr and
detect all valid constraints for the next optimization process (the
detection process of valid constraints here is similar to the
selection of applicable shape regularities that are used to lift a
sketch curve network into 3-D in True2Form [21]). Finally, we
jointly optimize the x- and y-coordinates of the vertices that have
no precise 2-D positions and the depths of all the vertices. In
addition to handling more object classes, our method can generate
a more precise 3-D object than the one in [13], since only valid
constraints are utilized.

3.2. Assumptions, calibration, and normal vector

We use a simplified camera model in this paper. The camera
has zero skew and does not have radial distortion, and the aspect
ratio of the pixel equals 1. In this model, the projection matrix is

k¼
f 0 0
0 f 0
0 0 1

0
B@

1
CA; ð1Þ

where f is the focal length of the camera. We first align the world
frame with the camera frame as shown in Fig. 3(5), where the
image plane is Z ¼ � f , and the projection matrix takes a simple

Fig. 2. (1) A sketch line which connects two sketch vertices. It consists of one
stroke. (2) Another sketch line consisting of two strokes (note that a sketch line
may consist of multiple strokes). (3) Two artificial lines used to indicate the
coplanar relationship of two sketch lines.

Fig. 3. Four examples showing inferring the precise position of one vertex by two
or more distinct intersecting segments.
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form P¼ ½Kj0�. We obtain the intrinsic parameters of the camera
model in the same procedure as [13].

In the rest of this paper, a bold upper-case letter (say,
X¼ ðX;Y ; Z;1ÞT) denotes the homogeneous coordinate of a 3-D
point, and its 2-D projection on the image plane is denoted by the
corresponding bold lower-case letter x¼ ðx; y;1ÞT (homogeneous
coordinate). Since the image plane is put at Z ¼ � f , the 3-D
Euclidean coordinate of x is ðx; y; � f ÞT, denoted by ~x . The 2-D
position of ~x in the image plane (i.e., (x,y)) is presented as x0.

A plane nxxþnyyþnzzþ1¼ 0 is represented by π¼ ðnx;

ny;nz;1ÞT ¼ ðnT;1ÞT, where n¼ ðnx;ny;nzÞT is the normal of the
plane (face). Thus, a vertex in 3-D space lying on the plane
nxxþnyyþnzzþ1¼ 0 can be formulated as πTX¼ 0. We use the
algorithm in [12] to identify all the faces in W2di, and similar to [13],
represent the desired (partial) objects in an image with a vector
consisting of all the normals of the faces of the objects (i.e.,
q¼ ðnT

1;n
T
2;…;nT

Nf
ÞT, where Nf is the number of faces). This vector

q is called the normal vector of a desired object in this paper. Next,
we discuss the relation between the normal vector q and several
constraints.

3.3. Geometric and topological constraints

In this subsection, we discuss two new geometric constraints,
which will be used together with the constraints connectivity (Cco),
constraint by fixing one vertex (Cfv), and perspective symmetry (Cps)
in [13] to recover the 3-D geometries of the 2-D wireframes of
wider objects.

Line parallelism (Clp): We first develop a constraint to show the
relation of a face f with normal vector n and a pair of 3-D parallel
lines which are parallel to the plane that f lies on.

Proposition 1. If two lines, L1 and L2, and a plane π are parallel in
3-D space, where l1 and l2 are the projections of L1 and L2 in the
image, respectively, then the normal n of π satisfies

nTðK�1ðl1 � l2ÞÞ ¼ 0: ð2Þ

Proof. Let v be the vanishing point of L1, the direction R of L1
satisfies R¼K�1v [6]. Then we have v¼ l1 � l2, since L1 and L2 are
parallel. We further have n ? R since L1 and π are parallel, and
thus 0¼ nTR¼ nT K�1ðl1 � l2Þ.

According to Proposition 1, for a given plane πi, we have

Cπiq¼ 0; ð3Þ
by putting the constraints from all the pairs of parallel lines of πi

together. In our implementation, we select the pairs of lines (say l1
and l2) in an image as the projections of the parallel lines in the
underlying 3-D object, if l1 and l2 pass through a common
vanishing point (the method in [9] is used to automatically detect
all the vanishing points in an image). We use the truth one plane π
is parallel to a line L in 3-D space if π does not pass through L and π
has at least one parallel line of L, to find all the parallel pairs which
satisfy Proposition 1. □

Orthogonal corner (Coc): We use the constraint Coc in [11] to
detect possible pairs of mutually perpendicular faces in a 2-D
wireframe. This constraint can be formulated as

nT
j nk ¼ gðj;kÞðqÞ ¼ 0; ð4Þ

where nj and nk are the normals of a pair of mutually
perpendicular faces.

3.4. Reconstruction of the rough 3-D shape

In this subsection, we state how to reconstruct a rough 3-D
shape O3dr from W2di. The basic idea of this step is that we first

build a system of equations according to Cco, Cps, Cfv, Clp, and Coc, and
then solve the system using quasi-Newton search algorithm [17], to
obtain q, finally compute O3dr according to q.

The proposed system of equations, which includes five sets of
equations:

Að0Þq¼ 0 ðaÞ
Bð0Þq¼ 0 ðbÞ
Eð0Þq¼ f =Z0 ðcÞ
Cð0Þq¼ 0 ðdÞ
∑
n

i ¼ 1
giðqÞ ¼ 0 ðeÞ

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

where the linear equations (5a), (5b), and (5c) are respectively
built from Cco, Cps, and Cfv (see Eqs. (7), (10), and (13) in [13]), linear
equations (Eq. (5d)) are obtained by grouping the constraints Clp
described in Eq. (3) together, quadratic equations (Eq. (5e)) include
all the constraints Coc described in Eq. (10).

In Eq. (5e), n denotes the pair number of mutually perpendi-
cular faces. Note that matrixes Að0Þ, Bð0Þ, Cð0Þ, Eð0Þ are computed
from W2di and their values are known (i.e, we treat the vertices
whose initial locations are set to the centers of the corresponding
sketch vertices, as fixed vertices in this step).

3.5. Constraint refinement and joint optimization

After obtaining a rough 3-D shape O3dr from W2di, in return we
use O3dr to detect all valid constraints in Eq. (5) for W2di. The
detected valid constraints is further used to jointly infer the
precise 2-D locations of the vertices who have not been fixed,
and the normal vector q.

In our implementation, the threshold angle θthp of the parallel
relationship is empirically set to 71, and the threshold angle θtho of
the orthogonal relationship is empirically set to 831 (e.g., two faces
correspond to a valid constraint described by Coc if their intersec-
tion angle θ satisfies 831rθr901). The bilateral symmetry of a
face is judged by the average, say θas, of the intersection angles of
the symmetry axis and the lines connecting pairs of symmetric
vertices (i.e., a valid face of bilateral symmetry should satisfy
831rθasr901).

The precise 3-D reconstruction task from W2di is formulated as
a constrained optimization problem. The objective function is
defined as

min Fðq; x0
rÞ ¼ jAuqj2þjBuqj2þjCuqj2þ ∑

m

i ¼ 1
jgiðqÞj2;

s:t: Adq¼ 0; Bdq¼ 0; Cdq¼ 0;

Eq¼ f =Z0; jx0
ri
�x0

ri0
j2ot2ri ; riAr; ð6Þ

where r is the set of the vertex indexes corresponding to rough
2-D positions in W2di, x0

r denotes the set of the (x,y) coordinates of
the vertices whose indexes are in r, x0

ri with initial value x0
ri0

set to
the centers of sketch vertices as discussed in Section 2, denotes the
2-D position of its ri th elements. Ad, Bd, Cd, and E only consist of
the constraints contributed by the fixed 2-D vertices (i.e., these
matrixes are known), Au, Bu, and Cu denotes the constraints
contributed by the unfixed 2-D vertices (i.e., these matrixes have
unknown variables in x0

r), tri is the approximate radius of the
corresponding sketch vertex (i.e., tri ¼ l=ð2πÞ, and l is the perimeter
of the ri th sketch vertex), giðqÞ denotes a pair of valid orthogonal
faces in W2di, and m denotes the number of pairs of valid mutually
perpendicular faces.

Eq. (6) is minimized using an alternate minimization algorithm.
The algorithm is summarized in Algorithm 1. In the algorithm, the
initial values qð0Þ and x0

rð0Þ are taken from O3dr . For the two
variables q and x0

r , we alternately fix one variable and optimize
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the other one until the objective function converges. In our
implementation, we solve the optimization problems using the
lsqnonlin function in MATLAB. After the execution of Algorithm 1,
we compute all the Z-coordinate Zi by Zi ¼ f =ðnT

i
~xÞ for all vertices

( ~x ¼ ðx; y; � f ÞT), if it is on ith face with normal ni. We take the
average as the final Z-coordinate Z if there are multiple Zi. Then
we use X ¼ �Zx=f ;Y ¼ �Zy=f to compute the X-coordinate and
Y-coordinate of the vertex. After the above steps, the system
obtains the precise 3-D wireframe of the visible part of the desired
object. In the next section, we discuss how to reconstruct the
invisible part based on this 3-D wireframe.

Algorithm 1. Finding the optimal solution q and x0
r .

Input: Initial values qð0Þ and x0
rð0Þ; i’0.

(i) Fix x0
rðiÞ, and find qðiþ1Þ by solving the linear-constrained

quadratic programming problem:

min
q

FðqÞ ¼ jAðiÞ
u qj2þBðiÞ

u qj2þjCðiÞ
u qj2þ ∑

m

j ¼ 1
jgiðqÞj2;

s:t: Adq¼ 0; Bdq¼ 0; Cdq¼ 0; Eq¼ f =Z0:

(ii) Fix qðiþ1Þ, and find x0
rðiþ1Þ by solving

min
x0
r

Fðx0
rÞ ¼ jAuqðiþ1Þj2þBðiÞ

u qj2þjCuqðiþ1Þj2;

s:t: jx0
ri
�x0

ri0
j2otri ; riAr:

(iii) if jFðqðiþ1Þ; x0
rðiþ1ÞÞ�FðqðiÞ; x0

rðiÞÞjoδ, then i’iþ1 and go
to step (i).
Return: qðiþ1Þ and x0

rðiþ1Þ

4. 3-D modeling of invisible parts

Based on the visible 3-D structure Mv3dw of a desired object, we
next take two steps to recover the invisible 3-D structure Mh3dw .
We first infer the topological structure of Mh3dw, and then derive
the 3-D locations of all the vertices in Mh3dw.

4.1. Inference of the invisible topological structure

The algorithms deriving the invisible structure of a natural line
drawing in the work [3,5,19] can be borrowed for the inference of
the invisible topological structure of Mv3dw. In both [5,19], the

steps for the inference of the invisible structure have to be
conducted based on the results of a line labeling step. Different
from these two methods, the authors in [3] directly derive the
invisible structure of a natural line drawing. They first construct an
initial invisible structure according to the assumption that all the
vertices in the desired object are trihedral and several theorems
developed by this assumption. And then they generate a set of
possible invisible structures by reducing the initial invisible
structure with a strategy of cutting-and-merging of edges and
vertices. Finally, they select the most plausible structure based on
the visual psychological properties from Gestalt psychology. This
algorithm can recover an invisible structure less than 1 s when
dozens of invisible vertices are contained in a line drawing.

In our work, we utilize the algorithm in [3] to derive the
invisible 2-D topological structure of Mv3dw because this algorithm
is efficient and has relatively short pipeline. The steps for inferring
the invisible structure of a natural line drawing can be directly
used here since Mv3dw includes all the information of its corre-
sponding natural line drawing. Note that all the invisible vertices
in the new generated invisible structure have only initial 3-D
locations (see Fig. 4(a2)). All the x-, y-, and z-coordinates of these
invisible vertices need to be found.

4.2. Derivation of the 3-D locations of all the invisible vertices

We summarize the algorithm deriving the 3-D locations of all
the invisible vertices (indexed by Algorithm 2) as the following
three steps:

Step 1. Find the face topology of the complete object.
Step 2. Compute the 3-D coordinates of the invisible vertices

which are passed through by three known non-coplanar
planes, recursively.

Step 3. Optimize the 3-D positions of the remaining invisible
vertices.

In Step 1, the algorithm in [14] is used to identity all the faces of
the desired object Or. The face topology is very important for the
derivation of the 3-D coordinates of the invisible vertices. For the
invisible vertices which are passed through by three known non-
coplanar planes, their 3-D coordinates can be directly computed.
As shown in Fig. 4(a1–a3), the 3-D coordinates of vertex v5 can be
computed by the three known planes passing through f2, f5, and f9.

Fig. 4. (a1) 3-D wireframe Mv3dw of the visible part of a test object Ot. (a2) Invisible topological structure Mh3dw (dotted lines) obtained by the algorithm in [3]. Note that the
invisible vertex in blue only has initial x-, y-, and z-coordinates. (a3) 3-D invisible structure reconstructed using Steps 1 and 2 of Algorithm 2. (b1) An object whose invisible
part cannot be completely reconstructed using Steps 1 and 2 of Algorithm 2. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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In some cases, there are some other invisible vertices which are
not passed through by three known non-coplanar planes, however
their 3-D coordinates may be obtained by recursively performing
Step 2. Our experiments find that the 3-D coordinates of all the
invisible vertices can be recovered only by Steps 1 and 2 in most
cases. For the invisible vertices whose 3-D coordinates cannot
recover only by the property of coplanarity in some cases (e.g., the
invisible vertices encircled by red circle in Fig. 4(b1)), we use an
optimization-based approach to tackle the reconstruction pro-
blem. The objective function consists of two components. The
first one is a symmetry measure, and the other one is about
planarity. Both of these two components can only be used for the
target structure composed of the faces that contain the remaining
invisible vertices in Step 3.

We use the symmetry measure S defined as

S¼ A

P2; ð7Þ

to measure the symmetry of an underlying face. In (7), A and P are
the area and perimeter of the boundary cycle of the measured
face respectively. It holds that Sr1=ð4πÞ for any closed planar
figure [2]. A cycle is the most symmetrical planar figure with
S¼ 1=ð4πÞ. The target 3-D structure consists of more than three
faces, each being a polygon. We consider it as the integration of all
the planar faces containing the invisible vertices described in
Step 3. Thus, the whole symmetry measure of the target 3-D struc-
ture with n faces is defined as

Symmetry¼ ∑
n

i ¼ 1

P2
i

Ai
; ð8Þ

where Ai and Pi, 1r irn, are the area and perimeter of face i in the
target structure respectively.

In the second component, we evaluate the derivation from
planarity for the vertices on each face in the target 3-D structure.
Given a face fi represented by a vector ðai; bi; ciÞ, assume that it
contains m vertices, then the derivation from planarity for all these
m vertices on fi can be computed by

DPi ¼
1

a2i þb2i þc2i
∑
m

i ¼ 1
ðaixijþbiyijþcizij�1Þ2; ð9Þ

where xij; yij; and zij denote the 3-D coordinates of the i th vertex in
the i th face. For the target 3-D structure with n faces, the total
deviation from planarity is defined as

Planarity¼ ∑
n

i ¼ 1
DPi: ð10Þ

In the target 3-D structure, the faces can be divided into two
categories. The first one consists of the faces containing more than
three vertices in the visible 3-D structure Mv3dw , except for several
vertices whose 3-D coordinates are unknown. For such face types,
we directly compute the plane vector ðai; bi; ciÞ using the 3-D
positions of all the visible vertices. This plane vector can be
obtained by the least square fitting technique [11]. The second
category includes the faces containing less than three vertices in
the visible 3-D structure Mv3dw. For each face fi in this category, we
obtain the best fit plane vector ðai; bi; ciÞ using the 3-D positions of
all the vertices in fi.

Finally, the objective function to be minimized is defined as

f ðx1; y1; z1;…; xu; yu; zuÞ ¼ Planarityþw � Symmetry; ð11Þ

where x1; y1; z1;…; xu; yu; zu are the x-, y-, and z-coordinates of the
u vertices in the target structure, w is a parameter used to balance
the contribution of the Planarity and Symmetry values to the
objective function. In our implementation w is chosen to be 100
because Planarity is usually much larger than Symmetry if w¼1.

Minimizing fmakes the target structure as symmetrical as possible
with the constraint of planarity.

5. Experiments and discussion

In our experiments, we compared our systemwith the one in [13].
We implemented the interface of our system and that in the
system proposed by Li et al. [13] using Cþþ , and the reconstruc-
tion algorithms in these two methods using MATLAB. Our evalua-
tion focused on three parts: (1) user interface, (2) reconstruction
accuracy, and (3) invisible part reconstruction. We first set up six
test scenes (shown in Fig. 1 and Fig. 6(1)–(5)), for which the
ground truth data for evaluations could be easily obtained, and
then took one test photo for each scene in a generic view. We
regarded connected planar-faced objects in a scene as a single
complete desired object. These scenes were mainly used for the
evaluation of user interface and reconstruction accuracy.

Study interface: Similar to some previous experimental designs
such as [16], we conducted a user study to evaluate the perfor-
mance of the user interfaces of the two compared systems. We
recruited 12 novice participants, all of them with little graphics
background and aged from 22 to 32. Before using a new system
each participant was given a short tutorial session (10–15 min)
and practiced until they felt comfortable to model one simple
object (the one in Fig. 6(6)) with the associated user interface.
Each participant was then required to model one object for each of
the six test images (the one in Fig. 1 and the five images in Fig. 6
(1)–(5)), using each of the two systems, whose order for each test
image was counterbalanced. In sum, there were in total 12
(participants) �6 (images) �2 (systems)¼144 trials. The partici-
pants were allowed to take breaks between two modeling tasks
but no breaks during the process of modeling an object.

All 12 participants found that each sketch vertex or sketch line
in the user input with our system was identified instantly (less
than 1 s). It was the same case for the vertex or edge identification
in [13]. On average each participant took 106, 118, 124, 101, 71, and
39 s to generate the initial 2-D wireframes for the six test images
with our system. Correspondingly, the average times to draw 12
complete 2-D wireframes for the method in [13], were 142, 156,
163, 137, 128, and 57 s, respectively. Such statistics indicate that
our interface was more efficient for the tested examples. The times
for the reconstruction algorithms of our system varied from 3 to
17 s, while the system [13] took from 2 to 4 s. Note that the
reconstruction processes in both systems took much less times
than the user drawing processes. Therefore, our systemwas overall
more efficient. As shown next, although our reconstruction algo-
rithm was slightly slower, it was more accurate.

Reconstruction evaluation: The second set of experiments was
set to evaluate the accuracy of the proposed reconstruction
approach. We first scaled up all the reconstructed objects to the
same sizes as the ground truth. The reconstruction error for a
reconstructed object was then defined as follows:

RErrðO3dÞ ¼
1

Nbox
∑
Nbox

j

∑8
i disðvðjÞi ; vðjÞ

i Þ
8� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lj �Wj � Hj
3
p ; ð12Þ

where disðvðjÞi ; vðjÞ
i Þ denotes the 3-D distance between a pair of

corresponding vertices, which belong to the ground-truth and the
reconstructed object, respectively. Lj, Wj and Hj are the respective
length, width and height of the j-th cuboid in the ground-truth.
Nbox is the total number of cuboids in the reconstructed object O3d.
For a common test image, the mean and variance of the 12
reconstruction errors from the 12 users for each system were used
for reconstruction quality evaluation.

It can be easily seen from Fig. 5 that our system led to more
precise objects reconstructed from single images. This is because it
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is difficult for a user to precisely draw 2-D positions of invisible
vertices, causing significantly higher reconstruction errors. In
contrast, our system did not suffer from this problem in most
cases, since the precise 3-D coordinates of the invisible vertices
were directly computed based on the 3-D structure of the visible
part in one reconstruction, as discussed in Section 4.

We also found that the qualities of the user-drawn sketches
(sketch vertex quality, especially) have affected both the recon-
struction accuracies and efficiencies. For the objects in Fig. 6(5),
the times of the reconstruction from the sketched 2-D wireframe

in green where vertices in objects were tightly encircled by sketch
vertices, and that in red where some vertices in the object were
not encircled by sketch vertices, were 3 s and 5 s, respectively. The
reconstruction accuracies from the blue wireframe and the red one
were 6% and 10%, respectively. It indicates that a high-quality
sketched 2-D wireframe, with object vertices tightly encircled by
sketch vertices, can result in more efficient and more accurate
reconstruction.

Evaluation of invisible part reconstruction: Lastly we tested the
capability of our system on reconstructing the invisible parts of

Fig. 5. Mean and variance of reconstruction errors measured using Eq. (12) for each object in six test scenes. Note that scene index 1 corresponds to the scene in Fig. 1 and
scene indexes 2–6 correspond to the scenes in Fig. 6(1)–(5).

Fig. 6. Part of test images and their reconstructed results. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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various piecewise-planar objects in both indoor and outdoor
environments. Several representative test images and their corre-
sponding recovered objects are shown in the bottom row of Fig. 6.
Among these test images, each of the objects in Fig. 6(6) and
(7) has only one invisible vertex. For these two objects, Steps 1 and
2 in Algorithm 2 can be used to recover the 3-D locations of the
invisible vertices. For the objects in Fig. 6(8)–(11), each one has more
than two invisible vertices, the 3-D positions of their invisible
vertices can also be completely reconstructed by Steps 1 and 2 in
Algorithm 2, since each of these invisible vertices is passed through
by three planes whose parameters can be determined by the 3-D
visible structures. For the architecture shown in Fig. 6(12), Step 3 in
Algorithm 2 has to be used for the reconstruction of the invisible
vertices since the property of coplanarity only works for partial
invisible vertices.

For the desk shown in Fig. 6(13), the reconstruction result
missed the desk leg that is completely invisible in the image.
A similar example is shown in Fig. 7(a), where our system failed to
automatically reconstruct the 3-D structure marked in red. This is
mainly caused by the invisible topological structure inference step
(Section 4.1). These problems can be easily addressed by sketching
out the 2-D structures of the completely invisible elements, and/or
duplicating the visible part to the invisible part with a user-
annotated global symmetry plane [21].

Discussions: We also evaluated the capability of our system on
modeling more complex objects. For example, for the object in
Fig. 7(b) involving 43 cuboids, it took 12 participants about 15 min
(varying from 13 to 17 min) to draw sketches and generate initial
2-D wireframes. It took less than 2 min (varying from 91 to 126 s)
to reconstruct complete objects from these initial 2-D wireframes.
The reconstruction process might be significantly speeded up by
first decomposing a complex object into several parts using the
algorithm in [26] and then performing incremental reconstruc-
tions of individual parts.

It is possible to extend our method for the reconstruction of
curve objects. For example, the cylindrical object in Fig. 6(5) can be
reconstructed by first recovering a complete hexagonal prism from
the user-drawn 2-D wireframe in blue and then generating a
cylindrical box that fits perfectly inside the hexagonal prism.

Our current system requires that all the invisible vertices
in desired objects must be trihedral and the invisible structures
have no holes or pockets. It is limited by the assumptions used for
the inference of the 2-D topological invisible structure in [3]. If the
2-D topological invisible structures can be provided by users'
sketches, our system can successfully output precise complete
objects.
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