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Real-Time Globally Consistent 3D
Reconstruction with Semantic Priors

Shi-Sheng Huang, Haoxiang Chen, Jiahui Huang, Hongbo Fu, and Shi-Min Hu*, Senior Member, IEEE

Abstract— Maintaining global consistency continues to be critical for online 3D indoor scene reconstruction. However, it is still
challenging to generate satisfactory 3D reconstruction in terms of global consistency for previous approaches using purely geometric
analysis, even with bundle adjustment or loop closure techniques. In this paper, we propose a novel real-time 3D reconstruction approach
which effectively integrates both semantic and geometric cues. The key challenge is how to map this indicative information, i.e. semantic
priors, into a metric space as measurable information, thus enabling more accurate semantic fusion leveraging both the geometric
and semantic cues. To this end, we introduce a semantic space with a continuous metric function measuring the distance between
discrete semantic observations. Within the semantic space, we present an accurate frame-to-model semantic tracker for camera pose
estimation, and semantic pose graph equipped with semantic links between submaps for globally consistent 3D scene reconstruction.
With extensive evaluation on public synthetic and real-world 3D indoor scene RGB-D datasets, we show that our approach outperforms
the previous approaches for 3D scene reconstruction both quantitatively and qualitatively, especially in terms of global consistency.

Index Terms—3D Reconstruction, Semantic Fusion, Semantic Tracker, Semantic Pose Graph.
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1 INTRODUCTION

A CCURATE 3D scene reconstruction and understanding
is a fundamental research topic, which benefits a wide

range of applications such as intelligent robotics, virtual
or augmented reality, and computer games etc., and thus
has been receiving continuous research attention in the past
decades. Most of early works have focused on either 3D
reconstruction [1], [2], [3], [4], [5], [6], [7], [8], [9] or 3D
semantic segmentation [10], [11], [12], [13], [14], [15], [16],
[17] separately. Recently, the joint analysis of 2D semantics
and 3D geometry has been introduced to improve the 3D
semantic segmentation in the category level [18], [19], [20]
or instance level [21]. However, the problem of how to boost
the 3D reconstruction quality using both the geometry and
semantic priors remains to be explored for real-time 3D
scene reconstruction, though the fusion of both two priors
offers great potentials [22].

For a real-time 3D reconstruction system, there are three
main aspects that influence the final 3D reconstruction
quality, including effective 3D scene representation, pre-
cise depth fusion, and accurate camera pose estimation.
The implicit function (truncated signed distance function,
i.e., TSDF [23]) and recent neural implicit functions (e.g.,
DeepSDF [24], Convolutional Occupancy Networks [25],
DeepLS [26]) provide effective representations for hetero-
geneous 3D objects or scenes, and play a fundamental role
for the complete and detailed 3D reconstruction. On the other
hand, the state-of-the-art depth fusion approaches (e.g.,
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RoutedFusion [27], NeuralFusion [28]) contribute on precise
depth fusion mechanisms (given camera poses), and achieve
impressively high-fidelity 3D reconstruction quality. But for
accurate reconstruction of a whole 3D scene in a global
manner, there are continuous pursuits [1], [3], [5], [6], [8],
[29], [30] for accurate camera pose estimation, aiming at
globally consistent 3D reconstruction.

The previous real-time 3D reconstruction approaches,
such as KinectFusion [1], VoxelHashing [3], BundleFusion
[6] etc., are still unable to generate satisfactory reconstruc-
tion of globally consistent 3D scenes, especially for cluttered
3D scenes with texture-less objects or challenging lighting
conditions. The main drawback of these approaches is that
they only perform ego-motion (or bundle adjustment) with
geometric cues, such as sparse [31], [32] or dense [1], [3],
[5] landmarks. Although they achieve impressive results,
the pure geometric information limits the capability of
high-quality data association between heterogeneous RGB-
D scans, thus potentially causing drift in camera pose es-
timation. Without high-quality data association, the global
drift introduced by the camera pose estimation could not
be rectified even with bundle adjustment [6] or loop clo-
sure [29] techniques.

The semantic priors provide essential description of 3D
scene contents, and thus could be potentially used for accu-
rate camera pose estimation as shown by visual SLAM tech-
niques [33], [34], [35]. However, the loosely coupled usage
of semantic priors as data association guidance for feature
points [34] or instance landmarks [33], [35] is not suitable
for online 3D reconstruction, since these data associations
could be sensitive for the camera pose estimation in the
frame-to-frame or frame-to-model ICP registration [34], [35]
framework. The problem is that the semantic information
is indicative but not quantitative, thus causing difficulty to
directly use such information for camera pose estimation.
An appropriate mapping that transforms the indicative se-
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Fig. 1. We propose a new online 3D reconstruction approach which tightly uses the semantic priors together with RGB-D frames for globally
consistent surface reconstruction. Our approach takes the RGB-D frames with 2D category labels (inferred by 2D CNNs, Bottom rows) as input,
fuses them into a serials of submaps (Top-Left), and achieves a 3D reconstructed scene in a globally consistent manner (Top-Right). The semantic
priors help improve both the camera pose estimation and the submaps’ global pose correction. The data in this example is from the scene435
sequence of the ScanNet dataset.

mantic priors into a descriptive metric space as measurable
priors is thus essentially needed, such that the semantic
priors can be tightly integrated for globally consistent 3D
reconstruction. However, such a mapping still remains un-
explored by previous works yet.

In this paper, we propose a novel approach to convert
the semantic priors into quantitative information within a
metric space, i.e., semantic space, in which a continuous
metric function is defined to measure the distance be-
tween discrete semantic observations. Within the semantic
space, we propose a frame-to-model semantic tracker, which
tightly incorporates both the geometric and semantic cues
for an accurate camera pose estimation. In the back-end,
we manage the 3D reconstruction with semantic submaps
and build a global pose graph with reliable semantic links
computed by semantic registration. This pose graph helps
rectify the global drift between submaps effectively for
globally consistent 3D reconstruction.

Benefiting from the compact use of semantic priors, we
show that our approach outperforms previous approaches,
evaluated on the public 3D indoor scene RGB-D datasets in-
cluding both a synthetic dataset (SceneNetRGB-D [36]) and
real-world scan datasets (ScanNet [22] and SceneNN [37]),
in terms of both quantity and quality for globally consistent
3D reconstruction. To our best knowledge, we are the first
to contribute such a real-time 3D reconstruction approach
tightly coupling the geometric and semantic priors for glob-
ally consistent surface reconstruction, as shown in Fig. 1. Be-
sides, our tightly-coupled multi-modal fusion enables 25fps
processing rate with concise 2D semantics instead of time-
consuming instance prediction [35], [38] for accurate camera
pose estimation. Overall, our approach achieves globally
more consistent 3D reconstruction results than previous
approaches, and thus becomes a new state-of-the-art real-

time 3D reconstruction approach. We summarize our main
contributions as:

1) We introduce semantic space, which gives a continuous
metric to precisely measure the distance between dis-
crete semantic observations.

2) By tightly coupling the geometry and semantic priors,
we provide a real-time 3D reconstruction approach,
which relies on the semantic TSDF tracker for accurate
camera tracking and a semantic pose graph for globally
consistent 3D reconstruction.

2 RELATED WORK

2.1 Real-time 3D Reconstruction

Real-time 3D reconstruction has achieved much progress
since the pioneer work of KinectFusion [1]. There are two
kinds of 3D scene representations for current mainstream
3D reconstruction approaches, i.e., TSDF on volumetric vox-
els [23] and discretized surfels [29], [39]. For TSDF-based
approaches, VoxelHash [3] and its variations [40] introduce
efficient a sparse voxel allocation mechanism, making it
feasible to reconstruct large-scale 3D scenes. The subsequent
approaches such as global pose graph (InfiniTAM [5]) and
bundle adjustment (BundleFusion [6], Noise-Resilient Fu-
sion [8]), focusing on reconstructing 3D scenes in a global
manner. For surfel-based approaches, a deformable loop
closure technique [29] has also been introduced to rectify
both the camera pose estimation drift and the surfel repre-
sentation for consistent 3D reconstruction.

The main drawback of the previous real-time 3D recon-
struction approaches is that they perform the camera pose
estimation based on geometry cues only, thus limiting the
improvement of reconstruction quality especially in terms of
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Fig. 2. Overview of our approach. Given an RGB-D data stream (a), our approach first estimates the camera poses using our semantic tracker (b),
which takes a compact use of semantic priors for accurate camera tracking. To achieve globally consistent reconstruction, we build a semantic pose
graph (c) in the back-end to further rectify the submaps’ global poses for globally consistent 3D reconstruction as well as 3D semantics, i.e. 3D
semantic reconstruction (d).

global consistency. To address this issue, our approach ad-
vocates semantic priors to the real-time 3D reconstruction,
aiming at more accurate camera pose estimation in global
consistency.

2.2 Deep 3D Representation and Reconstruction

The current widely used 3D scene representation, i.e., im-
plicit function on volumetric voxels like TSDF [23], is still
redundant in memory storage and ineffective in geom-
etry prior representation, thus often leading to a heavy
3D reconstruction system. With the huge progress of deep
geometry learning [41], DeepSDF [24] was proposed as a
neural implicit function for 3D shape representation, which
enables effective single-view 3D reconstruction and shape
interpolation. DeepLS [26] and LIG [42] encode the complex
geometry priors in local shapes or local grids, and thus
enhance the ability to reconstruct complex objects or scenes.
Convolutional Occupancy Network [25] relies on a more
flexible neural implicit representation by combining the
convolutional encoders and implicit occupancy decoders to-
gether, thus providing high-fidelity reconstruction of objects
or large scale 3D scenes. DI-Fusion [30] is one of the first ap-
proaches to leverage a deep 3D representation (i.e., PLIVox)
for online 3D reconstruction, and achieves impressive 3D
reconstruction results. One the other hand, the recent works
of RoutedFusion [27], NeuralFusion [28] introduce a precise
depth fusion mechanism using deep neural networks, and
accurately integrate the noisy depth data into a high-fidelity
3D surface. Explicit structural priors can be applied [43] to
enable reconstruction from sparse views.

Different from these previous works, which aim at ex-
pressive deep 3D representations or depth fusion, our work
aims at producing consistent 3D reconstruction in a global
manner and contributes to accurate camera pose estimation
by tightly fusing both geometry and semantic priors.

2.3 Semantic SLAM

Our work is also relevant to the techniques of visual SLAM
(Simultaneous Localization and Mapping). Visual SLAM
techniques have a long research history with many pop-
ular works. We focus on visual SLAM approaches using
semantics and refer readers to [44] for an insightful survey
of visual SLAM progress in the past few decades.

SLAM++ [33] was proposed for the first time to utilize
object priors to detect object landmarks for camera tracking,
though object priors are simply obtained by retrieving from
a set of manually collected 3D shapes. The subsequent
works such as Fusion++ [35] and MID-Fusion [38] directly
use object masks predicted from 2D CNNs to build ob-
ject landmarks for camera pose estimation, and formulate
object-level bundle adjustment to further rectify global pose
estimation. Besides, recent works adopt to utilize category
or instance labels predicted from 2D CNNs to guide the
data association of sparse feature points [45] or instance
landmarks [46], [47], [48] for camera pose estimation.

Unlike using the semantic information as explicit data
association in the above approaches, our approach directly
uses the semantic information as measurement within a
unified semantic space, leading to a tightly-coupled seman-
tic fusion for more accurate 3D reconstruction in terms of
global consistency. Moreover, our approach enables a real-
time depth fusion system on the semantic priors only with
a concise representation, i.e., 2D category labels, without
the need of time-consuming instance inference systems [35],
[38], which prevent real-time performance. Besides, the lat-
est SLAM techniques leverage deep neural networks to pre-
dict depth priors (such as CodeSLAM [49], SceneCode [50],
Mobile3DRecon [51]) or end-to-end pose prediction (such
as SfMLearner [52], SAVO [53]) in monocular scenarios for
accurate camera tracking. Their goals are different from our
goal of high-fidelity reconstruction of 3D scenes.

2.4 Deep 3D Registration

Point cloud registration is a classic problem, which has
been extensively studied in the past decades [54]. The
recent research focus has shifted to deep learning based
approaches on two critical issues, i.e., keypoint detection
and keypoint description. For the former, 3DFeat-Net [55]
provides a patch-wise detection approach, which encodes
the spatial context for 3D point clouds. USIP [56] presents a
covariant keypoint detection approach with unsupervised
learning. For the task of keypoint description, the recent
work of 3DMatch [57] introduces a volumetric convolution
approach to encode keypoint descriptors for 3D scan data,
with which a RANSAC [58] based point cloud registration is
performed for 3D reconstruction. D3Feat [59] performs the
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keypoint detection and description jointly with one convo-
lution neural network for more accurate keypoint detection
and description. FCG [60] provides fully-convolutional geo-
metric features to perform the accurate 3D registration in a
fast way. 3DRegNet [61] performs robust DNN registration
for efficient transformatin estimation. DGR [62] introduces
a differentiable framework for pairwise registration for ro-
bust, accurate, and fast real world scan registration. On the
other hand, [63] introduces an end-to-end learnable point
cloud registration system, which aims at globally consistent
multi-view 3D registration. Such an idea is further extended
to the multibody setting by [64].

Although these deep learning based 3D registration
methods could be applied to online 3D reconstruction in
global pose graph construction or loop closure, we propose
efficient semantic registration to formulate an accurate se-
mantic pose graph during the back-end of the real-time 3D
reconstruction system. Compared with those deep 3D reg-
istrations, our approach does not require the computation
of any keypoints using deep learning networks, and can
achieve the same level of 3D registration accuracy than the
state-of-the-art deep 3D registration approaches (DGR [62]).
According to the comparison we made in Sec. 4.4, our
semantic registration can be more suitable than these deep
3D registration approaches for the submap registration in
the task of creating semantic pose graph, considering the
balance of 3D registration accuracy, memory footprint and
time cost during the real-time 3D reconstruction system.

3 METHOD

3.1 System Overview
Given a sequential RGB-D stream, we leverage a 2D CNN
(FuseNet [65] in our implementation) to extract 2D category
labels for the RGB-D frames. During online 3D reconstruc-
tion, we first map both the RGB-D observations and 3D
reconstructions (in a representation of TSDF) into a semantic
space. Within the semantic space, we perform frame-to-
model camera tracking with a semantic SDF tracker. In
the back-end, we maintain the reconstructed 3D scene as a
collection of semantic submaps, and construct a global pose
graph with semantic links between the submaps to further
rectify their global pose, aiming at globally consistent 3D
reconstruction. To build the global pose graph, we propose
a few novel operations on the semantic submaps, including
semantic submap generation, semantic submap erosion, and
semantic registration etc, to efficiently register the submaps
with reliable semantic links. An overview of our approach
is given in Fig. 2.

Notation. For a given RGB-D data stream, we denote
Fk = {Ik, Zk, Lk} as the k-th frame with Ik, Zk, Lk being
the intensity, depth, and 2D category labels respectively, and
Tk ∈ SE(3) as its camera pose. Here Tk is a rigid transfor-
mation, which can be represented as an exponential function
of a vector ξ ∈ se(3), i.e., Tk(ξ) = Exp(ξ∧) ∈ SE(3) [66]
, where ∧ is a hat operator [66] (see our supplementary
materials for more details). Given the camera’s intrinsic
parameters, we back-project frame Fk to the currently re-
constructed 3D points Vk = π′(Zk), with π(·) being the
3D-to-2D projection and π′(·) the inverse. Here we use L
to represent the category label set with m categories, i.e.,

Lk := {Lk(u) ∈ L|u}, with u representing 2D coordinates
in the intensity image Ik.

3.2 Semantic Space

We introduce a mapping that embeds category labels from
the 2D domain to the 3D space via 2D-to-3D inverse-
projection. Specifically, we introduce a semantic mapping
M that maps a pixel p ∈ R2 with a label l ∈ L to a
point P ∈ R3 affiliated with the label l as M : {p, l} ∈
R2 × L → {P, l} ∈ R3 × L if π(P ) = p, where π(·) is
the 3D-to-2D projection. Here we denote S̄ = R3 × L as
the semantic space. For a hyper point in the semantic space
P̄ = {P, l} ∈ S̄ , we extend a rigid transformation T in R3

to S̄ as an operator ⊗, which transforms a hyper point P̄ to
another hyper point P̄ ′ by P̄ ′ = T ⊗ P̄ = {TP, l} ∈ S̄ .

Distance Function. We introduce a distance function
Γ : S̄ × S̄ → R to measure the distance between two hyper
points P̄i = {Pi, li} and P̄j = {Pj , lj} in the semantic
space S̄ as: Γ(P̄i, P̄j) = 1

2 (
∑Ωi

P̄k
G(|Pk − Pj |)Φ(lk, lj) +∑Ωj

P̄k
G(|Pi − Pk|)Φ(li, lk)), where Ωi and Ωj are the neigh-

borhoods of P̄i and P̄j , respectively, and P̄k = {Pk, lk}
represents a hyper point in Ωi or Ωj . We approximate the
neighborhood Ωi for each hyper point P̄i as a 5 × 5 × 5
voxel grid for computation efficiency when evaluating the
distance function Γ(·). G(x) = 1√

2πσ
Exp{− x2

σ2 } ∼ N (0, σ)
is a normal Gaussian function (σ is the standard deviation),
where we use the Euclid position distance xij = |Pi − Pj |
as the input in the distance function. Besides, Φ(li, lj) is
an indicator function: Φ(li, lj) = 0 if li = lj , otherwise
Φ(li, lj) = 1.

Properties of Semantic Space. From the construction
of the semantic space, we summarize its properties in two
folds: (1) the semantic space is a closed space over the trans-
formation operator⊗ (please see the formal proof of Lemma
I in the supplementary materials). and (2) the distance
metric function Γ(·) is continuous over each hyper point
P̄ = {P, l}’s position P ∈ R3 ⊂ S̄ at everywhere (please see
the formal proof of Lemma II in the supplementary materi-
als). According to such two properties, we can first calculate
the analytic derivation of operator ⊗ over the rigid transfor-

mation T (ξ) by
[ ∂TP

∂ξ

01×6

]
4×6

, where ∂TP
∂ξ = [−(TP ) I]3×6.

Besides, the analytic derivation of Γ(·) over hyper point
P̄i is calculated as ∂Γ

∂P̄i
= [

∑
vk∈Ωj

∂G
∂Pi

Φ(li, lk) 0]1×4. By
incorporating the derivation of operator ⊗ over the rigid
transformation, we can calculate the analytic derivation of
the distance function Γ(·) over rigid transformation T (ξ) as
∂Γ
∂ξ = ∂Γ

∂P̄
∂P̄
∂ξ , which is also continuous with respect to rigid

transformations T (ξ).
This continuous distance function Γ(·) enables us to

perform frame-to-model camera tracking directly in the se-
mantic space. Our insight is that we can estimate the camera
pose by registering the hyper points from the observations
to the reconstructed 3D scene directly within the semantic
space, by embedding both the RGB-D (and labels) obser-
vations and the reconstructed 3D scene (in the TSDF voxel
representation) to the semantic space, in which both the ge-
ometry and semantic cues are tightly fused. Embedding the
observations to the hyper observations is straightforward,
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Fig. 3. Two tiny examples of camera tracking for Scene0011 (Top) and
Scene0012 (Bottom) sequences in the ScanNet dataset, with (right
column) and without (left column) semantic priors in our semantic SDF
tracker. Without semantic priors, we can see obvious artifacts in the
reconstructions (the ’chair’ region in Scene0011 and the ’floor’ region in
Scene0012, left column), while the reconstructions are much better with
our semantic error term (right column) at the same frame respectively.

i.e., by applying the semantic mapping M to frame Fk as
M(Fk) → F̄k = {(vi, li)|vi ∈ Vk, li ∈ Lk}. But how to
embed the reconstructed 3D scene to the semantic space
remains to be a problem. Here we propose to perform this
embedding following a semantic TSDF representation.

Semantic TSDF Representation. We extend the trun-
cated signed distance function (TSDF) [23] fromR3 to the se-
mantic space S̄ to represent the reconstructed 3D scene dur-
ing the depth fusion, which we name as a Semantic TSDF
representation. Specifically, in our representation S we
record the SDF value D(v) (weight Wd(v)), intensity value
I(v) (weightWi(v)), and semantic label L(v) (weightWl(v))
for each volumetric voxel v, i.e. S = {D(v), I(v), L(v)|v},
and update Sk → Sk+1 as: Dk+1(v) =

Dk(v)Wk
d (v)+D(v)

Wk
d (v)+1

,

W k+1
d (v) = W k

d (v) + 1, Ik+1(v) =
Ik(v)Wn

i (v)+I(v)

Wk
i (v)+1

,

W k+1
i (v) = W k

i (v) + 1, Lk+1(v) = Lk(v), if W k
l (v) > 1,

otherwise Lk+1(v) = L(v), W k+1
l (v) = W k(v) + 1 if

Lk(v) = L(v), otherwise W k+1
l (v) = W k(v) − 1. L(v) is

obtained by projecting the category labels predicted from
2D CNNs to the 3D space. Note that although a probability
distribution of labels could be predicted by the 2D CNNs,
we only store one label (with the most possibility) for each
volumetric voxel for the system’s efficiency in memory
storage.

3.3 Semantic SDF Tracker

Now we introduce our semantic SDF tracker, which esti-
mates the camera pose directly based on the semantic TSDF
representation within the semantic space. Specifically, for
the currently reconstructed scene Sk, we aim at estimating
the camera pose Tk+1(ξ) of frame Fk+1 by optimizing an
objective function E(Sk, Fk+1, Tk+1(ξ)) for the optimized
pose Tk+1(ξ∗) with

ξ∗ = arg min
ξ
|E(Sk, Fk+1, Tk+1(ξ))|.

Within the semantic space, we design the objective func-
tion by considering the registration errors from both the
geometry and semantic cues when aligning the points from

frame Fk+1 to the geometry surface of Sk. Specifically, our
objective function consists of three error terms, namely, SDF
error term, intensity error term and semantic error term.
Mathematically, it is formulated as follows:

E(Sk, Fk+1, Tk+1(ξ)) =
∑
u

|Dk(Tk+1(ξ)Vk+1(u))|2+

α
∑
u

|Ik(π(Tk+1(ξ)Vk+1(u)))− Ik+1(u)|2+

β
∑

P̄u∈M(Fk+1)

W k+1(Tk+1(ξ)Vk+1(u))|Γ(Tk+1(ξ)⊗ P̄u, P̄v)|2

(1)

where Sk = {Dk(v), Ik(v), Lk(v)|v} is the semantic TSDF
representation, Fk+1 = {Ik+1(u), Zk+1(u), Lk+1(u)|u} is
the latest observation at time tk+1, W k+1(·) is the label
weight stored in the Semantic TSDF representation, and
α and β are balancing weights (see in Section 4.7). The
semantic mapping M maps observation Fk+1 to the se-
mantic space, with the distance function Γ(·) described in
Section 3.2.

Since all of the error terms in the objective function
have continuous derivations over the camera pose T , this
objective function can be optimized using Gauss-Newton
optimization, where we search the optimized perturbation
δξ in each iteration by solving:

δξ = −H−1g,

where H is the Hessian matrix and g is the gradient of the
objective function. The camera pose is updated using the
perturbation δξ as T (ξn+1) = T (δξ)T (ξn). Please refer to
the supplementary materials for the derivation of Hessian
matrix H and error vector g. Fig. 3 shows an example with
and without using the semantic error term, showing its
effectiveness in reducing the drift in camera pose estimation.

3.4 Semantic Pose Graph

In parallel with the semantic SDF tracker, we also build a
global pose graph to reduce the drift for globally consistent
3D reconstruction. We adopt the mechanism that divides
a reconstructed 3D scene into overlapping submaps and
adjust their global poses using bundle adjustment in the
back-end [5]. Our global pose graph contains not only
geometric links (Fig. 2(c) dash black links) but also semantic
links (Fig. 2(c) red links), which are calculated using our
semantic registration for globally more consistent 3D recon-
struction. We call it as a semantic pose graph (Fig. 4(c)). A
semantic link is a relative pose constraint between a pair of
submaps measured from the semantics priors. We introduce
a semantic erosion operation (Fig. 4(a)) to select an over-
lapping region with the same category label for the submap
pair, and perform the registration on the overlapping object
region with semantic registration (Fig. 4(b)) using the both
geometry and semantic cues. Below we introduce the details
of each step.

Semantic Erosion. For a submap pair (Si,Sj), we intro-
duce a semantic erosion operation φ : (Si,Sj) → (S̃i, S̃j)
where S̃i and S̃j are the subsets of Si and Sj , respectively,
such that S̃i and S̃j have regions with the same object labels.
More specifically, let Lij = Li∩Lj with Li and Lj being the
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Fig. 4. An illustration of our semantic pose graph’s formulation. We introduce a semantic erode operation (a) to perform semantic registration (b)
between submaps, thus providing accurate semantic links (c) to build our semantic pose graph. Benefiting from the semantic erode operation,
the registration can be accurately performed on object regions sharing the same semantic information rather than the whole geometry region like
previous purely geometry-based ICP registration techniques, which would easily fail when the geometry of two submaps varies a lot.

semantic label sets of the semantic TSDF representations of
submap pair Si and Sj , respectively. The subsets S̃i and S̃j
are the subset regions of Si and Sj that involve the semantic
labels in Lij , respectively. Fig. 4(a) shows an example of the
semantic erode operation to obtain an overlapping region
with the same objects.

Semantic Registration. We register the overlapping re-
gions S̃i and S̃j filtered by our semantic erosion operation
φij to calculate the relative pose T̃ij , which serves as the
semantic link between submap pair Si and Sj . This is
achieved by minimizing the following objective function:

Ẽij(S̃i, S̃j , T̃ij) =
∑
|D(T̃ij ⊗ P̄l)|2 + γ|Γi(T̃ij ⊗ P̄l, P̄k)|2

(2)
where Γi(·) is the semantic distance function and P̄k ∈ S̃i
and P̄l ∈ S̃j are hyper points belonging to the semantic
TSDF representations of Si and Sj , respectively, and γ is a
weight parameter to balance the two error terms.

Semantic Submap Generation. We divide the recon-
structed 3D scene into a series of submaps to balance
enough in both the geometry and semantic priors, such
that an accurate global pose graph can be achieved. So
during the online 3D scanning, we create a new semantic
submap Sn+1 when a new-arrival frame Fk satisfies the
following conditions: (1) the overlapping ratio between
frame Fk’s view observation and the current submap Sn is
less than a threshold θ1 = 0.2; (2) the semantic gain that
frame Fk adds to the current submap Sn is larger than
a threshold θ2 = 1.0. Here we define the semantic gain
Θ(Sn|Fk) as the semantic uncertainty reduction that frame
Fk takes to Sn: Θ(Sn|Fk) =

∑
v∈Sn Wn

l (v)log(Wn
l (v)) −∑

v∈Sn W
n+1
l (v)log(Wn+1

l (v)), where Wn
l (v) is the label

weight of each voxel v described and updated in Section 3.3.
In this way, we divide the reconstructed 3D scene into a
series of semantic submaps with enough view gaps and low
semantic uncertainty.

Semantic Pose Graph Formulation. Finally, we formu-
late the semantic pose graph among the semantic submaps
S = {Si|i = 1, ..., n} with each submap Si serving as a
graph node, and build both the geometric links and the
semantic links as graph edges between node pairs (Fig. 4(c)).

Based on the semantic pose graph, we further adjust each
submap’ global pose with bundle adjustment. Specifically,
supposing that the global poses set for the submaps are
T = {Ti|i = 1, ..., n}, we seek to adjust their poses to the
optimized global poses T∗ = {T ∗i |i = 1, ..., n} such that:

T∗ = arg min
T′

∑
<i,j>∈E

log(T ′iT
′
j
−1

∆Tij) + log(T ′iT
′
j
−1

∆T̃ij)

(3)
where E is the whole link set with ∆Tij = T−1

j Ti represent-
ing the geometric links measurement and ∆T̃ij = T̃ij for the
semantic link measurement of a submap pair < i, j >∈ E ,
and log(·) is the logarithmic function of a transformation
T ∈ SE(3) [66].

3.5 Loop Closure

We also perform loop closure detection between the
submaps to further rectify the global drift between RGB-D
scans with loops. Specifically, for every RGB-D frame during
scanning, we encode them as feature vectors using Random
Ferns [67] and perform the loop closure detection for the
similar frames in the loop. Once the loop closure is detected,
we perform semantic registration between the correspond-
ing two submaps and add a semantic link between such
two submaps in the semantic pose graph (see Sec. 3.4) for
subsequent bundle adjustment in the semantic pose graph
between submaps with loops.

4 EXPERIMENTS AND EVALUATIONS

In this section, we first compare our approach with previous
real-time 3D reconstruction approaches (including Infini-
TAM [5], ElasticFusion [29], and BundleFusion [6]) through
a quantitative evaluation on a synthetic dataset (Sec. 4.1)
and a qualitative evaluation on a real-world scan dataset
(Sec. 4.2). We also perform quantitative and qualitative eval-
uations (Sec. 4.3) to demonstrate the difference between our
approach and the state-of-the-art deep 3D reconstruction ap-
proaches (including DI-Fusion [30] and RoutedFusion [27]).
The comparison between our semantic registration method
and the state-of-the-art deep 3D registration approaches
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(including 3DMatch [57], D3Feat [59] and DGR [62]) is
made (Sec. 4.4), to justify the effectiveness of our semantic
registration for formulating accurate submap links. We also
compare our approach with instance-level visual SLAM
approaches (Sec. 4.5). Furthermore, we give a comprehen-
sive evaluation on our whole system under 2D semantic
annotations with different quality (Sec. 4.6) and different
choices of key parameters (Sec. 4.7) and we also evaluate its
time efficiency in Sec. 4.8. Finally, we summarize the main
limitations of our approach and give possible directions to
further improve our performance in the future (Sec. 4.9).

System Implementation. We implemented our approach
based on the framework of InfiniTAM [5] and modified
the voxels to store the category labels (and weights) as
the semantic TSDF representation during the online 3D
reconstruction. We adopt the state-of-the-art 2D CNN, i.e.,
FuseNet [65], to detect the 2D category labels for RGB-
D frames. The FuseNet is pre-trained on the ScanNet
dataset [22] with category number m = 21.

Hardware Configurations. All the experiments are per-
formed on a desktop PC with an i7-6850K CPU, 32 GB
RAM, and an Nvidia Titan Xp GPU graphics card. Note
that for BundleFusion [6], we use two Nvidia Titan Xp
GPUs due to the huge GPU memory consumption for sparse
feature point detection and camera pose estimation, with the
other hardware configurations keep the same as the original
implementation.

4.1 Quantitative Evaluation on Synthetic Dataset
We first perform a quantitative evaluation of our approach
on a public synthetic RGB-D dataset SceneNetRGB-D [36],
that contains 3D surface annotations as ground-truth sur-
faces to evaluate the surface reconstruction quality. We
choose three publicly available real-time 3D reconstruction
approaches for comparison, i.e., InfiniTAM [5], ElasticFu-
sion [29], and BundleFusion [6]. Here, BundleFusion is
the state-of-the-art real-time 3D reconstruction method. We
adopt the public source code for the other three approaches
(InfiniTAM1, ElasticFusion2 and BundleFusion3) with the
default configurations (voxel size, truncated value, etc).

Dataset Collection. The SceneNetRGB-D provides a col-
lected RGB-D dataset containing 5M RGB-D frames4. How-
ever, each camera trajectory (with 5 minutes for each) only
has sparsely rendered 300 view frames, and thus is not
suitable for online 3D reconstruction. So alternatively, we
choose to collect our own synthetic RGB-D stream dataset
using the photorealistic rendering tool SceneNetRGB-D5

provided. Specifically, considering that SceneNetRGB-D
provides only 5 scene types (including ‘Bathroom’, ‘Bed-
room’, ‘Kitchen’, ‘Living Room’, and ‘Office’), we choose
to render RGB-D frames with generated camera trajectories
and synthetic scenes (created by the Chrono Engine pro-
vided by SceneNetRGB-D) uniformly sampled from those 5
scene types, and finally collect 80 RGB-D stream data for the
evaluation.

1. InfiniTAM: https://github.com/victorprad/InfiniTAM
2. ElasticFusion: https://github.com/mp3guy/ElasticFusion
3. BundleFusion: https://github.com/niessner/BundleFusion
4. https://robotvault.bitbucket.io/scenenet-rgbd.html
5. https://bitbucket.org/dysonroboticslab/scenenetrgb-

d/src/master/

Accuracy Metric. When evaluating the final reconstruc-
tion quality in terms of both accuracy and completion, besides
the commonly used accuracy metric like RMSE surface
error, we also use more recognized metrics including F-
score (with both Precision and Recall) used in [68] and Mean
Squared Error (MSE), Mean Absolute Distance (MAD), Ac-
curacy (Acc), Intersection-over-Union (IoU) used in Neural-
Fusion [28]. All of these metrics are effective measurements
to measure both the accuracy and completion for the geome-
try quality of the reconstructed 3D scenes. When calculating
the metrics for MSE, MAD, IoU, and Acc, we use the mesh-
to-sdf library6 to convert the reconstructed mesh (or GT
mesh) to SDF samples, and set the voxel resolution as 5mm,
as done in NeuralFusion [28].

Comparison Results. During the evaluation, we per-
form 3D scene reconstruction for the 80 sequences in
the SceneNetRGB-D dataset using the four compared ap-
proaches separately, and calculate the six metrics for each
reconstructed 3D mesh against its corresponding ground-
truth mesh.

Table 1 shows the average accuracy scores using the
above six metrics for the four approaches. For the RMSE,
MSE, and MAD metrics (the lower the better), our approach
consistently achieves lower scores as 5.29mm, 7.93e-5 and
6.03e-2 respectively, than BundleFusion (5.70mm, 8.31e-5
and 6.21e-2), ElasticFusion (7.69mm, 9.83e-5 and 7.55e-2)
and InfiniTAM (7.33mm, 9.92e-5 and 7.91e-2). For the IOU,
ACC, and F-score metrics (the larger the better), our ap-
proach also achieves consistently the highest metrics scores
as 68.4%, 78.9% and 66.3%, respectively (cf. BundleFusion:
64.2%, 76.6% and 64.4%; ElasticFusion: 52.8%, 62.2% and
55.3%; InfiniTAM: 52.1%, 61.3% and 54.8%. In the F-score
metric, the Precision (P) score for BundleFusion (73.1%) is
higher than ours (61.6%). This is mainly due to that Bundle-
Fusion keeps only reconstructed regions with high accuracy
and removes the badly reconstructed regions. But this is
at the cost of the decreasing completion quality, as reflected
by the significantly lower Recall (R) value of BundleFusion
(58.3%) than ours (73.4%). Overall, our approach achieves
consistently better accuracy than the other three approaches
in terms of all the six metrics.

4.2 Qualitative Evaluation on Real World Dataset
We also perform an evaluation on the ScanNet dataset [22]

to demonstrate how our approach behaves in reconstructing
real-world scenes.

Evaluation Description. Although ScanNet also pro-
vides rich annotations of 3D surface reconstruction, those
3D surface reconstruction annotations are generated by
BundleFusion7. Considering that BundleFusion is also an
approach being compared with our approach, we do not use
the 3D surface annotations in ScanNet for quantitative eval-
uation. Alternatively, we only evaluate the visual quality of
the reconstructed 3D meshes in ScanNet by comparing our
approach with the other three online 3D reconstruction ap-
proaches, i.e. InfiniTAM [5], ElasticFusion [29] and Bundle-
Fusion [6]. Besides, although the 2D annotation for each
frame is provided in every RGB-D sequence of the ScanNet

6. https://github.com/marian42/mesh to sdf
7. http://www.scan-net.org
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TABLE 1
The quantitative comparisons between our approach and five existing approaches evaluated on the SceneNet RGB-D synthetic dataset, including

three previous real-time 3D reconstruction approaches: InfiniTAM (IM) [5], ElasticFusion (EF ) [29], BundleFusion (BF ) [6], and two deep 3D
reconstruction approaches: DI-Fusion (DF ) [30] and RoutedFusion (RF ) [27]. The results are measured using six different metrics (from left to

right), including RMSE, Mean Squared Error (MSE), Mean Absolute Distance (MAD), Accuracy (Acc), Intersection-over-Union (IoU), and F-score
(with both Precision (P) and Recall (R)). ‘↑’ means ‘the larger the better’ for the underlying metrics and vice versa ’↓’ means ’the smaller the

better’. The numbers in boldface indicate the best performance.

M
RMSE ↓ MSE ↓ MAD ↓ IOU ↑ ACC ↑ F-score ↑

Mean Std Mean Std Mean Std Mean Std Mean Std P R F
(mm) - [e-5] - [e-2] - (%) - (%) - (%) (%) (%)

IM [5] 7.33 1.54 9.92 1.06 7.91 3.21 52.1 3.10 61.3 1.51 55.0 54.7 54.8
EF [29] 7.69 1.01 9.83 1.66 7.55 3.74 52.8 1.14 62.2 0.73 51.2 61.8 55.3
BF [6] 5.70 0.92 8.31 1.56 6.21 3.40 64.2 3.41 76.6 1.25 73.1 58.3 64.4

DF [30] 6.95 0.95 9.49 1.03 7.12 1.25 53.1 1.34 64.5 2.04 57.7 56.9 57.2
RF [27] 6.45 0.72 8.60 1.04 6.75 1.02 58.6 1.87 70.1 0.94 65.7 55.6 60.2
Ours 5.29 1.03 7.93 1.48 6.03 3.13 68.4 1.35 78.9 0.74 61.6 73.4 66.3

Fig. 5. The visual comparisons of 3D reconstructed geometry surfaces of scene0008 (Top), scene0011 (Bottom) in the ScanNet dataset using
the four compared approaches, including InfiniTAM (a), ElasticFusion (b), BundleFusion (c), and ours (d). Our approach achieves higher 3D
reconstruction quality for object regions (see the highlighted region in each result) with globally more consistent scene reconstructions than the
other three approaches.

dataset, considering that such annotations are obtained by
projecting the 3D semantic reconstruction annotations to
each 2D frame, we also do not use these 2D annotations

as the semantic information but directly detect the 2D an-
notations by using FuseNet. Lastly, since ElasticFusion [29]
reconstructs 3D geometry using surfels but not TSDF voxels
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as like InfiniTAM [5], BundleFusion and ours, we use the
original implementation of ElasticFusion and maintain the
surfel-based geometry surface reconstruction during the
qualitative evaluation for a fair comparison.

Comparison Results. Fig. 5 shows two visual compar-
isons of the reconstructed 3D meshes of 3D scenes in the
ScanNet dataset by the four compared approaches. Our
approach achieves consistently better 3D reconstruction of
object regions, such as sofa, chair, table, etc., as well as
background regions such as flatten floor, wall, etc., than the
other three approaches. This indicates that our approach can
achieve globally more consistent 3D reconstruction of in-
door scenes than the other three approaches. Our approach
specially takes effect for accurate camera tracking when
scanning texture-less object regions, such as table regions
in scene0011 as shown in Fig. 5 (Bottom). In such scenar-
ios, it would be challenging for the other approaches like
BundleFusion to reliably extract sparse 2D feature points
for accurate camera tracking.

Evaluation on SceneNN Dataset. To test the general-
ization ability of our approach across different real-world
scan datasets, we also perform another evaluation on the
SceneNN dataset [37], which is another public real world
3D indoor scene RGB-D dataset. Fig. 6 show some visual
comparison results generated by the four compared real-
time 3D reconstruction approaches. Our approach can con-
sistently achieves better object region reconstruction, thus
indicating globally more consistent 3D reconstruction than
the other three approaches.

4.3 Comparison with Deep 3D Reconstruction
We also compare our approach with the recent deep 3D
reconstruction approaches to see the difference between our
semantic-guided 3D reconstruction and the deep-learning-
based 3D reconstruction in terms of global consistency of
reconstruction. Here we choose two deep 3D reconstruction
approaches including: (1) DI-Fusion [30], which leverages
the effective neural implicit representation for online 3D
reconstruction and (2) RoutedFusion [27], which provides
an accurate depth fusion mechanism for precise 3D re-
construction. For DI-Fusion, we use the publicly released
code with the pre-trained model in the default parame-
ter configuration8. We also use the open-sourced code of
RoutedFusion9. Since RoutedFusion does not provide the
camera pose estimation, we choose to use the traditional
baseline approach (InfiniTAM [5]) to perform the camera
pose estimation. Besides, although NeuralFusion [28] might
provide better depth fusion quality than RoutedFusion, we
did not choose it for comparison, partially due to that the
two approaches achieve high depth fusion quality in the
same level, while RoutedFusion is more widely accessible
for comparison.

Table 1 (middle rows) shows the quantitative compari-
son results between DI-Fusion, RoutedFusion, and our ap-
proach, evaluated on the SceneNetRGB-D synthetic dataset
in terms of the six accuracy metrics. Our approach achieves
consistently better accuracy scores in all of the six metrics
than both DI-Fusion and RoutedFusion. This is mainly

8. https://github.com/huangjh-pub/di-fusion
9. https://github.com/weders/RoutedFusion

because our approach focuses on more accurate camera pose
estimation with the aid of semantic cues, though the scene
representations by DI-Fusion and depth fusion mechanism
by RoutedFusion would be more advanced. Fig. 7 shows
several visual comparisons of reconstruction results by the
three compared approaches tested on the SceneNetRGB-D
dataset. Compared with DI-Fusion and RoutedFusion, our
approach leads to visually more similar to the ground truth
annotations. Please see more visual comparison results in
the supplementary materials.

4.4 Comparison with Deep 3D Registration

The 3D registration techniques based on deep neural
networks are also related with our approach, especially
our semantic submap registration in semantic pose graph
generation. An alternative way to generate the global pose
graph is to replace the semantic submap registration with
an existing 3D deep registration method. To test how our
semantic registration behaves in comparison with such deep
3D registration approaches, we perform an evaluation on 3D
registration quality between consecutive submap pairs. For
the 3D deep registration, we choose the three state-of-the-art
approaches, i.e., 3DMatch [57], D3Feat [59], and DGR [62], as
the representative 3D deep registration approaches. For the
evaluation, we first collect 50 pairs for consecutive submaps
randomly generated during the online 3D reconstruction
process from the SceneNetRGB-D dataset, and then perform
the 3D registration on these submap pairs with the four
compared approaches respectively. We calculate the average
Precision score to evaluate the 3D registration quality of
each compared approach. Besides, we also calculate the
average memory footprint and run time for different ap-
proaches in the evaluation.

Precision Score. For a submap pair (M1,M2) after 3D
registration, we calculate the precision score p = 2|M1∩M2|

|M1|+|M2|
with |·| is the point cloud number for a submap. The overlap
region M1 ∩ M2 is calculated as overlap points that have
nearest neighbor point with the distance under a threshold
(5mm).

Table 2 shows the average Precision scores, memory
footprint, and run times for the four compared approaches.
Our approach can achieve slightly better 3D registration
quality in Precision (65.6%) than DGR (62.2%), D3Feat
(60.7%), and better than 3DMatch (55.4%). For rum times,
although DGR [62] performs fast pairwise 3D registration
(about twice as fast as RANSAC with 2M iterations), our
semantic registration is faster (0.25s) than DGR (0.76s), and
much faster than 3DMatch (1.5s) and D3Feat (10.0s). In ad-
dition, since our semantic registration does not require the
computation of any keypoints using deep learning networks
as needed by the other three deep registration approaches,
our approach needs much lower GPU consumption. It is
thus more suitable for the semantic submap registrations
in our task. Fig. 8 shows several visual comparisons of
submap registration by the four compared approaches. Our
approach achieves better registration especially for object
regions. Please refer to our supplementary materials for
more visual results of submap registration.
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Fig. 6. Visual comparison of surface reconstruction results from the SceneNN dataset using the four compared approaches, including InfiniTAM (a),
ElasticFusion (b), BundleFusion (c), and Ours (d). The close-ups corresponding to the highlight red boxes are listed on the right for each result.

TABLE 2
The comparison results between our semantic registration (Ours) and

three deep 3D registration approaches, including 3DMatch [57],
D3Feat [59], and DGR [62]. For each approach, the precision, memory

footprint, and run time quantities are listed respectively.

Method 3DMatch D3Feat DGR Ours
Precision (%)↑ 55.4 60.7 62.2 65.6

Memory Footprint (G) ↓ 5.76 8.04 8.19 0.42
Run Time (s) ↓ 1.5 10.0 0.76 0.25

4.5 Instance-level Visual SLAM

There are several impressive visual SLAM approaches,
which take object instances as explicit landmarks for cam-
era pose estimation, including Fusion++ [35] and MID-
Fusion [38] as the state-of-the-art instance-level visual
SLAM approaches. One of the main drawbacks for these
instance-level visual SLAM techniques is that they heavily
rely on the instance detection accuracy for camera pose es-
timation. Although our approach as a depth fusion method
has a different goal from those visual SLAM techniques, to
evaluate the benefit of our approach for the camera pose
estimation, we perform an evaluation on the accuracy of

camera pose estimation by comparing these approaches
with ours on the TUM RGB-D dataset [69]. Specifically, we
calculate the ATE RMSE error between the estimated camera
trajectories and the ground-truth camera trajectories of each
RGB-D sequence using the three compared approaches,
i.e., Fusion++, MID-Fusion, and ours. Besides, we choose
a typical TSDF odometry approach (KinectFusion [1]) as the
baseline approach in the comparison.

Table 3 shows the average ATE RMSE errors of the four
compared approaches for the RGB-D sequences in the TUM
RGB-D dataset. To make a fair comparison, we use the ATE
RMSE errors of the TSDF odometry, Fusion++, and MID-
Fusion reported in the original paper of Fusion++ [35].
Our approach achieves the lowest errors in ’fr1-d’, ’fr1-r’,
’fr2-x’, and ’fr3-l’ RGB-D sequences and the second lowest
errors in ’fr1-d2’ (only higher than the TSDF odometry) and
’fr2-d’ (only higher than Fusion++) RGB-D sequences. In
average, our approach achieves lower average ATE RMSE
error (0.109) than the TSDF odometry (0.193), MID-Fusion
(0.171), and Fusion++ (0.113), indicating that our approach
can provide higher camera pose estimation accuracy than
the other three approaches (though only slightly higher
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Fig. 7. Visual comparison of surface reconstruction results from the SceneNetRGB-D [36] dataset by DI-Fusion (a), RoutedFusion (b), Ours (c),
and the ground-truth meshes (d).

Fig. 8. Representative visual comparisons of 3D submap registration by four different approaches, including 3DMatch (a), D3Feat (b), DGR (c), and
our semantic submap registration method (d). Our method produces more accurate 3D registration, especially for object regions. The close-ups
corresponding to the highlight red boxes are listed in the right column for each result respectively.

than Fusion++ in the average ATE RMSE error). Note that
our approach achieves real-time performance (see Sec. 4.8)
at 25fps processing rate with only category-level semantic
information, and is much faster than MID-Fusion (2-3fps)
and Fusion++ (4-8fps) due to their use of time-consuming
instance inference.

The main reason that our approach does not consistently
outperform the other approaches for the camera pose esti-
mation accuracy in ’fr1-d2’ and ’fr2-d’ RGB-D sequences is
due to the undesired semantic information quality predicted
by FuseNet, especially for the cluttered small objects on the
desk in the ’fr2-d’ RGB-D sequence. Note that our approach

could be further improved by fine-tuning the FuseNet on
the TUM RGB-D dataset, or by using other state-of-the-art
2D CNNs that are more suitable for the semantic prediction
of TUM RGB-D frames.

4.6 Evaluation on Annotation Quality

The quality of semantic priors (2D annotation) plays an
important role for accurate camera tracking in our ap-
proach. To study how our approach behaves in respect
with the 2D annotation quality, we provide an evaluation
on our approach (1) by using different prediction quality
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TABLE 3
The quantitative ATE RMSE accuracy (m) of the camera trajectories of

TUM RGB-D dataset sequences using different 3D reconstruction
approaches, including TSDF Odometry (Odom) [1], MID-Fusion

(MF) [38], Fusion++ (F++ for short) [35], and ours.

Method fr1-d fr1-d2 fr1-r fr2-d fr2-x fr3-l avg
Odom 0.066 0.146 0.305 0.342 0.022 0.281 0.193

MF 0.058 0.182 0.257 0.268 0.026 0.237 0.171
F++ 0.049 0.153 0.235 0.114 0.020 0.108 0.113
Ours 0.040 0.152 0.207 0.148 0.015 0.097 0.109

of FuseNet and (2) by replacing FuseNet with different 2D
CNN baselines.

Different FuseNet Quality. We re-train K = 4 versions
of FuseNet with the number of epochs set as 10, 20, 50, and
100, which are termed as FuseNet-10, FuseNet-20, FuseNet-
50, and FuseNet-100, respectively. The mIoU accuracies of
these four versions of FuseNet in the test dataset are 0.60
(FuseNet-10), 0.65 (FuseNet-20), 0.70 (FuseNet-50) and 0.79
(FuseNet-100), respectively. The 2D semantic label predic-
tions using these four versions of FuseNet represent differ-
ent 2D annotation qualities. Note that the final version we
use is FuseNet-150 with 0.81 mIoU accuracy.

Different 2D CNN Baselines. We also choose three com-
monly used 2D CNN approaches to replace FuseNet in our
system, including SSMA [70], SegNet [71] and LinkNet [72],
to see how our approach behaves with different kinds of
2D semantic prediction baselines. We choose to perform
the evaluation on the SceneNetRGB-D synthetic dataset, by
comparing the final reconstruction quality for the above
mentioned different versions of our system. Besides, we also
implement our system without using any semantic priors,
and set it as a baseline system. For an efficient evaluation,
we calculate two accuracy metrics, i.e., RMSE and F-score,
to evaluate the final 3D reconstruction quality.

Results. Table 4 (upper rows) shows the average RMSE
sore and F-score of the four different versions of FuseNet in-
tegrated in our system. In general, the average RMSE errors
increase as the semantic prediction accuracy decreases along
with the different versions of FuseNet. Correspondingly,
the F-score increases as the semantic prediction accuracy
increases. This makes sense since the quality of 2D semantic
prediction takes a positive effect on the two important
modules of our approach, i.e., camera tracking and semantic
pose graph optimization. The more accurate the 2D anno-
tation provided by 2D CNNs, the better 3D registration
quality obtained in both the semantic SDF tracker compo-
nent and the semantic pose graph optimization component.
Table 4 (middle rows) shows the average RMSE scores and
F-scores of three different 2D CNN baselines integrated in
our system. Similarly, the use of different 2D CNN baselines
will also influence the final reconstruction quality. If the 2D
CNNs decrease significantly (like SSMA), the final surface
reconstruction quality would decrease accordingly. But all
of these different systems can achieve better surface recon-
struction quality than the baseline system, which shows that
our approach fusing both semantic and geometry cues takes
effects than the baseline system without using any semantic
priors.

TABLE 4
The quantitative comparisons between our system and different

FuseNet versions (upper rows) and different 2D CNN baselines (middle
rows), including SSMA [70] (termed as F1), SegNet [71] (termed as
F2), and LinkNet [72] (termed as F3), measured using two different
metrics including RMSE and F-score (with both Precision (P) and

Recall (R)). The quantitative scores for the baseline system are also
included (termed as Baseline). ‘↑’ means ‘the larger the better’ for the
underlying metrics and vice versa ’↓’ means ’the smaller the better’.

The numbers in boldface indicate the best performance.

M
RMSE ↓ F-score ↑

Mean Std P R F
(mm) [e-5] (%) (%) (%)

FuseNet-10 7.41 1.09 54.1 58.3 56.1
FuseNet-20 6.76 1.02 56.9 58.9 57.8
FuseNet-50 5.94 0.76 60.3 66.9 63.4
FuseNet-100 5.64 0.93 60.9 71.5 65.7

F1 7.22 0.89 53.6 59.1 56.2
F2 6.84 1.14 58.2 57.1 57.6
F3 5.81 0.96 60.1 70.8 65.0

Baseline 7.71 0.97 52.8 58.6 55.4
Ours 5.29 1.03 61.6 73.4 66.3

4.7 Parameter Study

In our implementation, σ used in the distance metric func-
tion Γ(·), α (for the intensity error term) and β (for the
semantic error term) used in the semantic SDF tracker, and
γ used in the semantic registration are four key param-
eters, which influence the final 3D reconstruction quality.
To evaluate the impact of these parameters, we perform a
parameter study experiment. Since it would not be feasible
to traverse all of the parameter configurations, we choose
to study the impact of each parameter on the reconstruction
quality one by one. Specifically, we uniformly sample one
parameter in a certain range and randomly sample 100
configurations for the remaining parameters. Using such
parameter configurations, we perform 3D reconstruction
on the SceneNetRGB-D synthetic dataset and calculate the
reconstruction accuracy using the average RMSE surface
reconstruction metric. For efficiency, we set the range of each
parameter as [0,2.0] for α, [0,2.0] for β, [0,0.20] for γ, and
[0.1a, 4a] for σ (where a is the voxel size), respectively.

Fig. 9 shows the RMSE metric curves for the four pa-
rameters, respectively. For parameters β, γ, and σ, which
involves with the semantic priors, we can see that the
RMSE error decreases in general along with the increasing
values of those three parameters. This makes sense since the
semantic priors have a positive impact in our approach. For
the parameter α that is related with the intensity error term
of the semantic SDF tracker, the RMSE error curve does not
show a clear trend in terms of the parameter. Considering
both the reconstruction quality and system efficiency, we set
σ = 1.5a, α = 1.25, β = 0.75 and γ = 0.12 in all of our
experiments.

4.8 Time Analysis

As shown in Table 5, our semantic SDF tracker takes in av-
erage 30ms to perform the camera tracking. To generate the
global pose graph, our semantic registration takes average
25ms to calculate a semantic link between two consecutive
submaps. For time efficiency, we perform the semantic
submap registration at every N = 5 frames. Besides, the
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Fig. 9. The RMSE metric curves for the different main parameters in our
approach.

FuseNet takes 25ms to perform one 2D semantic prediction.
Since the FuseNet semantic prediction runs at a separate
thread in parallel to the main reconstruction thread, includ-
ing semantic SDF tracker and semantic submap registration
etc, we maintain an average camera tracking processing
rate (front-end) at 25fps in our system. Please refer to the
accompany video for the real-time processing of our system
during the 3D reconstruction.

TABLE 5
The time cost for each key module in our full system.

Module Time Module Time
Semantic SDF Tracker 30ms Semantic Registration 25ms

FuseNet 25ms System 25fps

GPU Memory Storage. There are three modules that
consume GPU memory storage in our full system: (1) the
FuseNet module takes 500M GPU memory storage for 2D
semantic label prediction; (2) the TSDF 3D reconstruction
module takes 400M GPU memory storage for each single
semantic TSDF submap, and we allocate 20 submaps on
average for an indoor 3D scene with 10m× 10m room size;
(3) our fusion approach takes on average 300M GPU for
semantic SDF tracker and 400M GPU for semantic submap
registration. So in total our full system takes 10G GPU
memory storage on average for a typical indoor scene 3D
reconstruction with 10m× 10m room size.

4.9 Limitations and Discussion
One of the main limitations for our approach is that our
current solution could not correct the totally wrong 2D
semantic prediction from the 2D CNNs. This would lead
to undesired semantic distance measurement during the
semantic SDF tracker, thus causing camera tracking drift.
Such camera tracking drift could not be further rectified
even with our semantic registration, thus failing to achieve
globally consistent 3D reconstruction, as show in Fig. 10
(scans at a and b). Besides, when the RGB-D scan at place
contains a strong background but without enough object

Fig. 10. A representative failure case of our approach in scene0001
sequence of the ScanNet dataset. The sofa predictions in two RGB-
D scan places (a and b) are totally different, leading to undesired
reconstruction of another sofa (highlighted red). RGB-D scan c contains
a strong background region but without enough object regions, also
causing failure by our approach.

regions, our approach degenerates to previous online 3D
reconstruction using pure geometry information such as
InfiniTAM and ElasticFusion. Such a failure case is shown
in Fig. 10 (scan c).

One interesting direction to further improve the per-
formance of our approach would be to correct the 3D
semantics by using the 2D-to-3D mapping approaches such
as SemanticFusion [18], ProgressiveFusion [19] or the 2D-
3D joint learning approach SupervoxelConv [20]. With more
consistent 3D semantic priors, both the semantic SDF tracker
and submap registration in our approach would be subse-
quently improved. Another meaningful point is to explore
more effective loop closure techniques by considering the
spatial information between objects in the 3D scenes, po-
tentially leading to more efficient and accurate loop closure.
Besides, it would be interesting to apply our approach to the
3D outdoor scene reconstruction scenario with the visual-
LiDAR data streams.

5 CONCLUSION

In this paper, we have provided an accurate real-time 3D
reconstruction approach with a tight coupling of geometric
and semantic priors, stepping towards a globally consistent
3D reconstruction. Benefiting from the use of semantic pri-
ors, our approach outperforms the state-of-the-art methods
for 3D scene reconstruction on the public benchmarks in
terms of both quantity and quality, especially in the terms of
global consistency. We hope that our approach could inspire
the subsequent works to explore the tightly-coupled fusion
of both the geometry and semantic cues, in category-level or
instance-level, for more advanced 3D scene reconstruction
and understanding techniques in this community. Besides,
it is also an interesting direction to predict both the geomet-
ric appearance and semantic information (segmentation or
classification) jointly using a unified end-to-end deep neural
networks in the future work.
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