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Abstract
We present a real-time approach for acquiring 3D objects with high fidelity using hand-held consumer-level RGB-D scanning
devices. Existing real-time reconstruction methods typically do not take the point of interest into account, and thus might fail
to produce clean reconstruction results of desired objects due to distracting objects or backgrounds. In addition, any changes
in background during scanning, which can often occur in real scenarios, can easily break up the whole reconstruction process.
To address these issues, we incorporate visual saliency into a traditional real-time volumetric fusion pipeline. Salient regions
detected from RGB-D frames suggest user-intended objects, and by understanding user intentions our approach can put more
emphasis on important targets, and meanwhile, eliminate disturbance of non-important objects. Experimental results on real-
world scans demonstrate that our system is capable of effectively acquiring geometric information of salient objects in cluttered
real-world scenes, even if the backgrounds are changing.

CCS Concepts
•Computing methodologies → Reconstruction; Object detection;

1. Introduction

As a milestone in real-time depth fusion, KinectFusion [IKH∗11]
has aroused great research interests among the vision and graph-
ics communities. Various works have been proposed to im-
prove KinectFusion in different aspects [RV12, WKF∗12, NZIS13,
KPR∗15]. However, robust and high-precision real-time recon-
struction of real-world scenes with consumer-level depth sensors
is still a hard problem. The difficulties come from two-folds:
first, depth information acquired by cheap sensors (e.g., Microsoft
Kinect) is noisy, distorted and incomplete; second, real-world en-
vironments are typically complex and cluttered, where scanner-
unfriendly surface materials, featureless areas and dynamic objects
frequently occur. Even the state-of-art fusion techniques [KPR∗15,
DNZ∗16] cannot easily produce clean, complete and accurate re-
sults. Actually, reconstruction qualities are affected by many fac-
tors, including the conditions of target scenes, strategies adopted by
fusion algorithms, parameter configurations, experiences of users,
etc. Thus, different application scenarios favor different kinds of
reconstruction solutions. For instance, placing target objects on a
rotating platform under fixed camera(s) would always be an ideal
condition, if possible.

In this work, we aim to improve real-time reconstruction perfor-
mances in a specific scenario, i.e., reconstructing objects in com-
plex real-world backgrounds with a hand-held Kinect-style RGB-
D sensor. Although KinectFusion and its follow-up works already

have the ability to solve this problem to some extent, they do not
distinguish between the background environment and the target ob-
jects therein. As a consequence, sensor noise and depth distortion
will cause equal influences to each voxel, which is reasonable when
reconstructing the whole scene since each RGB-D pixel is of e-
qual importance. However, in the scenario of object reconstruc-
tion, registration precision of regions belonging to target objects
is clearly much more important. With the presence of noise and
distortion, such differences between object and scene reconstruc-
tion would result in very clear changes. We kindly refer readers
to [CZMK16] to find the state-of-the-art object reconstruction tech-
niques, which however do not always produce satisfactory recon-
struction results. In addition, existing methods are sensitive to dy-
namic background objects, which often occur in real-world scenes,
e.g., walking pedestrians or windblown curtains. Any changes in
background during scanning, may easily break up the registration
process, which leads to a strict restriction upon existing reconstruc-
tion systems.

We observed that if a reconstruction framework is smart enough
to understand user intentions, the aforementioned issues can all
be addressed. We can thus put more emphasis on important tar-
gets during registration, and meanwhile, eliminate disturbance of
non-important objects, even if they are moving in the background.
The idea of protecting local geometry around points of interest
in scans was first introduced and successfully used in an off-line
dense reconstruction pipeline [ZK13]. However, their global cam-
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era tracking algorithm for POI (point of interest) cannot be adapt-
ed to meet our real-time requirements. Thus, we resort to infer-
ring user-intended objects by detecting visual saliences from RGB-
D frames, which are then incorporated into a traditional real-time
volumetric fusion pipeline. Experimental results on real-world s-
cans demonstrate that our system is capable to effectively acquire
detailed geometric information of salient objects in cluttered real-
world scenes, and outperforms the status quo.

In summary, we present a real-time framework for acquiring
3D objects from complex real-world environments using hand-held
consumer-level RGB-D scanning devices. Compared with exist-
ing works, our framework has several advantages: (i) geometric
features of target objects are better preserved; (ii) users can con-
veniently tap to change target objects if multiple salient objects
are present; (iii) tracking and registration will not be disturbed by
changes in the background. To achieve them, we present a novel
spatial-temporal visual saliency detection method and successfully
incorporate visual saliency into real-time depth fusion.

2. Related Work

Our framework involves two key components: saliency detection
and volumetric fusion. Thus, in this section, we give a brief review
of the most related works in these two areas.

Saliency Detection. Visual saliency has long been a fundamen-
tal problem in neuroscience, psychology, and vision perception. Al-
though there have not yet been consensus on how visual saliency
should be defined and evaluated in the computer vision community,
various saliency models have been proposed for different applica-
tions, for example, predicting human fixation or extracting salien-
t regions [BCJL15]. In our framework, visual saliency is adopted
as cues for identifying POI of users, and shares similar definition
to the saliency recognized in image and video segmentation work-
s [AEWS08, FXL17].

Classical saliency detection methods typically extract features
at pixel level [CMH∗15] or super-pixel level [JWY∗13, QCB∗15],
which are then propagated into spatially-coherent meaningful re-
gions based on different kinds of saliency metrics [PLX∗14, GR-
B16]. Image segmentation techniques like GrabCut [RKB04] are
often used at the final stage to decide whether a region is salient
or not [FPCC16]. For RGBD images, the depth channel is han-
dled isolately [GRB16], or used for extracting additonal features
for comparison [PLX∗14]. Recent deep learning methods have al-
so addressed the problem [KWW16,HCH∗16] but relatively heavy
(cost hundreds of milliseconds per frame) for real-time applica-
tions. Spatio-temporal coherence has also been addressed when de-
termining salient regions in video sequences [FWLF14, KKSK15,
ZLR∗13], where optical flow is incorporated in these methods for
motion estimation. However, their methods are not suitable for i-
dentifying foreground objects of interests or determining which one
is more important when multiple foreground objects exist. In fact,
such methods require high-quality RGB sensors and good lighting
conditions, while extra depth information from sensors used in our
scenario offers stronger cues about focus and motions of objects
than traditional 2D flow estimation. To the best of our knowledge,
none of the previous video saliency detection methods have cou-
pled depth fusion to consider such coherence in 3D space.

In our framework, saliency detection serves a very specific pur-
pose, i.e. real-time depth fusion, which makes our saliency detec-
tion component addressed different from those typically tackled in
computer vision in three aspects: (i) input RGB-D streams are nor-
mally captured around a target which the user intends to reconstruc-
t, and thus salient regions are much clearer and more recognizable
(ii) salient objects in the scene are strictly static rigid bodies, (i-
ii) salient model must be computed very quickly to achieve real-
time depth fusion. Despite various saliency detection algorithms
studied in computer vision, none of them suits our application sce-
nario. Thus, we introduce a novel spatio-temporal visual saliency
detection method by customizing a salient model for single-frame
RGB-D images based on [PLX∗14], and integrate it into the frame-
to-model registration process in the traditional depth fusion work-
flow. Experimental results have demonstrated that the proposed
reconstruction-orientated saliency model and frame-to-model reg-
istration are mutually complementary in terms of precision.

Volumetric Fusion. Volumetric fusion is the most classic 3D re-
construction method studied in computer graphics [CL96]. Tradi-
tional volumetric fusion pipelines involve two key phases: tracking
and integration, where ICP (Iterative Closest Point) [BM92] and
SDF (Signed Distance Function) techniques are typically used in
each phase respectively. In 2011, Iazadi et al. introduced KinectFu-
sion [IKH∗11] which demonstrated that real-time volumetric fu-
sion systems could be achieved with the parallel processing abil-
ities of modern graphical hardwares. Ever since, real-time 3D re-
construction systems based-on low-end depth sensors have become
a research hotspot [CLH16].

Many subsequent works aimed to improve KinectFusion from
various aspects. Moving Volume KinectFusion [RV12] and Kintin-
uous [WKF∗12] eliminated the graphical memory limitation by s-
traightforwardly shifting volumes maintained in memory according
to camera trajectories. This idea was further extended by deploying
better data structures and exploiting smarter memory-swapping s-
trategies [NZIS13, KPR∗15], which successfully improved the ef-
ficiency of graphical memory usage and has become a prevalent
choice in practical volumetric fusion systems. With improvements
of RGB cameras equipped by low-end RGB-D scanners, visual
correspondences estimated from color images have also been con-
sidered to improve local registration precision [KSC13, WKJ∗15]
or to reduce drifting by loop-closure detection [CZK15, DNZ∗16].
Thanks to advances in graphical hardwares, these time-consuming
mechanisms used to appear in non-real time SLAM systems can
now be integrated into real-time applications. Our framework fol-
lows this trend, i.e. we incorporate visual saliency into the classic
volumetric fusion pipeline. Specifically, our application poses two
major demands which have rarely been addressed before: (i) pre-
serving detailed geometric information for target objects; (ii) re-
ducing disturbance from non-important backgrounds.

3. Methodology

Our framework consists of two interdependent modules. The
saliency detection module (Sec. 3.1) estimates salient image re-
gions based on features extracted from each RGB-D frame and
spatio-temporal information maintained by the volumetric fusion
module (Sec. 3.2), which iteratively registers and fuses each incom-
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Figure 1: Data flow in our framework.

ing frame, with an aligned saliency map, into a global volumetric
representation. Figure 1 illustrates the data flow in our framework.
Before detailed discussions, we first give the mathematical nota-
tions as follows:

We define the space domain of an image as Ω⊂N2 and each in-
put frame at time t consists a depth mapDt : Ω→R and an aligned
color image Ct : Ω→ N3. For each frame, we aim to estimate it-
s saliency map St : Ω→ R and camera pose Pt , and fuse it into
a maintained volumetric representation of reconstructed structures,
which is defined as a set of voxels κ in a 3D space domain Ψ⊂N3.
To incorporate saliency values into a volumetric fusion pipeline,
we extend the traditional TSDF (truncated signed distance func-
tion) voxel stucture [IKH∗11] with a float field storing its saliency
κ

S : Ψ→ R (within [0,1]). The integration of saliency is carried
out in a similar fashion to [IKH∗11], where each voxel v ∈ Ψ is
updated with:

κ
S
t (v) =

κ
S
t−1(v)∗κ

W
t−1(v)+St(p)

κW
t−1(v)+1

, (1)

κ
W
t (v) = min(κW

t−1(v)+1,σM), (2)

if v gets a corresponding pixel p∈Ω through ray-casting [IKH∗11],
we set σM = 64 and the voxel size to 5mm in our implementation
and enable voxel hashing for unbounded reconstruction. Specifi-
cially besides a typical ray-casting, we generate ray-casted maps
SΨ

t−1 and WΨ
t−1 as a saliency and a weight map, respectively. As

for other notes, the induced vertex map from Dt is denoted as Vt ,
and the ray-casted vertex map is denoted as VΨ

t−1.

3.1. Saliency Detection

To implement a spatio-temporal video saliency with possible user
interactions based on a previous image saliency method [PLX∗14],
we additionally take saliency results from previous frames and add
interaction related contrastive features and propagation strategies.
In general, we adopt a bottom-up two-level saliency extractor con-
sidering current frame, previous frames, camera trajectory, and po-
tential user interactions. Specifically, we compute saliency values

for each super-pixel based on multi-contextual contrast (local, glob-
al, pseudo-background, and the optional focus contrast), which are
later propagated into larger salient image regions. The whole pro-
cedure is parallelized and accelerated by GPU to ensure real-time
performance.

Feature Extraction. For each incoming pair of RGB and depth
frame at time t, we first extract super-pixels via a GPU-accelerated
SLIC algorithm [ASS∗12] named gSLICr [RPR15] to construct n-
early 200 super-pixels on each frame. Afterwards, we calculate the
feature vector Su = [Sc

u,Sn
u,Sl

u,Sd
u ,Sr

u]
T for each super-pixel u⊂Ω,

where Sc
u represents the centroid, Sn

u the PCA normal of the points
in the super-pixel, Sl

u the average color in CIE-Lab color space, Sd
u

the average depth, and Sr
u the number of pixels in u. All distance

and location units are given in meters, and the three channels of
CIE-Lab color are normalized in [0,1].

Low-level Saliency Value. At time t, our low-level saliency val-
ue Sut of each super-pixel ut is defined as the multiplication of the
following three terms:

SL
ut =C(Sut )×R(ut ,SΨ

t−1)×U(Sut ), (3)

where C(Sut ) is a weighted combination of local, global, and
pseudo-background contrasts defined in [PLX∗14]. In our imple-
mentation, this term was calculated with the same parameter set-
tings suggested in [PLX∗14].

R(ut ,SΨ
t−1) is the weighted average saliency value from a subset

of all pixel-wise correspondences as
⋃

pi
t∈ut

(pi
t , p j

t−1). In order to
reduce the influence of dynamic regions or outliers, the weight xi
for each correspondence is calculated through their location as:

xi = exp(−

∥∥∥Vt(pi
t)−VΨ

t−1(p j
t−1)

∥∥∥2

σ2
X

), (4)

where σX = 0.2 in our implementation. In the frame-to-model reg-
istration spirit [IKH∗11], here we use the saliency map SΨ

t−1 ray-
casted from fused volumetric data rather than directly adopt St−1,
as SΨ

t−1 contains the saliency information of all previous frames in
order to coherently focus on the target. For the first frame, R(·) is
set to one.

U(Sut ) depicts the influence of user-specified POI hints. Specif-
ically, we construct a focus contextual set which consists of super-
pixels having its centroid Sc

ut within the user-specified focal point
Fc and radius Fr, and then follow [PLX∗14] to compute the feature
contrast. If no specification has been given, our system will take
the centroid of the super-pixels which get the highest saliency as
Fc, and the distance to the furthest pixels among those with salien-
cy values higher than their average as Fr for subsequent inputs.

Propagation. To remove outliers and obtain more meaningful
salient image regions, we need to group super-pixels into larger re-
gions. To further reduce effects from unconcerned areas through
user hints based on the strategy from [PLX∗14], we similarly con-
struct an undirected graph of super-pixels in Ct based on their ad-
jacency in the image space, and to generate a set of salient seed-
s, each of which is then greedily propagated into a spanning tree.
On account of speed, super-pixels with low-level saliency value SL

greater than the average are all considered as seeds by default and
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the propagation of each seed is computed parallelly on GPU. How-
ever, if Fc and Fr have been specified, the following modifications
would be adopted.

First, a super-pixel u with ‖Sc
u−Fc‖ < Fr and its empirical

weighting SM
u above their average will be chosen as seeds, which is

calculated as:

SM
u = exp(−‖S

c
u−Fc‖2

F2
r

)×SL
u . (5)

By multiplying this exponential term, we emphasize those seeds
closer to the focal point for propagation, and also raise their salien-
cy (see the comparison between SL

u and SM
u in Figure 2). Second, a

Figure 2: Saliency at different levels. From left to right: user spec-
ification (red for focal point Fc, spatial distance between red and
yellow for radius Fr), low-level, weighted low-level, and high-level
saliency. Seeds are outlined with green borders. Since they are both
the first frame of its video sequence, SL, SM and SH are all comput-
ed with R(·) = 1, which means no influences from previous frames
have been applied to them.

new terminating condition is applied to the spanning tree algorith-
m, i.e. the edge (Sui ,Su j ) taking Suo as their seed will be added to
the tree if ∥∥Sc

ui −Sc
uo

∥∥< Fr ·SL
u j , (6)

since the propagation through one seed should be limited in a cer-
tain extent with regard to the object size.

The final saliency value of SH
u is then calculated as:

SH
u = Q(Su)×SM

u , (7)

where Q(·) is the normalized ([0,1]) frequency of Su appeared in all
the spanning trees. After propagation, the saliency map for current
frame as S′t is obtained and passed into the volumetric fusion step
for tracking in the volumetric fusion module (Sec. 3.2).

Some results of our saliency detection module are illustrated in
Figure 3, from which we can see that our method does produce
more spatially and temporally consistent saliency maps compared
with [PLX∗14], and thus suits our application better. Please refer
to our supplementary video for additional examples.

3.2. Volumetric Fusion

Compared with the previous fusion pipelines (e.g., [IKH∗11]
and [KPR∗15]), our framework involves two additional channel-
s in the tracking and integration process: the calculated saliency

c)

b)

a)

Figure 3: Examples of coherent saliency results, each column of
images are picked every 100 frames. a) input, b) [PLX∗14], c) our
results.

map for current frame St , and the ray-casted saliency map from the
camera pose of last frame S′t−1. Specifically, in the tracking stage,
both S′t and the estimated pose T′ are iteratively refined, and in the
fusion stage, saliency information is integrated into volumes along
with the geometric and color information.

Saliency-aware Pose Estimation. Our goal is to estimate the lo-
cal transformation T, which aligns the current frame to the previous
one. In our implementation, T is obtained by iteratively solving the
following minimization problem:

argmin
ξ

E(ξ) = Ewicp(ξ)+σREwrgb(ξ), (8)

where σR = 0.1 in our implementation. Ewicp and Ewrgb measure
the saliency-aware geometric cost and the saliency-aware photo-
metric costs, respectively. Following [WKJ∗15], they are mainly
defined based on the point-to-plane error in ICP registration Eicp
and the intensity differences between RGB pixels Ergb, respective-
ly, which can both be formalized as least-squares problems after
some derivations:

Eicp =
∥∥Jicpξ+ ricp

∥∥2
, (9)

Ergb =
∥∥Jrgbξ+ rrgb

∥∥2
. (10)

We refer readers to [WKJ∗15] for detailed definitions and deriva-
tions, here we focus on how saliency information is integrated into
this cost function. Specifically, we define a saliency weight for each
pixel-wise correspondence (pi

t , p j
t−1) as:

wi = exp(σW ·
SΨ

t−1(p j
t−1) ·W

Ψ
t−1(p j

t−1)+S
′
t (pi

t)

WΨ
t−1(p j

t−1)+1
), (11)

where σW = 4 in our implementation is the parameter adjusting
the weight of salient regions through the tracking process. We fol-
low the combination strategy in TSDF fusion to achieve a smooth
tracking. Detailed evaluation of this parameter is given in Sec. 4.3.

We then organize all computed wis of the current frame as a vec-
tor W, based on which, the saliency-aware costs Ewicp and Ewrgb
referred in equ 8 are finally defined as:

Ewicp =
∥∥W ·Jicpξ+W · ricp

∥∥2
, (12)

Ewrgb =
∥∥W ·Jrgbξ+W · rrgb

∥∥2
. (13)
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After each iteration, the estimated camera pose is improved by ξ,
which is mediately adopted to update the temporary saliency map
S′t to be referred in the next iteration. Following [WKJ∗15], we
also adopt a coarse-to-fine pyramid scheme when calculating equ
8, specifically, a 5× 5 Gaussian kernel is applied to establish 3-
level pyramids for each depth, color, and saliency maps. Such a
weighting strategy encourages the fusion system to concentrate on
the desired target and reduces effects from the distant background,
which often presents more noise and distortion according to the
distribution of sensor errors.

3.3. Interactive Focus Switching

Our system has further functionality allowing users to provide ad-
ditional hints for focusing while reconstructing, since automatic in-
ferred salient regions may be unexpected when multiple objects ap-
pear in front of the camera. In such a case, users can specify hints
through a simple click-and-drag interaction, similar to the tap-to-
focus operations in modern camera applications. A click on the in-
put frame or ray-casted frame specifies a focal point Fc in the local
or global coordinate. A drag from the focal point to a destination
point tells a length Fr for the approximate size of the target. Focus
switching on different objects can affect the tracking process and
better capture geometric details of the target objects, as shown in
Figure 4.

a) focus on cabinet b) focus on chair c) w/o saliency d) w/ saliency

Figure 4: Examples of focus switching. Left: user specifications
(top) and saliency (green) of reconstructed meshes (bottom). Right:
quality of the target has been improved through focus switching.

In many crowd or cluttered scenes, the target might be obstructed
sometimes in the scanning process, e.g., due to a person walking
across in front of the target (Figure 5). To reduce the impact of
severe occlusion, we generated another ray-casted image as ŜΨ

t−1,
whose rays only intersect with salient TSDF volumes. Comparisons
between St and ŜΨ

t−1 enables our system to filter out the undesired
regions before the tracking and fusion process.

4. Evaluation

We have evaluated our system in various aspects, including re-
construction quality, saliency coherence, and computational perfor-
mance. Our testing data came from two sources: the large dataset
of object scans constructed by Choi et al. [CZMK16] and a smal-
l dataset we built with 14 scenes scanned from 4 different places
(i.e., a lobby, two seminar rooms, and an office) by an ASUS Xtion

a) Combined-ICP b) Ours 

Figure 5: An example of occlusion cases. Top: the color image and
ray-casted images when the person was blocking the target. Bot-
tom: final reconstructed models. Heavy occluded regions are fil-
tered out through comparisons between St and ŜΨ

t−1 in our imple-
mentation.

Pro Live sensor. The large dataset is mainly used for regression test-
ing. The small dataset is established for evaluating focus switching
and dynamic background objects during scanning, and thus either
contain multiple targets or dynamic objects in the background (e.g.,
walking pedestrians, windblown curtains, etc.). We also made two
3D printed crafts with known geometry for quantitative evaluation.

4.1. Model Quality

Some representative results of both [CZMK16] and ours are
shown in Figure 6, including various locations such as out-
doors, office, and seminar room. We have compared our system
with some of the state-of-art works, where KF, DV, CI, KT, E-
F stand for KinectFusion [IKH∗11], Dense RGB SLAM [SS-
C11], Combined-ICP [WJK∗13], Kintinuous [WKJ∗15], Elastic-
Fusion [WLSM∗15], respectively. Here we briefly classify these
methods into three categories based on their cost functions used in
pose estimation: KF only considers Eicp, DV only considers Ergb,
while CI, KT, and EF consider both Eicp and Ergb. KT and EF are
different from CI because they also involve the idea of loop-closure
detection. All results are produced using the suggested default set-
tings in their papers.

As illustrated in the top two rows of Figure 6, scans
from [CZMK16] typically contain a single target in a static scene.
Hence, all systems in our test produced similar results. Howev-
er, once dynamic objects present in the background (Figure 6-
sc1,sc2,sc3), the reconstruction processes of KF, DV, and CI are
broken and severe drifting starts to appear. Although KT and EF
can benefit from correctly detected loop closures, geometric de-
tails of their constructed target objects in large scenes are not well
preserved with respect to ours (Figure 6-sc2,sc4). Generally, our
method successfully protects local geometry by reducing registra-
tion errors of salient regions. Although misalignments may be am-
plified in other areas, such trade-off is reasonable and valuable in
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Sample Frame a) KF b) DV c) CI d) KT e) EF f) Ours

00508

05989

sc1

sc2

sc3

sc4

Figure 6: Reconstruction of some test scenes. Top two rows from [CZMK16] with their ID on the left and the rest from our dataset. a) Kinect-
Fusion [IKH∗11]. b) Dense RGB SLAM [SSC11]. c) Combined-ICP [WJK∗13] d) Kintinuous [WKJ∗15]. e) ElasticFusion [WLSM∗15]. f)
Our results.

our application scenario. Since ground truth geometry of models
in [CZMK16] are unknown, for quantitative evaluation, we scanned
two 3D printed crafts shown in Figure 7, twice of each in both stat-
ic and dynamic scenes separately. Both Combined-ICP [WJK∗13]

and our method were performed for each scan. The reconstruct-
ed results were manually segmented and registered to their ground
truth mesh models, with their average point-to-model distances
reported in Table 1. As a result, models reconstructed from our
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a) Combined-ICP b) Ours

Bunny-S

Teapot-D
[151.7 × 117.6 × 150.0]

5.0

0.0

[204.1 × 126.9 × 100.0]

Figure 7: Quantitative evaluation. Left: 3D printed models with
known geometry for our experiment. Right: Visualization of the
point-to-model distance for some reconstructed models. All given
in millimeters.

pipeline outperform those from Combined-ICP, especially in dy-
namic cases where the fusion process is influenced by dynamic
backgrounds.

Bunny-S Teapot-S Bunny-D Teapot-D
Combined-ICP 2.81 2.11 3.41 3.99
Ours 2.48 1.72 2.61 2.01

Table 1: Average point-to-model distance of test cases, while S for
static cases and D for dynamic cases. All given in millimeters.

4.2. Running-time

We deployed our system on a desktop with Intel Core i7 CPU, 32G-
B memory, and GeForce GTX 980Ti graphical card (2,816 CUDA
cores). Average time costs for each step of our pipeline are reported
in Table 2 with comparison to Combined-ICP. The saliency detec-
tion step includes super-pixel construction, feature extraction and
two-level saliency calculation. Statistic results show that both the
weighted tracking and the saliency integration bring insignificant
burdens to our system. Finally, the overall speed meets the real-
time requirement (less than 33ms per frame for 30Hz streams).

Saliency Tracking Fusion Total
Combined-ICP - 11.23 1.40 12.63
Ours 12.87 12.09 1.50 26.46

Table 2: Average computational performance of the test scenes. All
timings are given in milliseconds.

4.3. Parameter Study

The key parameter of our framework is the weight value σW in
Equation 11, which controls the influence of saliency to volumet-
ric fusion. Intuitively, high values of σW will significantly increase

the importance of salient regions while decrease non-salient region-
s. If we set σW = 0, our framework is degenerated to Combined-
ICP [WJK∗13]. However, the quality of the reconstructed models
is not monotonically increasing with σW , because the convergence
speed of the Combined-ICP algorithm will be slowed down if the
salient regions are planar surfaces and/or with featureless textures.
In such cases, registration errors will be raised if we do not increase
the number of iterations when solving Equation 8. In our experi-
ments (see Figure 8), setting σW to around 4 generally produces
plausible results for all testing data.

a)

b)

c)

d)

Figure 8: Impacts of σW . a) and d) contains a walking pedestrian
in the background. Also notice that σW is in an exponential term.

4.4. Limitations

Our framework has two main limitations:(i) Our system is not suit-
able for full scene reconstruction applications. Since we put more
emphasis on protecting local geometry of target objects, misalign-
ments are forced into background areas. Thus, the quality of non-
target objects in the reconstructed results is typically poorer com-
pared with existing methods. (ii) Our system is not friendly to
unpredictable users. Apparently, our system benefits from visual
saliency detection to understand user intentions. However, if such
intention were vague or obscure, our system might get confused
and thus fail to produce high-fidelity results.

5. Conclusions and Future works

We have presented a real-time system for acquiring 3D objects
with high fidelity using hand-held consumer-level RGB-D scan-
ning devices. A novel spatio-temporal visual saliency detection
method is incorporated into the traditional real-time volumetric

c© 2017 The Author(s)
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fusion pipeline, which successfully emphasizes the important tar-
gets and eliminates disturbance of non-important objects. We also
present a simple user interface for focus changing. In the future, our
system can be ported to mobile devices for free reconstruction, and
the saliency information can be stored in the output mesh model to
guide the object segmentation process.
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