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Motif-GCNs with Local and Non-Local Temporal
Blocks for Skeleton-Based Action Recognition

Yu-Hui Wen, Lin Gao, Hongbo Fu, Fang-Lue Zhang, Shihong Xia, Yong-Jin Liu

Abstract—Recent works have achieved remarkable performance for action recognition with human skeletal data by utilizing graph
convolutional models. Existing models mainly focus on developing graph convolutional operations to encode structural properties of the
skeletal graph, whose topology is manually predefined and fixed over all action samples. Some recent works further take
sample-dependent relationships among joints into consideration. However, the complex relationships between arbitrary pairwise joints
are difficult to learn and the temporal features between frames are not fully exploited by simply using traditional convolutions with small
local kernels. In this paper, we propose a motif-based graph convolution method, which makes use of sample-dependent latent
relations among non-physically connected joints to impose a high-order locality and assigns different semantic roles to physical
neighbors of a joint to encode hierarchical structures. Furthermore, we propose a sparsity-promoting loss function to learn a sparse
motif adjacency matrix for latent dependencies in non-physical connections. For extracting effective temporal information, we propose
an efficient local temporal block. It adopts partial dense connections to reuse temporal features in local time windows, and enrich a
variety of information flow by gradient combination. In addition, we introduce a non-local temporal block to capture global dependencies
among frames. Our model can capture local and non-local relationships both spatially and temporally, by integrating the local and
non-local temporal blocks into the sparse motif-based graph convolutional networks (SMotif-GCNs). Comprehensive experiments on
four large-scale datasets show that our model outperforms the state-of-the-art methods. Our code is publicly available at
https://github.com/wenyh1616/SAMotif-GCN.

Index Terms—Action Recognition, Graph Convolutional Neural Networks, Spatio-Temporal Attention, Non-Local Block, Skeleton
Sequence.

✦

1 INTRODUCTION

W ITH widespread applications like human-computer
interaction, medical monitoring, and video surveil-

lance, researchers have been paying more attention to action
recognition. Meanwhile, skeleton sequences have become
widely and cheaply available due to the development of
real-time human pose estimation technologies [1], [2]. Com-
pared to video modalities such as raw RGB or RGB-D data,
human skeletons are more compact and thus can signifi-
cantly improve computational efficiency for classifying hu-
man actions. Human skeletons also provide relatively high-
level structural information, leading to better action recog-
nition performance, especially for scenes with complicated
background [3], [4], [5]. Many existing deep-learning based
methods structurize a skeleton sequence by a time series of
2D or 3D joint coordinates or pseudo-images. These data
are then sent into recurrent neural networks (RNNs) [5],
[6], [7], [8], [9], [10], [11], [12] or convolutional neural
networks (CNNs) [4], [10], [13], [14] to capture both intra-
frame features and temporal dependencies among frames.
However, a more natural way to represent a skeleton is
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a graph where human body joints and bones are treated
as nodes and edges, respectively. Moreover, the topology
of the skeleton can be fully exploited in such a graph
representation.

Graph convolutional neural networks (GCNs), which
generalize CNNs from regular grid-shaped maps to un-
ordered graphs of arbitrary structures have gained increas-
ing attention (e.g., [15], [16], [17], [18], [19], [20]). The GCNs
generally stack layers of graph convolution (GC) operations
and temporal modeling operations (e.g., traditional convo-
lutions in the temporal domain) to generate deep spatio-
temporal features, which are fed into a classifier for action
recognition. Existing researches mainly focus on developing
new GC operations to capture skeleton structures [18], [19],
[21], [22]. By considering the skeletal graphs modeled by
GC operations, these GCN methods can be broadly clas-
sified into two classes: sample-independent and sample-
dependent.

The sample-independent methods construct GCNs to
encode skeletal graphs [15], [16], [17], [20], whose topology
structures are fixed over all action samples. The sample-
dependent methods take the characteristics of different ac-
tions into consideration by using a unique graph structure
for each sample action [18], [19], [23]. The detailed summary
of these two classes are presented in Sec. 2.1. Although
the sample-dependent methods [18], [19] take latent and
characteristic relationships among joints into consideration,
as shown in Fig. 1, so far the state-of-the-art (SOTA) perfor-
mance of sample-independent class (i.e., Shift-GCN [20]) is
better than that of sample-dependent class (i.e., AS-GCN
[19]). The reason is possibly that it is difficult to extract
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proper sample-dependent relationships among all pairwise
joints, which have a relatively high capacity involving V ×V
variables for the skeleton of V joints. Moreover, the meth-
ods [18], [19] encode temporal features by simply using
traditional convolutions, in which the temporal information
in local windows are not fully exploited and global temporal
dependencies among frames are not considered.

In this paper, we propose a novel method to effec-
tively improve the performance of the sample-dependent
class, which outperforms the SOTA performance of sample-
independent class. In particular, we propose a novel sparse
motif-based graph convolution (SMotif-GC) that imposes
sparse sample-dependent relationships between physically
disconnected joints, instead of any pairwise joints [18], [19].
Moreover, we propose a novel local temporal block (LTB)
to extract temporal features with partial dense connections
by reusing feature maps in local time windows. What’s
more, it can reduce redundant information by truncating
the input feature maps, and enrich a variety of gradient
propagation by combining partial feature maps from the
input to the output. Essentially, SMotif-GC layers capture
local and global relationships between joints for modeling
spatial information. To further capture the whole range of
temporal dependencies by the attention mechanism [24],
we integrate a non-local temporal block (NLTB) into our
network. This NLTB leads to an effective representation of
the skeleton sequence by constructing global relationships
between arbitrary pair of frames.

This paper is an extension of our preliminary conference
version [23]. We have made the following improvements:
1) We define a sparse motif adjacency matrix, which can
be learned during training to better capture skeletal features
with motif-based graph convolutions. 2) We propose a novel
local temporal block with partial dense connections based
on the variable temporal dense block in the conference
version, to improve the encoding ability of local temporal
features. It can reduce the large amount of duplicated gradi-
ent propagation and enrich a variety of information flow in
the variable temporal dense block [23]. 3) We make a more
thorough evaluation on four large-scale action recognition
datasets (instead of two datasets in [23]).

To sum up, the major contributions of our deep learn-
ing architecture for skeleton-based human action recogni-
tion include: 1) We propose sparse motif-based graph con-
volutions, which simultaneously encode hierarchical spa-
tial information and high-order sample-dependent local-
ity. Specifically, we introduce a sparse sample-dependent
adjacency matrix for capturing useful latent dependencies
among joints. 2) We propose local temporal blocks with
partial dense connections for encoding richer local temporal
information of skeleton sequences by reusing feature maps
and enriching a variety of information flow. 3) We propose
to use a non-local temporal block for constructing global
dependencies between frames to get a more effective rep-
resentation of the skeleton sequence. The local temporal
blocks are combined with the non-local temporal block to
extract temporal features with respect to local and global
dependencies between frames. Our extensive evaluation on
four large-scale action recognition datasets shows that our
model outperforms the state-of-the-art methods.

Fig. 1. Comparisons of sample-independent and sample-dependent
GCNs for action recognition on NTU-RGB+D (X-Sub evaluation), in
terms of accuracy. Our model proposed in this paper achieves the best
performance among all the sample-independent and sample-dependent
methods. Specifically, it achieves higher accuracy by a relative large
margin (88.9% v.s. 86.6%) than the previous state-of-the-art method
AS-GCN in the same category. The previous GCN-based methods (on
the left side of the dashed line) use raw data of joint coordinates as
input, while the recent methods (on the right side of the dashed line)
use preprocessed joint data. More details about the data preprocessing
and comparison results can be found in Sec. 4.6.

2 RELATED WORK

In recent years, skeleton-based action recognition has drawn
more and more attention in the industry, and been explored
in different aspects for capturing spatial and temporal pat-
terns of skeleton sequences [4], [5], [8], [13], [14], [25]. In this
section, we review GCNs and recent approaches which use
GCNs for modeling skeletal graphs.

2.1 Graph Convolution
GCNs aim to generalize CNNs to irregular graph struc-
tures. According to the principles of defining convolu-
tional operations over graphs, GCNs are generally classi-
fied into spatial-domain and spectral-domain approaches.
The spatial-domain approaches have to preprocess data
and define graph convolutions on the nodes and their
neighbors directly [26], [27], [28]. In contrast, the spectral-
domain approaches define graph convolutions in the fre-
quency domain [29], [30], [31]. Based on a Chebyshev ex-
pansion of graph Laplacian, an improved spectral filtering
is proposed [30]. It removes intense computation and yields
spatially localized filters for graph convolutional layers.
Furthermore, Uni-GCN [31] simplifies the spectral filtering
to operate on 1-ring neighborhood, in which the neighbor-
ing nodes have a uniform weight of importance. It can be
applied to encode skeleton structures.

As presented in Sec. 1, for the application of skeleton-
based action recognition, two classes of GCN-based meth-
ods exist: sample-independent and sample-dependent. The
methods in the sample-independent class consider struc-
tural features of the skeleton, whose graph topology is
fixed over all action samples. For example, spatio-temporal
GCN (ST-GCN) [15] applies graph convolutions on physi-
cally connected neighbors of each joint [31] to encode spatial
features of the skeletal data in each frame. They also propose
a partitioning strategy by dividing neighbors of a joint
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Fig. 2. Skeletal graphs modeled by four sample-dependent GCNs.
These GCN methods construct dependencies between the current
joint (shown in red color) and its related joints in different par-
titions (shown in different colors). The dependencies are prede-
fined (shown as black solid lines) or learned from training (shown as
black dotted lines). The joints and the physical connections that are
not considered for the graph convolution operation on the current joint
are shown in grey. (a) Motif-GCN [23] uses predefined relationships
between the current joint and its related joints in different partitions.
(b) AGCN [18] learns sample-dependent relationships between all pair-
wise joints. (c) AS-GCN [19] adopts predefined relationships between
the current joint and its 1-hop to 4-hop neighbors (shown in purple,
blue, green and magenta), and learns sample-dependent links between
arbitrary pairwise joints. (d) Our proposed SMotif-GCN learns sparse
sample-dependent relationships between the current joint and its non-
physically connected joints. The physically connected dependencies
are predefined on 1-ring neighborhood. Skeletal graphs modeled by
different sample-independent GCNs are illustrated in Fig. A3 of the
appendix.

into different subsets. Extrinsic-intrinsic GCN (EI-GCN) [16]
utilizes both the extrinsic and intrinsic relationships among
joints in a L-hop neighborhood [30]. Shift-GCN [20] adopts
shift operations to gather information from all the other
joints to the current joint to enlarge the receptive field of the
Shift-GC operation to the whole skeleton. These methods
have shown encouraging performance for action recognition
by modeling skeletal structures with GCNs (Fig. 1). How-
ever, these methods neglect the sample-dependent features
for action recognition. Based on our investigation in daily
life, pairwise relationships between joints may have differ-
ent degrees of correlations in different action samples of the
same class. Thus, it is important to study how to classify
human actions with respect to unique relationships among
joints for each action sample.

In the second class of sample-dependent GCNs, our
Motif-GCN model proposed in the conference version [23]
is the first GCN-based method, which constructs sample-
dependent relationships among non-physically connected
joints for action recognition. As shown in Fig. 2(a), this
model considers different roles of physically connected
joints (parent and child joints of the current joint are shown
in purple and dark yellow, respectively) to encode structural
features. As shown in Fig. 2(b), Adaptive GCN (AGCN)
learns an adaptive graph structure based on the attention
mechanism [32], [33], by calculating the similarity between
all pairwise joints with a normalized embedded Gaus-
sian function. As shown in Fig. 2(c), Actional-Structural
GCN (AS-GCN) constructs structural links similar to EI-
GCN [16], and uses an encoder to learn actional links
between any pairwise joints. However, AS-GCN needs a
pretraining process to train the encoder to get sparse ac-
tional links.

Different from the aforementioned sample-dependent
methods, our SMotif-GCN model proposed in this pa-

per considers sample-dependent relationships among joints
with prior knowledge of human motions. Moreover, we
introduce an SMAM, in which the weights of relationships
between pairwise disconnected joints are learned and up-
dated during training, as shown in Fig. 2(d). A new sparsity-
promoting loss function is also proposed to make the non-
zero values in the SMAM to be as sparse as possible.

2.2 Temporal Information Modeling

RNNs or Long Short-Term Memory (LSTM) networks have
been widely used for learning temporal information of
long-term skeleton sequences [5], [6], [7], [8], [9], [10], [11],
[12]. However, convolutional operations obtain promising
performance for the task because of efficient parallelization
learning in the temporal domain of long sequences [4], [10],
[13], [14], [15]. Specifically, Kim and Reiter [4] construct a
CNN with residual connections to recognize human actions
represented by sequences of joint coordinates. Liu et al. [13]
manually transform skeleton sequences into a series of color
images, which are fed to CNNs for classifying action cate-
gories. Yan et al. [15] construct a spatio-temporal graph with
physical connections of joints and temporal edges between
corresponding nodes in consecutive frames to represent
a skeleton sequence. And, they extend graph convolution
to learn spatio-temporal features. Since the temporal con-
nections between joints in consecutive frames are regular,
performing the graph convolution in the temporal domain
is similar to the classical convolution. Following Yan et
al. [15], there are many other works [17], [18], [19], [22] that
perform convolutional operations on skeleton sequences for
extracting temporal information.

Instead of directly defining a graph convolution on a
predefined spatio-temporal structure [15], we use separate
spatial and temporal sub-modules. It is more flexible to de-
sign the structure of each sub-module for extracting spatial
and temporal features, separately. In addition, it is easier
to learn with spatio-temporal decomposition methods [34].
For each frame in a sequence, we feed it into our proposed
graph convolution, and then concatenate the output in the
time axis to obtain a 3D tensor. Instead of using traditional
convolutions [4], [10], [13], [14], [15], we propose a novel
local temporal block to process the 3D tensor with densely
connected layers to reuse local temporal features.

To draw global dependencies, self-attention mechanisms
have been proposed and successfully applied to various
applications, such as graph processing [33] and visual
recognition [24], [35]. Wang et al. [24] formalize the self-
attention as non-local operations, which can model pixel-
level pairwise relationships among video frames. Hu et
al. [36], [37] utilize a 1D non-local module to extract non-
local features in the spatial domain, followed by another
1D non-local module to extract temporal features. Finally,
a 2D non-local module is used to encode spatio-temporal
features. The spatial and temporal features are encoded only
with the non-local operations, while in our work, we encode
spatial and temporal features with separated sub-modules,
in which the temporal sub-module extracts local and global
temporal features by an integration of local and non-local
temporal blocks.
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Fig. 3. Our model takes a sequence (F frames) of skeletons (V joints) as input and uses multiple layers of spatio-temporal modules (STMs) to
generate higher-level feature maps. There are nine layers of STMs with an initial spatio-temporal head unit. Ci (i = 0, 1, ..., 9) represents the
number of channels. The structure of the initial head unit is the same as the STM except that no residual connection is used in the head unit. The
non-local temporal block is only used in the 7-th STM, so it is shown in a dotted line block. Then, the feature maps are fed into a Softmax classifier
to get the final class score for recognizing actions in 30 classes (e.g., Kinetic-M dataset). More details of the overall architecture and the structure
of the STM can be found in Sec. 4.2.

3 METHODOLOGY

3.1 Overview

Our model takes as input a skeleton sequence extracted
from depth data [1] or videos [2] by applying pose estima-
tion algorithms. Each frame in such a sequence has a set of
2D or 3D joint coordinates to represent a skeleton. To capture
the topological structure, the human skeleton is modeled by
a graph with joints as nodes and bones as edges.

As shown in Fig. 3, given a sequence of skeletal graphs,
we construct a new network architecture, which stacks
multiple layers of spatio-temporal modules (STMs) to ex-
tract features to feed into a classifier to predict the class
score. Each STM contains separate sub-modules to tackle
spatial and temporal information. Specifically, we propose
a motif-based graph convolution (Motif-GC) to learn the
spatial structure of skeletal data at each frame (Sec. 3.3).
We further propose to learn a sparse motif adjacency ma-
trix (SMAM) (Sec. 3.4), in which the relationships between
non-physically connected joints can be updated through
layers. The Motif-GC operation is updated to the sparse
motif-based graph convolution (SMotif-GC) by introducing
the SMAM. For modeling temporal information, a novel
local temporal block (LTB) is proposed to capture richer tem-
poral features by using partial dense connections (Sec. 3.5)
than traditional temporal convolutions in local time win-
dows. Furthermore, we capture long-range dependencies
in the temporal domain by using a non-local temporal
block (NLTB) with the attention mechanism (Sec. 3.6).

Below we first briefly review the traditional graph con-
volutional methods for modeling human skeletons and then
introduce our SMotif-GCN with local and non-local tempo-
ral blocks.

3.2 Preliminary on Graph Convolution for Skeleton

A human skeleton can be represented by hinged joints and
bones, which inherently lie in a graph structure with joints
as nodes and bones as edges. Traditional methods construct
a fixed graph G(X,A) for each skeleton [15], [16], [17].
Here, X ∈ RV×D represents a node set of V joints with D-

dimension coordinates. A ∈ RV×V is an adjacency matrix
for joints in X and is generally defined as:

ai,j =

{
0 if joints i and j are physically disconnected
1 if joints i and j are physically connected

(1)
where ai,j is an element at row i and column j in the
adjacency matrix A. The graph convolution network for
the skeletal graph G(X,A) is named as Uni-GCN, which
defines a uniform importance for physically connected
neighboring joints of the current joint. Specifically, each joint
is physically connected to itself. Mathematically, the graph
convolutions can be conducted using the spectral graph
theory [31], as follows:

Z = D−1/2AD−1/2XW. (2)

Here, Di,i =
∑V

j=1 Ai,j ∈ RV×V represents the diagonal
matrix of A. W ∈ RD×Cout is a matrix of trainable weights,
with Cout representing the number of the output channels.

3.3 Motif-Based Graph Convolution
Different from the existing methods [15], [16], [17], [18],
[19], [21], we propose a novel Motif-GC method to extract
features from a motif graph defined for skeletal structures.
As shown in Fig. 2(d), the graph represents different se-
mantic linkage patterns among physically connected and
disconnected joints. Moreover, we define semantic roles
of neighbor joints that describe structural similarities. The
motif is a well-known concept that defines different patterns
of connections in complex social networks [38], [39]. We
introduce the motif notation to capture semantic proxim-
ity in a skeletal graph based on human motion knowl-
edge (more details of the motif concept can be found in
the appendix). The physical connections between joints
are intuitive and stable during motion, and hierarchical
structures exist among the joints. On the contrary, the non-
physically connected relationships are latent and could vary
due to motion. The physical and non-physical dependencies
between joints should be considered simultaneously but
treated differently. Thus, we define two motifs for both the
dependencies. In the first motif of physical connections, we
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define three semantic roles (K1 = 3) for the immediate
neighbors of each joint: the joint itself, its parent node,
and its child node. By considering different semantic roles
of immediate neighbors, joints with physical connections
are encoded hierarchically. The second motif defines one
semantic role (K2 = 1) for the underlying relationships be-
tween physically disconnected joints to impose high-order
localities.

Given the input Xt at frame t, the Motif-GC for the motif
graph with M motifs (M = 2) can be formulated as follows:

X̂t =
M∑

m=1

Km∑
k=1

Ãm,kXtW
m,k, (3)

where Xt ∈ RV×C represents V nodes with C-dimension
features. Each motif has Km semantic roles. As illustrated
in the last paragraph, Km=1 = 3 is defined for the first
motif, and Km=2 = 1 is defined for the second motif. The
motif adjacency matrix for a specific semantic role k in motif
m is Ãm,k ∈ RV×V , and Wm,k ∈ RC×Cout is the trainable
filter parameter matrix. Similar to existing works [40], [41],
we construct the motif adjacency matrices with a function
Ψm. The weights in each motif adjacency matrix reflect the
importance of neighbor joints. Generally, we can define a
uniform type of Ψm for the two motifs in Eq. (3) as:

Ãm,k = Ψm(Am,k) = (Dm,k)−1Am,k, (4)

where Dm,k ∈ RV×V is a diagonal matrix denoted as
Dm,k

i,i =
∑V

j=1 A
m,k
i,j . For the first motif, Am=1,k is defined in

the same way as in Eq. 1. Additionally, we define a weighted
adjacency matrix (WAM) for the latent sample-dependent
relationships in the second motif. We notice that larger
weights should be assigned to pairs of joints with shorter
Euclidean distances. For example, the dependency between
both hands is more important for recognizing the action
“clapping hands” than the relationships between hands and
head. Specifically, the weight of joints i and j in WAM is
calculated as:

ai,j = max(E)− ei,j , (5)

where ei,j is an element at row i and column j in the matrix
E ∈ RV×V that represents the distance between every pair
of non-physically connected joints. To calculate ei,j , we first
compute the average skeleton representation X ∈ RV×C of
the input skeleton sequence Xt=1...F along the time dimen-
sion. Then, ei,j = ∥xi − xj∥2, where ∥xi − xj∥2 denotes the
Euclidean distance between non-physically connected joints
i and j of X . The value of ei,j between physically connected
joints i and j is zero.

Finally, the output feature maps of different motifs are
combined with element-wise sum operation. X̂t denotes the
output of the proposed motif-based graph convolution.

3.4 Sparse Motif-Based Graph Convolution
In Sec. 3.3, the non-physically connected relationships be-
tween joints are introduced to encode sample-dependent
skeletal structures. The semantic information contained in
joints of different layers is updated from lower to higher
layers. However, with the fixed adjacency matrix, the rela-
tionships cannot be updated across layers of the network.
That means a predefined graph structure shared among all

layers is not flexible enough to adapt to the variety of the
semantic information.

To solve this problem, we impose an SMAM that en-
codes non-physical connections adaptively into our Motif-
GC operation. Fortunately, the motif-based graph convolu-
tion proposed in Sec. 3.3 can be easily extended to adopt
different types of Ψm for the motifs. Different from the
original definition in Eq. (4), we define a learnable adjacency
matrix for the second motif. In more detail, we can update
the elements in the adjacency matrix Ãm,l (m = 2) across
layers and calculate the matrix at layer l as:

ali,j = max(El)− eli,j , (6)

where eli,j is an element at row i and column j in the
matrix El ∈ RV×V that represents the distance of the latent
features between every pair of non-physically connected
joints. ei,j is calculated based on the average feature maps
X

l ∈ RV×C of the input features at the layer l along the time
dimension. Then, eli,j =

∥∥xl
i − xl

j

∥∥
2

denotes the Euclidean
distance of deep features between non-physically connected
joints i and j of X

l
. And, eli,j for physically connected joints

i and j is zero.
Finally, the weighted dependencies between physically

disconnected joints are defined as:

Ãm,l = (Dm,l)−1Am,l ⊙M, (7)

where Dm,l is a diagonal matrix. M ∈ RV×V is a learnable
mask to control the sparsity level of the adjacency matrix
Ãm,l in all layers, and ⊙ denotes dot production. To impose
sparsity to Ãm,l, we add a regularization term with an L1

matrix norm ∥M∥1 =
∑V

i=1

∑V
j=1|mi,j |, with mi,j being an

element at row i and column j in the matrix M , to our loss
function:

L = loss(ŷ, y) + λ ∥M∥1 , (8)

where ŷ = Softmax(Pool(SMotif-GCN(X,A))) is the out-
put of the SMotif-GCN model with the global average
pooling operation and the standard Softmax classifier. λ
is the weight of the regularization term, and loss(ŷ, y) is
the softmax loss that measures the difference between the
prediction result ŷ and the ground-truth label y. Specifi-
cally, Am,l is normalized with the diagonal matrix Dm,l to
avoid the magnitude explosion. The mask M is used after
the normalization. It is initialized with all ones to avoid
breaking the normalization, and then the sparse-promoting
loss function helps to avoid the magnitude explosion during
training.

3.5 Local Temporal Block

We concatenate the output feature maps of the Motif-GC
operation X̂t=1...F along the time axis to obtain a 3D tensor
X̂ ∈ RF×V×Cout , which is then sent into a temporal sub-
module for further information extraction. The traditional
methods (e.g., [15], [17], [18], [19], [22]) adopt a classical 2D
convolution (T × 1 Conv) for modeling temporal features
of X̂ . We propose a Local Temporal Block (LTB) with dense
connections among convolutional layers that encode infor-
mation in local time windows, inspired by densely concate-
nated convolutional networks [42]. The dense connections
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Fig. 4. Illustration of feature map flow in the local temporal block with (a)
Dense Connectivity and (b) Partial Dense Connectivity. In (a), each layer
takes all preceding feature maps as input. In (b), the feature maps of the
first layer are split into two parts with equal channels. One part of feature
maps goes though dense connections, while the other part of feature
maps is directly concatenated with the output of densely concatenated
layers.

are parameter-efficient and enable dense knowledge prop-
agation, because they could reuse and preserve features of
different layers. However, the number of connections grows
quadratically with the depth of densely connected layers.
Instead of introducing dense connections to all layers, we
integrate densely connected layers into each STM separately
to control the growth of connections. What’s more, we
propose to use a partial dense connectivity scheme (Fig. 4)
to reduce duplicate gradient information and capture richer
temporal features by promoting variability of the gradi-
ents [43]. The experiments in Sec. 4.5 show the effectiveness
of the LTB by introducing the partial dense connectivity.
Below, we present how to design the LTB and incorporate it
into our model for extracting temporal features.

3.5.1 Partial Dense Connectivity

In densely connected convolutional networks [42], each
layer takes the concatenation of the output feature maps
from all preceding layers as input as shown in Fig. 4(a).
Specifically, the output feature map Hl from layer l is
defined by a composite function hl:

Hl = hl([H0, H1, ...,Hl−1]) (9)

where [H0, H1, ...,Hl−1] denotes the concatenation of the
feature maps from all the early layers. The input H0 is
X̂ ∈ RF×V×Cout from the Motif-GC operation. The compos-
ite function hl(·) includes Batch Normalization (BN) [44],
rectified linear unit (RELU) [45], and convolution (Conv).
Each dense block in our network has three densely con-
nected layers for convolutional operations in the temporal
domain. The dense connectivity pattern defined in Eq. (9)
has the advantages of reusing features; however, it has a
large amount of duplicated gradient information as men-
tioned in a previous work [43]. To address this issue, we
truncate the feature maps that are fed into the temporal

block to reduce the redundant gradient information follow-
ing the previous work [43]. More specifically, as illustrated
in Fig. 4(b), the feature maps fed into the first layer are split
into two equal parts:

H0 = [H ′
0, H

′′
0 ]. (10)

The first part of feature maps H ′
0 is directly concatenated

with the output of the dense layers, and the second part of
the feature maps goes through densely connected layers:

Hl = hl([H
′′
0 , H1, ...,Hl−1]). (11)

As the feature maps in H ′
0 are not updated through the

dense layers, the amount of duplicate gradient information
in all the following layers is reduced.

3.5.2 Growth Rate
We use a hyper-parameter “growth rate” (GR) to control
the number of output feature maps (denoted as N ) of
each dense connection [42]. If the composite function hl

is supposed to produce N feature maps, we should get
N0/2 + N × (l − 1) input feature maps for the l-th layer,
where N0 is the number of channels of the first input layer
in the partial dense block. GR could be relatively small [42]
to reduce the number of filter parameters. We set GR of each
dense block according to the number of output channels of
each STM. The detailed settings of GR will be evaluated in
Sec. 4.5.

3.5.3 Transition Layer
We use a transition layer to control the number of the output
channels. The transition layer is comprised of a BN and a
RELU operation, followed by a Conv operation.

As the input feature maps are split (Eq. (10)), the concate-
nated feature maps fed into the transition layer are denoted
as [H ′′

0 , H1, ...,Hl]. Finally, the output of the transition layer
Htrans is concatenated with the first part of input feature
maps Hconcat = [H ′

0, Htrans]. Our proposed LTB can reduce
the amount of duplicate gradient flow as well as enriching a
variety of gradient combination (more details can be found
in the appendix).

3.6 Non-Local Temporal Block
The Motif-GC method can inherently capture global de-
pendencies of intra-frame joints and adaptively update the
dependencies with the SMAM. However, the inter-frame
action information is extracted without considering global-
range dependencies. In order to model global inter-frame
connectivities, we introduce a NLTB that can relate all
possible frames of a skeleton sequence in a self-attention
mechanism [24]. It is able to enlarge the receptive field from
a local time window to the entire sequence with non-local
operations.

The non-local operation computes the dependencies at a
frame directly by attending at any other frame with possible
relationship as:

Zt =
1

C(X̂)

∑
∀t′

f(X̂t, X̂t′)g(X̂t′), (12)

where X̂t and X̂t′ denote the input of the non-local op-
eration at possible frames t and t′, respectively. Zt is the
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updated features corresponding to the query frame t, while
g(·) is a linear transformation. C(X̂) is defined for normal-
ization with respect to the type of the pairwise function f .
There are many choices for the pairwise function f [24].
However, different pairwise functions achieve similar per-
formance [24]. We choose the embedded Gaussian version,
because it is the basic version of the non-local operation [24]
and can be seen as a generic self-attention form [32]. f is de-
fined as: f(X̂t, X̂t′) = eθ(X̂t)ϕ(X̂t′ )

T

, where θ(·) and ϕ(·) are
learnable embeddings that encode appropriate representa-
tions of the input. C(X̂) =

∑
∀t′ f(X̂t, X̂t′) is defined for the

embedded Gaussian version, and 1
C(X̂)

f(X̂t, X̂t′) becomes

a nonlinear activation function Softmax(θ(X̂t)ϕ(X̂t′)
T )

computed along the dimension t′.
The non-local operation is finally wrapped into the NLTB

with a residual connection as:

O = WoZ + X̂, (13)

where Z is the concatenation of the output signal of the non-
local operation Zt=1...F of all frames, and Wo is a learnable
embedding for Z . The residual connection is adopted to
eliminate breaking the initial behavior of the model.

4 EXPERIMENTS

We have evaluated the effectiveness of our proposed model,
on four large-scale datasets, namely NTU-RGB+D [6],
Kinetics-M [15], [46], NTU-RGB+D-120 [47], and Kinet-
ics [15], [46]. NTU-RGB+D [6] and NTU-RGB+D-120 [47]
datasets are captured in a lab environment, which is con-
strained by experimental setups in the lab. On the contrary,
Kinetics-M and Kinetics datasets are captured in the natural
environment, which is unconstrained and challenging. By
conducting experiments on the four dataset, our model is
evaluated in both constrained and unconstrained scenarios.
In the ablation studies, we first evaluate our proposed motif-
based graph convolutional operations and then focus on
analyzing the necessity of temporal modeling modules.

4.1 Evaluation Settings on Datasets
NTU-RGB+D. It is the most widely used dataset with anno-
tated 3D joint coordinates for human action recognition [6].
It contains 56,880 sequences of 60 action classes. These video
clips are performed by 40 volunteers in a lab environment,
recorded by 3 different camera views simultaneously. Each
skeleton sequence has at most 2 subjects and each subject
is represented by 25 joints. The authors of this dataset
recommend cross-subject (X-Sub) and cross-view (X-View)
benchmark evaluations. In the X-Sub benchmark, 40,320
clips from 20 subjects are used for training and 16,560 clips
from the remaining 20 subjects are used for testing. In the
X-View benchmark, 37,920 clips from camera views 2 and 3
are used for training and the other 18,960 clips from camera
view 1 are used for testing. We report our results on both
the recommended benchmarks following the conventional
settings as suggested in [6].

Kinetics and Kinetics-M. Deepmind Kinetics [46] is a large-
scale video dataset containing about 300,000 clips, which
cover 400 classes of human actions sourced from YouTube.
In the original dataset, each clip lasts around 10 seconds and

provides only raw video data without human skeletons. A
new dataset that includes skeleton sequences extracted from
the video clips has been released for research purposes [15].
To obtain the skeleton data, 2D coordinates of 18 joints are
estimated [15] for each person with the real-time Openpose
toolbox [2]. For multi-person clips, 2 persons that have
higher average joint confidence are chosen. Each action
clip is padded to the same length (e.g., 300 frames) by
replaying the action from the beginning. Many action classes
in the dataset require consideration of relationships between
actors and complex scenes for action recognition. Therefore,
methods focusing on skeletal data are generally inferior
to video-based methods, which can take use of additional
information in the background of videos. It has been shown
that a subset of 30 action classes strongly related with body
motion can make the performance gap smaller [15]. There-
fore, we refer to the subset as “Kinetics-M” here to evaluate
our model with Top-1 and Top-5 classification accuracies as
recommended in [46]. The dataset provides 25,000 training
clips and a test set of 1,500 clips. Besides, we also evaluate
our models on the original Kinetics dataset of skeletal data.

NTU-RGB+D-120. It is an extension of the NTU-RGB+D
dataset. It is the largest publicly available dataset for 3D
skeleton-based action recognition [47]. The dataset consists
of 114,480 samples of 106 volunteers, captured by three cam-
eras from different horizontal angles (−45◦, 0◦, +45◦) at the
same time. To increase the number of camera viewpoints,
the vertical heights of the cameras and their distances to the
subjects are changed. Totally, there are 155 different cam-
era viewpoints. The authors of this dataset suggest cross-
subject (X-Sub) and cross-setup (X-Set) evaluations. In the
X-Sub benchmark, action clips performed by 53 subjects are
used for training, and the clips of the remaining 53 subjects
are used for testing. In the X-Set benchmark, action clips
from 16 camera setups are used for training and the clips
from the other 16 setups are used for testing. Each setup has
a collection of camera views with different cameras’ height
and distance to the subjects as illustrated in [47]. We report
our results on both the recommended benchmarks.

4.2 Implementation Details

In the overall network architecture, nine layers of STMs
are stacked with an initial spatio-temporal head unit, as
illustrated in Fig. 5. The structure of the spatio-temporal
head unit is the same as the STM except that the residual
connection is not used in the head unit. The input and
output channel numbers of all STMs are illustrated in Fig. 5.
The STM (Fig. 6) extracts spatial and temporal features
by the SMotif-GC layer and the LTB, respectively. Before
feeding input joint coordinates into our network, we use a
BN layer [44] to normalize the data. In the LTB, we set local
time window of size 9 for the 3 dense layers. Specifically,
a 2D 9 × 1 convolution is conducted in each dense layer.
Additionally, we insert a non-local block at the 7-th STM
as “NL STM”. For down-sampling along the time axis, the
strides of temporal convolution layers in the 4-th and 7-
th STMs are both set to 2. A global average pooling is
performed on the resulting feature maps. Finally, a Softmax
classifier is utilized to generate a score for each action
category.
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Fig. 5. The architecture of our proposed Motif-GCN, which is composed
of multiple spatio-temporal modules (STMs). The non-local spatio-
temporal module (NL STM) is used before the last two STMs to further
expand the temporal dependency.

We use PyTorch [48] to implement the proposed model
and conduct all the experiments with 8 NVIDIA TitanX
GPUs. We train the network with stochastic gradient descent
with Nesterov momentum (0.9). The weight decay factor is
set to 0.0001. In the following subsections, we show that
our model achieves the state-of-the-art performance on all
the benchmark datasets with the above parameter settings,
demonstrating the effectiveness of our model.

We adopt random moving and selecting methods for
data augmentation [15] when training our model on the
Kinetics-M dataset (with the batch size set to 64) and Ki-
netics dataset (with the batch size set to 256). The initial
learning rate is set to 0.1 and reduced by multiplying by 0.1
at the 50-th, 60-th, and 70-th epochs, and the training process
is ended at the 90-th epoch. On the NTU-RGB+D and NTU-
RGB+D-120 datasets, we set the batch size to 64 for training.
The initial learning rate is 0.1 and reduced by multiplying by
0.1 at the 40-th epoch, and the training process is terminated
at the 80-th epoch. In our experiments, all data clips are
padded to the same length (i.e., 300 frames) for training
and testing in batches. Our system handles the skeletal data
of two people in each frame. For the data clips that only
have one skeleton, we follow the similar idea in [15], [18] by
adding a new skeleton padded with zeros to each frame, so
that all the data clips have the same number of skeletons.

4.3 Ablation Studies

NTU-RGB+D is the most widely used dataset for the task of
skeleton-based action recognition, and Kinetics-M includes
skeleton sequences that strongly related with body mo-
tion from Kinetics dataset. NTU-RGB+D-120 and Kinetics
datasets can be seen as extensions of the representative
NTU-RGB+D and Kinetics-M datasets, whose data are cap-
tured in constrained lab and unconstrained natural environ-
ments, respectively. Here, we first perform ablation studies
and detailed experiments on both the NTU-RGB+D and
Kinetics-M datasets to verify the effectiveness of individ-
ual critical sub-modules and their combinations for action
recognition with noisy joint data. For the NTU-RGB+D
dataset, the 3D joint data estimated from depth data is noisy
because of occlusion or sensor noise [6], [49]. For the Kinetics
dataset, the skeleton sequences are estimated from videos,
which are captured in unconstrained and challenging en-
vironments, by monocular pose estimation algorithms (e.g.
OpenPose). The data is noisy because of the occlusion and
motion blur. If there are heavy occlusions, some joints would
be missing. In this case, the positions of the missing joints
are filled with zeros.

4.3.1 SMotif-Based Graph Convolution

In our Motif-GC method, we define two motifs for the
physical and non-physical dependencies between joints (see
Sec. 3.3). In the motif for physical connections, three se-
mantic roles are assigned to the immediate neighbors of
each joint. We also introduce a motif with one semantic role
for physically disconnected joints based on human motion
knowledge. Here, we compare our proposed network with
Motif-GC layers (Motif-GCN) with a baseline method [31]
referred to as “Uni-GCN”. Uni-GCN defines only one motif
and one semantic role for physically connected joints. In
Uni-GCN and Motif-GCN, we use traditional convolutions
for extracting features in the temporal domain.

The comparison results are summarized in Table 1. On
NTU-RGB+D, a large boost in accuracy is observed from
75.8% to 84.0% under X-Sub evaluation. Motif-GCN also
outperforms Uni-GCN by a notable margin under X-View
evaluation. Consequently, the methods are useful for tack-
ling noisy raw data in the NTU-RGB+D. What’s more, the
Top-1 recognition accuracy boosts from 76.4% to 83.7% on
Kinetics-M. In our Motif-GC method, global dependencies
between joints are inherently constructed between joints.
This method is robust to handle skeletal data with local
noise captured in daily life.

The experiment results suggest that Motif-GCN can ef-
fectively extract spatial features for improving action recog-
nition accuracy by considering hierarchical structures and
latent high-order relationships. In our previous conference
version of Motif-GCN [23], which adds a mask to physical
connections as suggested by Yan et al. [15], the Top-1 and
Top-5 accuracies on Kinetics-M dataset were 82.5% and
95.7%, respectively. Here, we remove the mask in our Motif-
GC operations, and obtain better performance (Top-1: 83.7%
and Top-5: 95.8%), as shown in Table 1. This comparison
shows Motif-GCN can capture effective spatial information
by considering high-order relationships between joints. By
adding the mask, the relationships between joints may



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, NOVEMBER 2020 9

     Conv

     Conv

     Conv

    Conv Dense
Layer

TransLayerDense
Layer

Dense
Layer

Non-Local Temporal Block Local Temporal BlockSMotif-GC

Conv

Conv

Conv

 SMAM

Conv

Split Concat

Fig. 6. Architecture of the spatio-temporal module (STM). It contains a sparse motif-based graph convolution (SMotif-GC) sub-module, which adopts
a sparse motif adjacency matrix (SMAM), for modeling spatial information. A local temporal block that contains three dense layers and a transition
layer (TransLayer) is used to encode features with local time windows. The dense layer is implemented with a combination of BN-RELU-Conv
operation. A residual connection (shown with an arrow in dark red) is added to each STM by a shortcut connection from input to output and an
element-wise sum operation. A non-local temporal block is used only in the last stage of our network, so it is shown in a dotted line block. ⊕ denotes
element-wise sum operation, and ⊗ denotes matrix multiplication.

TABLE 1
Ablation studies on NTU-RGB+D and Kinetics-M datasets. TBs are the

combination of LTB and NLTB.

Dataset NTU-RGB+D Kinetics-M
Evaluation X-Sub X-View Top-1 Top-5
Uni-GCN 75.8% 85.2% 76.4% 94.0%

Motif-GCN 84.0% 90.5% 83.7% 95.8%

SMotif-GCN 84.7% 91.4% 84.1% 95.8%

Motif-GCN+LTB 85.4% 92.5% 84.7% 96.5%

Motif-GCN+NLTB 84.8% 92.0% 84.4% 95.9%

Motif-GCN+TBs 86.7% 92.9% 85.0% 96.5%

SMotif-GCN+TBs (Ours) 87.2% 93.6% 85.4% 96.8%

become too flexible to learn and encode, leading to a degra-
dation in the performance.

By introducing the SMAM into Motif-GCN as “SMotif-
GCN”, the accuracies can be further improved on both the
NTU-RGB+D and Kinetics-M datasets (Table 1). The exper-
iment results indicate that the learnable SMAM is effective
to capture latent dependencies among non-physically con-
nected joints for encoding spatial information.

4.3.2 Local Temporal Block
We evaluate the effectiveness of the LTB for extracting
temporal features from local time windows. As shown in
Table 1, the accuracies of Motif-GCN+LTB are 85.4% and
92.5% on the NTU-RGB+D dataset under X-Sub and X-View
evaluation protocols, respectively. The respective accuracies
are higher than those of Motif-GCN (X-Sub: 84.0% and X-
View: 90.5%). Moreover, the Top-1 and Top-5 accuracies of
Motif-GCN+LTB on the Kinetics-M dataset are 84.7% and
96.5%, which are also higher than 83.7% and 95.8% of the
Motif-GCN, respectively. The experiment results show that
the LTB can capture local temporal features more effectively,
compared to using classical convolutions for modeling tem-
poral information. We will evaluate the LTB further in
Sec. 4.5.

4.3.3 Non-Local Temporal Block
We evaluate the effectiveness of utilizing the NLTB for
modeling whole-range dependencies. The NLTB can be

combined with traditional convolutions in the time axis as
“Motif-GCN+NLTB”.

Table 1 shows that introducing the NLTB into the tempo-
ral sub-module of STM in our Motif-GCN (Fig. 5) brings per-
formance improvement on the NTU-RGB+D and Kinetics-M
datasets. These results demonstrate that constructing global
dependencies among frames by the NLTB can achieve a
more representative feature extraction for action recogni-
tion. Not only our Motif-GCN can achieve remarkable gain
by considering global relationships in the spatial context,
but also the NLTB can further improve the performance by
constructing global inter-frame dependencies in the tempo-
ral context.

To investigate the effectiveness of the combination of
the LTB and the NLTB as temporal blocks (TBs) for mod-
eling temporal information, we analyze the performance
of the model “Motif-GCN+TBs”. We have evaluated the
performance of integrating NLTB into different layers of our
network. The proper setting of the NLTB will be given in
Sec. 4.5. In Table 1, the results show that this model has
better capability for modeling temporal information. Addi-
tionally, we integrate the TBs into SMotif-GCN as our full
model “SMotif-GCN+TBs (Ours)”. Given the high perfor-
mance of the Motif-GCN+TBs, there is still an improvement
in accuracy of SMotif-GCN+TBs by imposing the SMAM.

4.4 Evaluation of SMotif-Based Graph Convolution
As described in Sec. 3.4, our proposed Motif-GC operation
is extended by defining a learnable adjacency matrix for
the second motif. The elements in the matrix are updated
across layers in the self-attention mechanism, with the input
X l

t=1...F at the layer l. The weighted dependencies between
physically disconnected joints are updated according to
Eq. (7).

Fig. 7 illustrates how the adjacency matrices for latent
dependencies among non-physically connected joints are
updated through layers. Fig. 7(a) and Fig. 7(b) show the
adjacency matrices of different layers for action samples
“Clapping” and “Check time”, respectively. It is obvious
that the learned adjacency matrices for different action sam-
ples are different. What’s more, the matrices can be updated
through message passing across different layers. Taking the
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“Clapping” sample as an example, the learned adjacency
matrices in the lower layers indicate the relationships be-
tween both hands are important for recognizing the action.
This is in accordance with human motion knowledge for
action recognition intuitively. Then, the high-level features
strengthen the dependencies between the “Throat” joint
and other joints at the 9-th layer. As the dependencies
are captured in latent semantics, they are different from
intuitions on human action recognition in daily life. The
above experiment observations confirm our motivation to
learn the adjacency matrix for latent dependencies in Motif-
GC methods.

To impose sparsity to the matrix, we add the L1 regular-
ization term to our loss function in Eq. (8), where λ trades
off the importance of the Softmax loss and the regularization
term. Increasing λ promotes the sparsity of the adjacency
matrix for non-physically connected relationships among
joints. We evaluate the recognition performance with dif-
ferent values of λ using the same test approaches in our ex-
periments. From Fig. 8, we observe that increasing the value
of λ to 10e−5 achieves the best performance on the NTU-
RGB+D dataset (X-View). The improvement implies that
promoting the sparsity of the adjacency matrix helps capture
more useful dependencies among physically disconnected
joints. However, we observe that the performance becomes
worse when λ increases from 10e−5 to higher values. If the
adjacency matrix for latent dependencies is too sparse, it
hinder the Motif-GC operation to capture richer information
in the spatial context among joints. We also evaluate the
performance of SMotif-GCN on the NTU-RGB+D dataset
under X-Sub evaluation. The accuracy is 84.7% with λ = 0,
but it drops to 83.1%, 84.3%, 83.3%, 83.2%, 83.2%, when λ
is set to 6e−5, 8e−5, 10e−5, 12e−5, 14e−5, respectively.

4.5 Evaluation of Temporal Block

We use the LTB and the NLTB to extract local and global
temporal features effectively. Here, we conduct experiments
to illustrate how to combine the two temporal blocks to
achieve better performance.

The NLTB constructs dependencies between any two
frames in a sequence, so the computation complexity is
relatively large [24]. In this way, we use only one NLTB
in our network. The default setting of the model Motif-
GCN+NLTB is to integrate only one NLTB to the 7-th STM.

Firstly, we evaluate the recognition performance of the
LTB based on Motif-GCN+NLTB (default setting). As de-
scribed in Sec. 3.5, the growth rate (GR) is controlled by
the transition layer and set according to the number of
output channels in the STM (Fig. 5). We denote the num-
ber of output channels as OC. The GR value reflects the
amount of new information that each densely connected
layer contributes to the local temporal features. We thus
evaluate the influence of the GR, which is the most critical
hyper-parameter governing the LTB. The results are sum-
marized in Table 2. We observe that setting the GR as OC/8
leads to the best performance on the Kinetics-M dataset in
terms of both the Top-1 and Top-5 accuracies, and NTU-
RGB+D dataset under X-Sub evaluation. Under X-View
evaluation (NTU-RGB+D dataset), the highest accuracy is
achieved with GR = OC/4. Richer temporal features can be

(a) Clapping

(b) Check time

Fig. 7. Illustration of the sparse motif adjacency matrices in SMotif-
GCN for (a) “Clapping” and (b) “Check time” test action samples from
the NTU-RGB+D dataset (X-Sub). The updated adjacency matrices of
different layers, and corresponding graph topologies of latent depen-
dencies among joints are shown in different columns. The importance
of the latent dependency is denoted by the gray scale (the darker, the
more important) of the element in the adjacency matrix. The red lines
represent the latent dependencies whose importance values are in the
top 20, and the thickness of each line represents the importance of the
relationship between pairwise joints.

Fig. 8. Performance comparison of SMotif-GCN approach using differ-
ent settings of λ on the NTU-RGB+D dataset (X-View). The blue line
represents experiment results with different λ values used for the loss
function in Eq. (8), while the red dashed line indicates the performance
of Motif-GC without sparsity.

extracted by a higher value of GR. The observation shows
that temporal information is more important for recognizing
human actions across views than across subjects. The default
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TABLE 2
Evaluation of different settings of growth rate (GR) for integrating the

LTB into Motif-GCN+NLTB model on the NTU-RGB+D and Kinetics-M
datasets.

Dataset NTU-RGB+D Kinetics-M
Evaluation X-Sub X-View Top-1 Top-5
Motif-GCN+NLTB 84.8% 92.0% 84.4% 95.8%

+LTB (GR = OC/2) 85.4% 93.1% 84.3% 95.8%

+LTB (GR = OC/4) 86.4% 93.2% 84.6% 96.5%

+LTB (GR = OC/8) 86.7% 92.9% 85.0% 96.5%

+LTB (GR = OC/16) 86.6% 92.7% 82.1% 95.8%

+LTB (GR = OC/32) 86.1% 92.2% 82.0% 95.8%

TABLE 3
Evaluation of NLTB integrated into different STMs of Motif-GCN+LTB

model on the NTU-RGB+D and Kinetics-M datasets.

Dataset NTU-RGB+D Kinetics-M
Evaluation X-Sub X-View Top-1 Top-5
Motif-GCN+LTB 85.4% 92.5% 84.7% 96.5%

+NLTB (1st STM) 86.4% 92.7% 84.5% 96.3%

+NLTB (4-th STM) 86.2% 92.6% 83.5% 95.6%

+NLTB (7-th STM) 86.7% 92.9% 85.0% 96.5%

setting of the LTB is set GR = OC/8. To verify the improve-
ment by adopting the LTB instead of the variable temporal
dense block (DB) with the traditional dense connectivity in
our conference version [23], we compare the performance of
Motif-GCN+LTB (default setting) with Motif-GCN+DB in
different settings. The comparison results can be found in
the appendix.

Next, we conduct a series of experiments to achieve a
good setting of the NLTB based on Motif-GCN+LTB (default
setting), and the results are summarized in Table 3. The
NLTB can be introduced into our Motif-GCN+LTB flexibly.
We observe that adding the NLTB to the 7-th STM achieves
the best accuracy on the NTU-RGB+D and Kinetics-M
datasets, respectively. It implies that imposing global de-
pendencies between frames with features from higher layers
has better representation power than lower layers. On the
NTU-RGB+D dataset, the raw joint data are padded with
zeros for training and testing in batches. We add masks
Mt and M ′

t to calculate the dependencies between possible
frames t and t′, respectively. We set Mt = 0 for the frame
t whose data is padded, and Mt = 1 for the frame whose
data is from the captured data. In this way, the similarities
between the padded frame and the other frames calculated
by the pairwise function are initialized as zeros. The Top-1
accuracy of Motif-GCN+LTB+NLTB (7-th STM) is improved
from 85.4% to 86.7% under the X-Sub evaluation and from
92.5% to 92.9% under the X-View evaluation.

On the Kinetics-M dataset, the Top-1 accuracy is im-
proved from 84.7% to 85.0% by introducing the NLTB.
If the NLTB is introduced into the 1-st or 4-th STM, the
accuracy of the model drops to lower values on the Kinetics-
M dataset (Table 3). This indicates that imposing global
dependencies among frames of noisy skeleton sequences
cannot always bring improvements to the model. The deep
feature maps from the 7-th STM have a larger receptive

field in the temporal domain, so they are less influenced
by local noise and are more proper to be used in the NLTB.
It is important to choose proper features to construct global
inter-frame dependencies in the self-attention mechanism to
improve action recognition accuracy.

4.6 Comparison with State-of-the-Art Methods

In this section, we present experiments to compare our pro-
posed models with the state-of-the-art methods on different
benchmark datasets.

4.6.1 Experiments on NTU-RGB+D Dataset
To demonstrate the effectiveness of our method, we com-
pare it with the following related methods: 1) Early meth-
ods that use LSTMs to extract features from skeleton se-
quences (e.g., [6], [12], [50], [51]); 2) Recent methods that
utilize CNNs for temporal modeling of a skeleton sequence
represented by a time series of 3D joint coordinates or
pseudo-images (e.g., [3], [4], [13], [14], [52]); 3) The most
related methods that adopt GCNs to learn the spatial in-
formation of human skeletons (e.g., [15], [16], [17], [18],
[19], [21], [22], [53], [54]). Among all the above mentioned
methods, only TConv [4], ST-GCN [15], EI-GCN [16] and
Motif-GCN [23] take the raw (X,Y, Z) values of each
skeleton joint as input. The others adopt data augmenta-
tion (e.g., [14], [21]) or preprocessing strategies (e.g., [3],
[6], [12], [13], [19], [20], [50], [51], [53]). What’s more, some
models adopt the multi-stream architecture (e.g., [17], [18],
[22], [54]).

Without data augmentation or preprocessing strategies,
our proposed model SMotif-GCN+TBs achieves higher ac-
curacy than the previous method ST-GCN [17] by a large
margin on X-Sub (87.2% v.s. 81.5%) and X-View (93.6% v.s.
88.3%) benchmarks. Besides, PB-GCN [17] has also reported
the action recognition accuracy on raw 3D joint coordinates.
Our proposed method outperforms PB-GCN by a large
margin on X-Sub (86.9% v.s. 82.8%) and X-View (93.6% v.s.
90.3%) benchmarks. The results in Table 4 demonstrate the
effectiveness of our method in modeling spatial and tem-
poral information for action recognition with noisy skeletal
data. Our model can capture local and non-local information
spatially and temporally at the same time. Consequently,
the model is more effective for encoding noisy data with
local disturbance. Moreover, the proposed model SMotif-
GCN+TBs also achieves significant improvements over the
Motif-GCN method in our conference version [23]. The com-
parison results show that our Motif-GC method is effective
and easy to extend for encoding skeletal data to improve
action recognition accuracy.

We perform data preprocessing [6], [18], [22] for a fair
comparison with the earlier works that require data pre-
processing as well. In more detail, we first normalize each
sample, and then translate the normalized sample to the
central perspective, as suggested in [6]. The performance of
our model SMotif-GCN+TBs with preprocessed joint data,
denoted as “SMotif-GCN+TBs (Ours, Preprocessed Joint)”,
is better than the state-of-the-art method [20] under X-
Sub evaluation (88.9% v.s. 87.8%). We also use the bone
information [18] with each bone represented by a vector
pointing from the current joint to its child joint (as shown
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TABLE 4
Skeleton-based action recognition performance on the NTU-RGB+D

dataset. The accuracies are reported on both the cross-subject (X-Sub)
and cross-view (X-View) benchmarks.

Model X-Sub X-View
PA-LSTM [6] 60.7% 67.3%

ST-LSTM [12] 69.2% 77.7%

GCA-LSTM [50] 74.4% 82.8%

TConv [4] 74.3% 83.1%

S-TGCN [21] 74.9% 86.3%

ATT-LSTM [51] 76.1% 84.0%

Clips-CNN-MTLN [3] 79.6% 84.8%

VI [13] 80.0% 87.2%

RC-CNN [52] 81.1% 87.4%

ST-GCN [15] (Raw Joint) 81.5% 88.3%

TSI-CNN [14] 82.9% 90.1%

PB-GCN [17] (Raw Joint) 82.8% 90.3%

EI-GCN [16] (Raw Joint) 83.5% 89.8%

Motif-GCN [23] (Raw Joint) 84.2% 90.2%

SR-TSL [53] (Preprocessed Joint) 84.8% 92.4%

AS-GCN [19] (Preprocessed Joint) 86.8% 94.2%

Shift-GCN [20] (Preprocessed Joint) 87.8% 95.1%

PB-GCN [17] (Two streams) 87.5% 93.2%

AGCN [18] (Two streams) 88.5% 95.1%

DAG [22] (Two streams) 89.2% 95.5%

NAS-GCN [54] (Two streams) 89.4% 95.7%

SMotif-GCN+TBs (Ours, Raw Joint) 87.2% 93.6%

SMotif-GCN+TBs (Ours, Preprocessed Joint) 88.9% 95.0%

SMotif-GCN+TBs (Ours, Two Streams) 90.5% 96.1%

in Fig. 2). The bone data can be combined with joint data
as spatial information, whose motion is easily calculated
as the difference of spatial coordinates along the temporal
dimension [22]. Different streams of spatial and motion
information are fed into our model separately. Then, the
Softmax scores of different streams are fused to obtain the
final score for predicting the action class. With data prepro-
cessing and score fusing, we evaluate the action recognition
accuracies of SMotif-GCN+TBs and summarize the results
in Table 4. The performance of our model SMotif-GCN+TBs
with joint and bone data as two-stream input, denoted as
“SMotif-GCN+TBs (Ours, Two streams)” is compared with
the state-of-the-art multi-stream models [17], [18], [22], [54].
The results in Table 4 show that our model, with two streams
of input, achieves the best performance on the large-scale
NTU-RGB+D dataset.

In addition to geometric features (joint and bone po-
sitions) of skeletal data, we have also tried to use visual
features as additional input in the model. As the video
frames from the NTU-RGB+D dataset are captured in the
constrained lab environment, the proportion of subjects is
similar in different action samples. Thus, we extract latent
visual features from local pictures (64 × 64) centered on
joints by the VGG network [55]. Specifically, the latent
code (the average of the feature maps in the spatial and
temporal domains) from the first layer of the VGG is used.
As shown in Table 5, the performance of SMotif-GCN+TBs
with visual input is inferior to the performance of the
model with geometric input, because skeletal data that can

TABLE 5
The accuracies of our proposed SMotif-GCN+TBs model with different
data preprocessing methods, evaluated on the NTU-RGB+D dataset.

Preprocessing Method X-Sub X-View
Geometric 90.5% 96.1%

Visual 72.9% 74.8%

Geometric and Visual 91.7% 96.7%

represent high-level structural information is more efficient
for action recognition. Given the high performance of the
Motif-GCN+TBs with geometric data, there is still an im-
provement in accuracy of SMotif-GCN+TBs with additional
visual data (Table 5).

4.6.2 Experiments on NTU-RGB+D-120 Dataset
On NTU-RGB+D-120 dataset, we compare our proposed
model with the state-of-the-art skeleton-based action recog-
nition methods [3], [4], [13], [15], [18], [52]. We follow the
standard evaluation protocol in [47], and report both X-Sub
and X-Set Top-1 recognition accuracies. As NTU-RGB+D-
120 is an extension of the NTU-RGB+D dataset, the hyper
parameter settings of LTB and NLTB in our model are set
in accordance with the default settings in the NTU-RGB+D
dataset.

The NTU-RGB+D-120 dataset contains more action cat-
egories, and the skeleton sequences in it are captured in
varied environmental setups and performed by diverse hu-
man subjects. The high variability in different aspects (i.e.,
environmental setups and human subjects) makes the action
recognition task more challenging. The results in Table 6
show that our model achieves the best performance. Specif-
ically, our full model with raw joint as input can also
outperform the state-of-the-art method [20] with prepro-
cessed joint as input. What’s more, our SMotif-GCN+TBs
with preprocessed joint input achieves higher accuracies
than the previous method on X-Sub (83.2% v.s. 80.9%) and
X-View benchmarks (84.1% v.s. 83.2%). The comparison
results show the superiority of our model to extract spatial
and temporal features from skeleton sequences for action
recognition in challenging scenarios.

Similar to the experiments on the NTU-RGB+D
dataset (Sec. 4.6.1), we also use additional visual data and
conduct experiments on the NTU-RGB+D-120 dataset. As
shown in Table 7, the performance of SMotif-GCN+TBs is
improved from 87.1% to 88.4% under X-Sub evaluation and
from 87.7% to 88.9% under X-Set evaluation.

4.6.3 Experiments on Kinetics-M Dataset
To demonstrate the effectiveness of our model for skeleton-
based action recognition in unconstrained natural scenarios,
we compare it with the most related methods [4], [15], [18],
[19], [23] in terms of Top-1 and Top-5 accuracies on the
Kinetics-M dataset as recommended in [46].

TConv [4] uses convolutions for temporal modeling
of skeleton sequences represented by clips of time series
with 3D joint coordinates. ST-GCN [15] firstly constructs
a spatial-temporal graph to represent a skeleton sequence.
AGCN [18] proposes to use an adaptive graph structure, and
uses a normalized embedded Gaussian function to calculate
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TABLE 6
Skeleton-based action recognition performance on the

NTU-RGB+D-120 dataset. The accuracies are reported on both the
cross-subject (X-Sub) and cross-setup (X-Set) benchmarks.

X-Sub X-Set
PA-LSTM [6] 25.5% 26.3%

ST-LSTM [12] 58.2% 60.9%

GCA-LSTM [50] 58.3% 59.2%

Clips-CNN-MTLN [3] 58.4% 57.9%

FSNet [56] 59.9% 62.4%

VI [13] 60.3% 63.2%

ATT-LSTM [51] 61.2% 63.3%

RC-CNNs [52] 62.2% 61.8%

TConv [4] (Raw Joint) 68.2% 67.2%

ST-GCN [15] (Raw Joint) 76.9% 78.5%

Motif-GCN [23] (Raw Joint) 80.2% 81.6%

Shift-GCN [20] (Preprocessed Joint) 80.9% 83.2%

SMotif-GCN+TBs (Ours, Raw Joint) 82.0% 83.1%

SMotif-GCN+TBs (Ours, Preprocessed Joint) 83.2% 84.1%

SMotif-GCN+TBs (Ours, Two streams) 87.1% 87.7%

TABLE 7
The accuracies of our proposed SMotif-GCN+TBs model with different

data preprocessing methods, evaluated on the NTU-RGB+D-120
dataset.

Preprocessing Method X-Sub X-Set
Geometric 87.1% 87.7%

Visual 59.5% 59.9%

Geometric and Visual 88.4% 88.9%

TABLE 8
Skeleton-based action recognition performance on the Kinetics-M

dataset in terms of Top-1 and Top-5 accuracies.

Top-1 Top-5
TConv [4] 70.8% 92.5%

ST-GCN [15] 79.7% 94.2%

AS-GCN [19] 78.8% 94.6%

AGCN [18] 81.2% 95.2%

Motif-GCN [23] 84.2% 96.1%

SMotif-GCN+TBs (Ours, Preprocessed Joint) 85.4% 96.8%

SMotif-GCN+TBs (Ours, Two streams) 85.7% 96.8%

the similarity of physically connected joints. AS-GCN [19]
learns the relationships between arbitrary pairwise joints.
The skeletal data in the Kinetics-M dataset is captured in
the unconstrained daily-life scenarios, so the data are varied.
Consequently, all the related methods adopt preprocessing
strategies [15] to normalize the joint data. In addition to joint
data, we also use bone data as two streams of input. The
results in Table 8 show that our full model SMotif-GCN+TBs
with preprocessed joint and two streams of input achieve
better performance than all the compared methods.

4.6.4 Experiments on Kinetics Dataset
Similar to the experiments on the Kinetics-M
dataset (Sec. 4.6.3), we compare our model with the
state-of-the-art methods [4], [6], [15], [18], [19], [22], [57]
in terms of Top-1 and Top-5 accuracies for skeleton-based

TABLE 9
Skeleton-based action recognition performance on the Kinetics dataset

in terms of Top-1 and Top-5 accuracies.

Top-1 Top-5
FeatureEnc [57] 14.9% 25.8%

PA-LSTM [6] 16.4% 35.3%

TConv [4] 20.3% 40.0%

ST-GCN [15] 30.7% 52.8%

AS-GCN [19] 34.8% 56.5%

AGCN [18] (Two streams) 36.1% 58.7%

DAG [22] (Two streams) 36.9% 59.6%

SMotif-GCN+TBs (Ours, Preprocessed Joint) 36.8% 59.4%

SMotif-GCN+TBs (Ours, Two streams) 37.8% 60.6%

action recognition on the Kinetics dataset. Our model
again achieves the best performance, as shown in Table 9.
Specifically, our full model with joint data as input can
still outperform the state-of-the-art method [22] with
two streams data as input. The comparison results show
the superiority of our model for action recognition in
unconstrained daily-life scenarios.

There are a great variety (400 categories) of human ac-
tions in the Kinetics dataset. Most of the actions require the
interactions between the subjects and scenes to be accurately
classified. It is challenging to recognize the actions with
skeletal data, so the accuracies of our model on this dataset
are lower than those on the Kinetics-M dataset.

5 CONCLUSION

In this paper, we have proposed the Motif-GCN with the
SMAM in order to adaptively encode spatial information in
human skeletons, both locally and non-locally. The SMAM
is introduced to capture richer dependencies between non-
physically connected joints and can be updated during the
learning process. Besides, we have proposed a novel LTB
for modeling temporal information by reusing feature maps
of local temporal convolutions with dense connections. We
further improve the performance by reducing duplication
and enriching variety in gradient propagation of densely
concatenated layers. Finally, a NLTB is further used to
construct global dependencies, which can effectively extract
more representative features to increase recognition accu-
racy. As a result, our model can effectively encode local
and non-local information in the spatial as well as temporal
context. We validated our model on four large-scale datasets
and our model achieve the best performance on all the
datasets.

Many action classes in the Kinetics dataset require rec-
ognizing relationships between actors and complex scenes.
The model focusing on skeleton-based action recognition is
inferior to video-based methods, which can make use of
additional information in the background. Moreover, the
skeleton sequences in the Kinetics dataset are tracked by
monocular pose estimation algorithms (e.g. OpenPose). The
occlusion and ambiguity of the 2D skeletal data may also
degrade the performance of skeleton-based action recogni-
tion methods. However, we believe that the skeletal data
can provide complementary information to raw RGB data.
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In our future work, we are interested in combining data
from other information carriers such as raw RGB to achieve
further improvements in action recognition.
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