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ReenactArtFace:
Artistic Face Image Reenactment

Linzi Qu, Jiaxiang Shang, Xiaoguang Han, and Hongbo Fu

Abstract—Large-scale datasets and deep generative models have enabled impressive progress in human face reenactment. Existing
solutions for face reenactment have focused on processing real face images through facial landmarks by generative models. Different
from real human faces, artistic human faces (e.g., those in paintings, cartoons, etc.) often involve exaggerated shapes and various
textures. Therefore, directly applying existing solutions to artistic faces often fails to preserve the characteristics of the original artistic
faces (e.g., face identity and decorative lines along face contours) due to the domain gap between real and artistic faces. To address
these issues, we present ReenactArtFace, the first effective solution for transferring the poses and expressions from human videos to
various artistic face images. We achieve artistic face reenactment in a coarse-to-fine manner. First, we perform 3D artistic face
reconstruction, which reconstructs a textured 3D artistic face through a 3D morphable model (3DMM) and a 2D parsing map from an
input artistic image. The 3DMM can not only rig the expressions better than facial landmarks but also render images under different
poses/expressions as coarse reenactment results robustly. However, these coarse results suffer from self-occlusions and lack contour
lines. Second, we thus perform artistic face refinement by using a personalized conditional adversarial generative model (cGAN)
fine-tuned on the input artistic image and the coarse reenactment results. For high-quality refinement, we propose a contour loss to
supervise the cGAN to faithfully synthesize contour lines. Quantitative and qualitative experiments demonstrate that our method
achieves better results than the existing solutions.

Index Terms—face reenactment, artistic faces, 3DMM, generative models

✦

1 INTRODUCTION

Human face reenactment aims to generate a sequence
of photo-realistic face images by transferring the pose and
expression from a driving face video to a source face.
Benefiting from large-scale datasets and deep generative
models (e.g., GANs [1]), various face reenactment tech-
niques, such as one-shot reenactment [2], [3], [4] and few-
shot reenactment [5], [6], have been explored. Such one-
shot face reenactment techniques can be potentially used to
animate single artistic human face images in paintings, car-
toons, mangas, sketches, etc. This would greatly simplify the
animation process of such artistic images, thus benefiting
various applications, e.g., making artistic talking heads for
entertainment or privacy protection during online chatting.

However, directly applying existing face reenactment
techniques to artistic face images often fails due to the do-
main gap between real and artistic faces. Artistic faces have
the following characteristics, which increase the difficulties
of artistic face reenactment. First, artistic faces often have a
large variance in geometry and contain exaggerated edges
(Figure 2 (a)). Recent human face reenactment methods [7],
[8], [9], [10] rely on facial landmarks, which cannot represent
such exaggerated edges well. Second, artistic face textures
have different styles (Figure 2 (b)), making it difficult to
construct a unified dataset to train a generation model. Ad-
ditionally, it is time-consuming to provide a series of multi-
view images/videos for a specific artistic face. Without such
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an artistic face dataset, the previous neural methods [7], [8],
[9], [10] cannot be retrained. One-shot human reenactment
methods [2], [4] with a fine-tuning stage might mitigate the
problem of training all diverse styles in one network. How-
ever, fine-tuning with one view is not robust to pose and
expression variations. Finally, artists often draw lines along
face contours to delimit color regions and thus emphasize
the shape information (Figure 2 (c) and (d)). However, such
contour lines do not exist in real face images and are thus
not considered in real face reenactment works.

In this paper, we propose ReenactArtFace, the first effec-
tive pipeline for achieving artistic portrait reenactment. Our
pipeline has two stages and achieves the goal in a coarse-to-
fine manner, as illustrated in Figure 3. First, it reconstructs
a 3D textured and rigged face model from an input artis-
tic face image. This reconstructed model provides coarse
reenactment results. We regard these results excluding the
regions with artifacts as the ground truth to help the gen-
eration of finer results in the second step. Such a two-stage
design successfully enables the training of the second step
and addresses the limitations of one-shot face reenactment,
making our method robustly synthesize various poses and
expressions from a single artistic face image (Figure 1).

Specifically, ReenactArtFace consists of two main mod-
ules. In the 3D Artistic Face Reconstruction module, we first
fit a 3D morphable model (3DMM) [11] to an input artistic
face image and then use an associated input parsing map to
guide the deformation of the fitted 3DMM. Such a parsing
map provides richer semantic and boundary information
than facial landmarks often used in human face reenact-
ment. We leverage image meshing [12] to map the whole
source image and the parsing map respectively to the UV
textures of the fitted 3DMM model. The resulting textured
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Fig. 1. Our ReenactArtFace, a novel artistic face reenactment technique, is able to transfer the pose and expression from a driving video to in-the-
wild artistic face images to generate artistic talking heads, where the identity and texture of the original artistic images are preserved. Please refer
to the accompanying video for animation effects.

(a) (b) (c) (d)

Fig. 2. The examples of artistic faces in different styles.

3DMM can produce faces/parsing maps with the same
identity in various expressions and poses and thus provide
good guidance for generation models. However, since im-
ages from direct rendering of the textured 3DMM suffer
from self-occlusions and lack contour lines, they can serve as
coarse reenactment results only. Meanwhile, benefiting from
the semantics of 3DMM, the reenacted parsing maps avoid
such self-occlusions. The second module, namely Artistic
Face Refinement, takes as input a source artistic face image
and the coarse reenactment parsing maps under different
views and expressions. First, the model is trained on a large
dataset of real human faces to learn the correspondence
between semantics and textures, forming our pre-trained
model. Then, we fine-tune this pre-trained model super-
vised by the rendered coarse reenactment results with the
artifacts removed via inpainting and masking. To synthesize
contour lines, we design a contour loss by leveraging cycle
consistency between the reenacted results and the source
face in the contour region.

Experiments show that our method is able to robustly
reenact artistic images of various styles. Quantitative and
qualitative comparisons prove that our ReenactArtFace out-
performs the state-of-the-art techniques for real human face
reenactment. Besides face reenactment, we also demon-
strate the possibilities of our method for two additional
applications, namely artistic face editing and facial video
stylization.

• We are the first to transfer the poses and expressions
from human videos to various artistic faces and fully
consider the artistic facial characteristics.

• We achieve artistic face reenactment via a novel
two-stage approach. In Stage 1, the 3D Artistic Face
Reconstruction module ensures the geometry consis-
tency via 3DMM fitting and deformation, resulting
in coarse reenactment results. In Stage 2, the Artistic
Face Refinement module achieves the texture consis-
tency with the input face (including its contour lines)
via utilizing the rendered coarse reenactment results
and a contour loss to train a personalized cGAN for
each artistic face.

• We demonstrate the effectiveness and practicality of
our method via extensive experiments and applica-
tions.

2 RELATED WORK

In this section, we review the existing techniques that are
related to our method, including face reenactment, 3DMM-
based facial texture completion, and cycle consistency in
face image generation.

2.1 Face Reenactment

Existing face reenactment solutions can be roughly divided
into graphics-based [13], [14], [15], [16], [17] and neural-
based [7], [8], [9], [18], [19], [20] methods in terms of the
utilization of Deep Neural Networks (DNNs).

Graphics-based methods in 2D space achieve reenact-
ment via 2D sparse warps [15], [17] from control points, and
they use a simple piece-wise linear interpolation defined
by Delaunay triangulation to expand such warps. Never-
theless, sparse warps fail to generate the hidden regions
in the source images, especially when the pose changes.
With converting the input to 3D, [16] recombine the fitted



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Texture

Encoder

Lcot

Inpainted coarse 

reenacted results

Geometry

Encoder
Generator

3DMM

Fitting &

Deformation

Rendering

3DMM

Fitting

Identity

Expression

Artistic Face Refinement

{𝑃𝑠,𝑑}

෨𝑉𝑠 with 

texture 𝐼𝑠

෨𝑉𝑠 with

texture 𝑃𝑠

{𝐼𝑠,𝑑}

3D Artistic Face Reconstruction

(𝐼𝑠, 𝐿𝑠 , 𝑃𝑠)

{𝐼𝑑}

(𝑃𝑠, 𝐼𝑠) Personalized cGAN

Personalized 

cGAN

Lrec+

Lcon+Lsty1

Lsty2

Image Meshing

Rotation

Translation

(𝑃𝑠
𝑏, 𝐼𝑠

𝑏)

{ መ𝐼𝑠,𝑑 }

{ መ𝐼𝑠,𝑑
𝑏 }

{ 𝑃𝑠,𝑘
𝑏 }

Fig. 3. An illustration of our two-stage pipeline for artistic face reenactment. It transfers the pose and expression of a real human face in a driving
video {Id} to an input artistic face Is (with the help of manually labeled face landmarks Ls and parsing map Ps) to get an artistic talking head
{Îs,d}.

3DMM parameters and render the reenacted 3D face model.
However, 3DMMs are from human faces, which cannot be
applied directly to artistic faces.

Benefiting from large human-face datasets, neural-based
methods train powerful DNNs. For example, FOMM [18]
uses the motion module to produce a dense warp field
guided by keypoints. Then, they warp the source face to
target poses and expressions before applying the generation
module to synthesize occlusion areas. Similarly, the work
of PIRenderer [19] has two networks for warping and syn-
thesizing guided by fitted 3DMMs from 2D landmarks. [7],
[8], [9], [21], [22] directly leverage generators to produce
faces with the input reenacted landmarks for source iden-
tities from various geometry transfer modules. However,
the facial landmark detector might fail when the input
is an artistic portrait with an exaggerated shape. Besides,
the commonly used 68 facial landmarks are too sparse to
represent artistic faces. These methods fail to preserve the
geometry, and such DNNs trained on the real human face
data provide real-human-like results in at least one aspect of
geometry or texture (Figure 7). To keep identities of artistic
faces, on the one hand, we explicitly represent geometric
inputs via deformed 3DMMs using the associated parsing
maps. On the other hand, we train a generator not only with
real human faces but also with more closely artistic faces. [5],
[23] fine-tune their generators for a specific out-of-domain
person by combining constant latent identity features and
multi-pose features constrained by the source artistic face
with a discriminator after training on various human iden-
tities. Although fine-tuning is a feasible way to mitigate the
domain gap, the generator would easily overfit the single
input and thus ignore the reenacted guidance. To address
the overfitting problem, we first render coarse reenactment
results from the fitting and deformation 3DMM, and then
fine-tune our personalized cGAN by such coarse results
rather than the single source input.

2.2 3DMM-based Facial Texture Completion

Our coarse reenactment results contain artifacts caused by
the invisible regions of the single-view input, and the in-
painting of such artifacts is related to the face completion
task. Since 3DMM contains expressive geometry and texture
prior, it provides a good starting point for face completion
works [12], [14], [24], [25], [26], [27], [28]. After the 3DMM
fitting step, these works are designed in a coarse-to-fine
manner. For example, Gecer et al. [28] project an input face
in 3D and fill the unseen regions by reconstructing the
uncompleted projected images of different views through
a pre-trained StyleGAN [29]. DVP [14] and AudioDVP [26]
take the synthetic renderings of the fitted 3DMM as coarse
inputs and learn generators to add details. They train the
generators with video clips in a self-supervised manner.
However, it is hard to build a dataset [28] covering all kinds
of styles to train a StyleGAN due to the large variance
among artistic faces, and it is time-consuming to prepare
a video clip [14], [26] for each artistic face. Different from
them, considering the limited data for each artistic portrait,
we maximally use the information of multi-view coarse
renderings as a guide rather than an input to train a cGAN
network.

2.3 Cycle Consistency in Face Image Generation

Our Artistic Face Refinement module aims to synthesize
faithful face results. Previous cGAN methods have per-
formed impressive results on real human faces. Most gener-
ation models [1], [30] are trained with large paired datasets,
but such a requirement is not always satisfied in real appli-
cations. Several works [31], [32], [33], [34] demonstrate that
unpaired image training is effective with cycle consistency.
For example, to create a cycle for unpaired supervision,
GANimation [32] firstly generates an expression-changed
image according to an arbitrary action unit (AU) and then
uses this image with the original AU to produce the input
to learn for expression translation. Zhou et al. [34] rotate
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Fig. 4. Two examples of 3DMM fitting and deformation. In each row, (a)
is an input image with manually specified facial landmarks (in red), and
(b) is its corresponding parsing map. (c) The fitted mesh with the pre-
annotated semantic regions overlaid with the boundaries of the parsing
map in (b). (d) The deformed mesh with the pre-annotated semantic
regions.

and render the roughly predicted 3D representation to a
random pose and back to its original place to achieve face
rotation. However, in our artistic face reenactment task,
under cycle-consistency constraints, the optimal mapping
between various reenacted faces and the single input source
is hard to learn, which causes detail loss. Thus, we leverage
the 3D-consistent coarse reenactment faces to supervise the
generator. On the other hand, the contour regions are an
important artistic style without 3D consistency. Inspired by
cycle consistency, we propose a contour loss to deal with the
generation of contour lines.

3 METHOD

For each input artistic portrait image Is, with the corre-
sponding parsing map Ps and facial landmarks Ls, our
ReenactArtFace aims to animate this face according to the
pose and expression of a real human face in a driving face
video {Id}. Due to the large shape variations in artistic faces,
it is difficult to automatically detect facial landmarks in Is,
and we thus rely on manual intervention to get Ls and Ps.

To achieve artistic face reenactment, we use a two-stage
pipeline, which consists of two main modules, namely, 3D
Artistic Face Reconstruction (Section 3.1) and Artistic Face
Refinement (Section 3.2). The first module aims to reconstruct
a 3D rigged and textured artistic face model, represented as
Ṽs from (Is, Ls, Ps), and then renders it back to the image
domain to get paired face images {Is,d} and parsing maps
{Ps,d} under various poses and expressions. {Is,d} essen-
tially serve as a set of coarse reenactment results, which,
however, suffer from artifacts due to self-occlusions and lack
artistic contour lines. In the second module, a personalized
cGAN is trained to synthesize the result Îs,d derived from
the source artistic face Is and the reenacted parsing map
Ps,d. The cGAN is firstly pre-trained on a dataset of real
human faces and then fine-tuned with coarse reenactment
pairs {Is,d, Ps,d} after initially inpainting and masking.
Thus, our pipeline explicitly disentangles the geometry and
texture of an artistic face, which are defined by the inpainted
parsing maps and the personalized cGAN, respectively.

3.1 3D Artistic Face Reconstruction

As shown in Figure 3, our 3D artistic face reconstruction
contains two parts. We first introduce the 3DMM fitting for
the source image in Section 3.1.1. Specifically, after the fit-
ting, we further utilize the face boundary of the 2D parsing
map to achieve the exaggerated 3D geometry of the artistic
face. Then we propose to use the image meshing procedure
to add non-face region meshes and textures in Section 3.1.2.

3.1.1 Fitting 3DMM and Deformation with Face Boundary

Although artistic faces might not perfectly lie in the shape
space of real human faces, artistic and real human faces still
look similar in terms of shape and structure. We thus first
estimate the rough 3D geometry (denoted as Vc) via fitting
the coefficients of a 3DMM [11] to the input artistic face Is
by minimizing the distance between the landmarks in Ls

and the projected corresponding vertices of Vc, which are
calculated from the coefficients and 3DMM bases.

As discussed earlier, compared with real human faces,
which often have smooth curved edges, artistic faces might
contain exaggerated edges (e.g., squared edges in Figure 4
(a)). Because of this characteristic, 68 landmarks commonly
used on real human faces are too sparse to accurately
represent the geometry for artistic faces. To solve this issue,
guided by the boundary of each facial part in the parsing
map Ps, we continue to deform all the vertices in Vc (already
fitted to the facial landmarks) to produce a geometrically
more accurate face model Vs. Specifically, to build the cor-
respondence between Vc and the 2D parsing map Ps, we
leverage the semantics of the 3DMM, which is manually
specified for each point on the 3DMM in a pre-processing
step. Since Vc shares the same topology as the 3DMM, the
labeling procedure needs to be done once. Considering that
there is no one-to-one mapping between 2D pixels and 3D
points, we use the Chamfer distance to force the projected
vertices located in the boundary of facial parts V b

c (in Vc) to
be aligned with the 2D pixels P b

s in the semantic boundary
of Ps. We denote the perspective projection from 3D space to
2D space as Pro(, ). Mathematically, the Chamfer distance
is formulated as:

Lch =
Cham(P b

s , P ro(V b
s , θ))

|P b
s |

, (1)

where Cham(, ) denotes the Chamfer distance between two
groups of points, | · | is the number of points, θ is the fitted
camera pose for the source input.

The Chamfer loss only forces a part of 3D boundary
vertices which are the closest to each 2D boundary pixel
after the projection to move. To smoothly propagate the
changes to the rest of the vertices, we apply Laplacian defor-
mation [35] for regularization. Figure 4 (c) and (d) show the
rendered images of the fitted mesh and the deformed mesh
with labeled semantic regions, respectively. The Laplacian
term is formulated as:

Lp = ∥Lap(Vs, F )− Lap(Vc, F )∥2 , (2)

where Lap(, ) is a graph Laplacian matrix and F is the
triangular face set of the 3D model. Finally, the refined mesh
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Symbols Explanation
Is Source image

{Id} Driving video
Is,d Coarse reenactment image
Îs,d Generated image
Ps Source parsing map
Ps,d Coarse reenactment parsing map
P b
s Semantic boundary of parsing map

V b
s

Vertices on the semantic boundary
of 3D face model

Ṽs Full 3D face model with non-face region
Mc,d Covisible mask
Ml,d Boundary mask

TABLE 1
Important symbols used in this paper.

Vs is generated by optimizing Vc via the following energy
function:

Ltotal = λpLp + λcLch. (3)

In our experiments, we set λp = 106 and λc = 1.

3.1.2 Image Meshing and Rendering
Inspired by [12], we use image meshing to estimate the
depth of the non-face region (i.e., hair, background) based
on the input refined mesh Vs only for the face region.
Then, the output full mesh Ṽs with texture map Is(Ps) is
used to render coarse reenactment faces, including hair and
background under various views.

To better restore the face in every pose, we leverage the
points located in the boundary of Vs as boundary anchors
rather than those corresponding to the 2D face contours.
Since predicting the 3D-consistent parsing maps with the
same identity is difficult, we extract the source artistic face
and the parsing map as textures at the same time. In the
subsequent discussions, Ṽs denotes the mesh after image
meshing. Then, according to any pose and expression co-
efficients, we render the corresponding 3D face model Ṽs

with textured Is or Ps to get the faces {Is,d} or parsing
maps {Ps,d} in multiple poses and expressions.

3.2 Artistic Face Refinement

There are serious artifacts in the rough results rendered
in Section 3.1.2 caused by the single-view source image.
Considering that the expression changes introduce more
artifacts, especially in the mouth and eyes areas, the coarse
reenactment data for fine-tuning contains pose changes
only. Thus, we first explain how to initially inpaint and
mask these regions after rendering in Section 3.2.1. Then, we
introduce the training pipeline for our personalized cGAN
with these inpainting data and masks in Section 3.2.2.

3.2.1 Coarse Reenactment Result Inpainting
As shown in Figure 5 (a), the unseen regions in Is bring ob-
vious artifacts in new viewpoints. After the image meshing,
the rendering procedure with pose changes causes artifacts.
We separate such causes into three types: self-occlusions
of the face, occlusions on the background, and replication
of the contour lines in the source input. To remove these
artifacts, we first inpaint the self-occluded regions of the
face and then introduce a covisible (Cov) mask Mc,d, and

(a) Rendered (b) Inpainted (c) w/ Cov mask (d) w/ Bd mask

(a) (b) (c) (d)

Source Rendered Inpainted
Source w/ 𝐿𝑠𝑡𝑦𝑙𝑒 w/ 𝐿𝑐𝑜𝑡w/o 𝐸𝐵(𝑃𝑠,𝑑)

Fig. 5. An example including an artistic face and the corresponding pars-
ing map after rendering and inpainting. The red dotted boxes highlight
the inpainted area.

a boundary (Bd) mask Ml,d. These two masks are used
to erase the incorrect textures on the background and the
unreasonable boundary lines on the face, respectively.

Inspired by [12], we use the symmetry property of a face
to inpaint the missing regions due to the self-occlusions of
the face region in Is,d. The comparison of the results before
and after inpainting is shown in Figure 6 (a) and (c).

Then, by comparing the area circled by a pink dotted line
in Figure 6 (d) with its corresponding region in Figure 6 (a),
we can see that this region belongs to the background in the
target view but the skin in the source view (Figure 6 (a)).

In the reconstructed 3D model Ṽs with the texture map
Is, the triangular subset belonging to the background region
will be occluded by the other triangular subset belonging
to the skin region located in the same x-y coordinates at
the source view. Thus, these two subsets have the same UV
coordinates. When the model Ṽs is observed from the target
view, the unreasonable texture of this background area is
exposed.

Considering that the texture of this part is invisible in
the source view, we introduce a covisible (Cov) mask Mc,d

following [36] to erase such incorrect textures, as shown
in Figure 6 (d) highlighted by a pink dotted line. The Cov
mask is obtained by rasterizing faces in Ṽs that are visible
in both the source and target views, and we also regard the
inpainted area as the visible part.

Finally, the phenomenon of replicated lines occurs when
the pose changes. As shown in Figure 6 (a), the original
contour line in Is shifts to the inner region of the face,
especially in cases where the source Is is a profile. Thus,
we design a boundary (Bd) mask Ml,d to remove those
unreasonable lines from the coarse reenactment results and
thus avoid being learned by the model. First, we construct
the one-to-one relationship between visible triangles of the
3D face mesh and image pixels via the rasterization of the
Ṽs from the estimated camera pose θ. Then, according to
this relationship, we select all the triangles associated with
the 2D boundary pixels P b

s in the semantic boundary of Ps.
The mask Ml,d is produced through the projection of these
triangles after they are rotated to a certain pose. As shown
in Figure 6 (e)) by the green arrow, the boundary regions
are erased by Ml,d. We use Ms,d = Mc,d ·Ml,d to denote the
combination of the two masks.

For the artifacts in the parsing maps from the rendered



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(b) Source (c) Inpainted

(d) w/ Cov mask (e) w/ Bd mask(a) Rendered 

Fig. 6. The example for the inpainted results separately with Cov mask
and Bd mask. (b) is in the source view. (a), (c), (d) and (e) are in the
target view.

textured mesh, we leverage the semantics of the labeled
3DMM (Section 3.1.1). After the boundary alignment step
in Section 3.1.1, the semantic map rendered in the original
pose with the labeled semantic vertex textures is consistent
with the Ps in the face region, as shown in Figure 4 (b)
and (d). Thus, textures for invisible vertices are filled by the
corresponding vertex semantic annotations. The inpainted
parsing maps are shown in Figure 5 (Row 2).

3.2.2 Training Pipeline
Our personalized cGAN follows a standard generation
model [37], consisting of a texture encoder, a geometry
encoder, and a generator, as shown in Figure 3. The two
conditions (i.e., the inputs) of the model are an input artis-
tic image Is to provide texture constraints, and a parsing
map Ps,d to provide geometry constraints. Then the model
combines the texture and geometry information from the
two conditions to synthesize a refined reenactment result.
Here, we use a parsing map rather than facial landmarks as
guidance, since the parsing map provides denser and richer
geometry information.

The training of the model includes two stages. In the
first stage, following [5], we pre-train the model on the
VoxCeleb dataset [38] of various real human talking-head
video sequences. We first utilize an off-the-shelf face parsing
method [39] to extract a parsing map of each frame in the
VoxCeleb dataset. Then, we randomly choose two frames in
a video to achieve supervised training, i.e., one frame as a
texture input, and the other frame and the corresponding
parsing map as a ground-truth and a geometry input, re-
spectively. The pre-training stage aims to learn the semantic
alignment between the extracted texture and the parsing
map via various examples.

With the pre-trained model, we observe that the output
geometry is well controlled by the input parsing map, even
though the geometry of the parsing map is different from
that of a general human face. Additionally, the cGAN could
initially extract the texture features of Is and inject them
into Ps,d according to the associated semantics. However,
the large domain gap between real human faces and artistic
ones would lead to the failure of texture preservation after
reenactment. Fine-tuning with the single ground-truth Is
using a style loss [40] or a cycle loss [31] might help the

model learn more textures and further narrow this gap.
Nevertheless, regressing multi-pose results from a single
input is hard to optimize. Although the reenacted results
are similar to the source artistic face, they lack the 3D
consistency between each other. Details are shown in Section
4.2.2.

Hence, in the second stage, we use the inpainted reen-
actment data (Ps,d, Is,d) and masks Ms,d introduced in
Section 3.2.1 to fine-tune the model. Since the geometry
encoder is well-established, we only update the parameters
of the texture encoder and the generator in this stage with a
reconstruction loss Lrec, a content loss Lcon, two style losses
Lsty , and a contour loss Lcot, as shown in Figure 3. Both the
content loss and style loss are based on the perceptual loss
in [40].

The replicated lines show that the contour regions of
artistic faces are not 3D-consistent, thus the rendered coarse
results lack such lines. To avoid the textures in the contour
regions of Is,d obscuring the lines that should be there, we
first extract the binary boundary from Ps,d and denote the
extraction process as EB(·). Then, the model learns the non-
contour regions (face, hair, background) and contour regions
separately via EB(Ps,d), as described below.

For non-contour regions, all the reconstruction loss Lrec,
content loss Lcon and style loss Lsty1 are calculated between
the generated results Îs,d and the coarse ground-truth Is,d,
masked by (1−EB(Ps,d)) ·Ms,d, focusing on reducing the
errors both in pixel and feature levels. Intuitively, although
there is no ground-truth supervision for the invisible areas,
our cGAN will provide an initial result for the masked re-
gions guided by the semantic-consistency with such visible
regions. Then, we utilize the other style loss Lsty2 between
the results Îs,d and the source face Is, which provides a
regression clue back to the texture from the original source.
Following [19], Lcon is calculated on the multi-resolutions
of the paired (Îs,d, Is,d) via bilinear interpolation.

Specific to contour regions, inspired by the CycleGAN
[31], with the unpaired data (synthesized contour lines
extracted from the output Îs,d of cGAN and the source
contour line), the contour loss Lcot forces the model to
learn a mapping between the output contour lines and
that of the source, as shown in the contour regions in
Figure 3. The cycle-consistency for contour is, Ps,d, Is →
Îs,d = G(Ps,d, Is) → G(EB(Ps,d) · Îs,d, EB(Ps) · Ps) ≈
EB(Ps) · Is. Thus, the contour loss is defined as follows:

Lcot =
∥∥∥G(EB(Ps,d) · Îs,d, EB(Ps) · Ps)− EB(Ps) · Is

∥∥∥
1
.

(4)
The total loss for the fine-tuning stage is:

Ltotal =λrLrec + λcLcon + λs1Lsty1

+ λs2Lsty2 + λctLcot.
(5)

In our experiments, we set λr = 20, λc = 2.0, λs1 = 300,
λs2 = 600, and λct = 2000.

All of the above procedures enable our personalized
cGAN to inpaint the unreasonable textures masked by Ms,d

and the gray background regions lacking background tex-
tures (Figure 6 (a)). Additionally, to a certain extent, the
cGAN makes the textures of self-occluded areas originally
inpainted by symmetrical parts visually more natural and
adds stylized lines of artistic faces in the contour regions.
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4 EXPERIMENTS

All the experiments are implemented with PyTorch on a
PC with Intel i7-11700 CPU, 64 GB RAM, and a single
3090Ti GPU. To demonstrate the suitability of our pipeline
for various artistic portraits, we choose the Artistic-Faces
dataset [41] containing 160 artistic portraits, which represent
a wide range of 16 artistic styles (e.g., cubism, comics,
impressionism). In this paper, we first train cGAN on the
VoxCeleb [38] dataset as our pre-trained model with 200
epochs, a learning rate of 10−4, and a batch size of 8. The
pre-processing method for VoxCeleb is described in [18]. For
each artistic input, we then fine-tune such a model with
2K iterations and the same learning rate and batch size as
before. The resolution of the input image and parsing map
is 224× 224. The number of iterations for fine-tuning has to
be adjusted according to the similarity between the artistic
real human faces. We suggest 1K iterations for human-like
samples (Figure 7 (Rows 1 and 2)) and 2K iterations for
imaginative samples (Figure 7 (Rows 3 and 4)). Our method
takes 30 minutes for each 1K iterations to fine-tune on a
single GPU.

4.1 Comparison with State-of-the-art Methods

We compare our ReenactArtFace with the state-of-the-art
reenactment methods including FOMM [18], PIRenderer
[19], Bi-layer [2], NeuralHead [23], MRAA [42], LIA [43] in
terms of the visual quality including identity preservation,
the accuracy of poses and expressions of the reenacted
faces and contour lines. For quantitative comparison, we
use Fréchet Inception Distance [44] (FID) to measure the
realism of the synthesized results via the similarity distri-
bution between such results and the source artistic faces.
Furthermore, cosine similarity (CSIM) of the embedding
vectors from ArcFace [45] is used to evaluate the identity
preservation between the reenacted faces and the provided
faces. Note that with the same input of an artistic face,
only NeuralHead [23] is fine-tuned with the single artistic
portrait, and the other methods are only trained on the
human face dataset, since they do not include a fine-tuning
stage.

4.1.1 Qualitative Comparison

There are several representative results shown in Figure 7,
in which the driving images contain different genders with
various expressions and poses, and the source artistic faces
are in diverse styles, ranging from human-like samples to
imaginative samples. Our results show the best identity
preservation and the most relevant expressions and poses
to those of the driving images.

For human-like samples (Figure 7 (Rows 1 and 2)), all
the compared methods generate reasonable results with
roughly correct poses/expressions. However, the existing
methods lack certain texture details such as the texture
inside the eyes. In addition, compared with the source face,
the geometry of the results by these methods changes a
lot, such as the distance between two eyes (Row 1), the
face shape especially for Bi-layer and NeuralHead. The
expression change for LIA is not noticeable enough because
the motion directions learned on the real human face are

not suitable for the artistic faces. Thanks to the boundary-
guided deformation for the 3D artistic face model and
the personalized fine-tuning for cGAN, our method can
preserve the identity the best.

For imaginative samples (Figure 7 (Rows 3 and 4)) with
a large domain gap of human faces, all the alternative
methods fail to preserve the identity and transfer the cor-
rect poses/expressions. FOMM, MRAA and PIRenderer can
better retain color information. However, they completely
distort the source geometry to fit the driving faces because
of the large geometry between the artistic and real human
faces in the training data. Bi-layer and LIA, respectively,
produce unrelated results and obvious artifacts since their
latent identity embeddings are far away from those learned
in the human dataset. The results of NeuralHead fine-tuned
with a single image are still not enough to restore the
identities, and their expressions/poses are more like the
source faces than the driving ones because their fine-tuning
is easily overfitting (e.g., the third examples (Row 3)). Due to
the explicit disentanglement of geometry and texture in our
network, our method not only provides strong geometric
guidance (reenacted parsing maps) in which expressions
and poses are rigged by 3DMM, but also uses the corre-
sponding multi-view coarse faces to learn a personalized
neural renderer (fine-tuned cGAN). Thus, our results can
not only better preserve the input identities, but also transfer
the poses/expressions from the driving more faithfully.

Taking a closer look at contour lines, FOMM, MRAA and
PIender keep a part of lines, but the inaccurate warp fields
cause that to distort and break. It seems that the contour
lines are washed away in Bi-layer, LIA and NeuralHead,
mainly because there is no contour style in real human faces.
Since our method explicitly learns the mapping of contour,
the boundaries of our results are satisfactory.

Warped-based methods [18], [19] preserve more texture
details of the source image. We attempt to fine-tune this
kind of methods. However, it is unreasonable to fine-tune
FOMM, because this method trains a keypoint detector
neural network. There is a large gap between the keypoints
of real human faces and artistic faces. After the simple fine-
tuning, the keypoint detector will be suitable for artistic
faces, but fail to extract the accurate keypoints for driving
human faces. Ideally, the fine-tuning stage can be imple-
mented for PIRenderer because it uses 3DMMs as motion
descriptors for expressions and poses. Hence, we also fine-
tune PIRenderer on artistic faces, and the results are shown
in Supplementary Material Section B.

Although there is no special design for video stabil-
ity in our pipeline, fine-tuning with 3D-consistent coarse
images helps our model to achieve temporally coherent
results. Without considering for the identity preservation,
FOMM and Bi-layer generate smooth videos. The videos
of PIRenderer, MRAA, and LIA are incoherent due to the
varying geometry and unpredictable artifacts across frames.
The overfitting of NeuralHead leads to a sudden change of
frames in a video, as shown in the accompanying video.

4.1.2 Quantitative Comparison
We conducted the quantitative comparison on 160 images
of the whole Artistic-Faces dataset. For each source input,
we used 453 driving human videos from the VoxCeleb



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Driving Source FOMM PIRenderer Bi-layer NeuralHead OursMRAA LIA

Fig. 7. Comparisons with the existing face reenactment methods. Our method shows the best identity preservation and pose transferring.

Method CSIM ↑ FID ↓
FOMM [18] 0.49 112.29

PIRenderer [19] 0.55 101.06
Bi-layer [2] 0.42 322.75

NeuralHead [23] 0.44 165.99
MRAA [42] 0.54 103.06

LIA [43] 0.55 114.49
Ours coarse 0.56 108.37

Ours 0.58 89.52

TABLE 2
Quantitative comparison between six existing methods and our

ReenactArtFace on the Artistic-Faces dataset.

test set. Table 2 shows the quantitative comparison results,
and our method significantly outperforms the compared
methods in terms of FID and CSIM. That indicates that
our results are the most similar to the ground truth on
the deep features level. This is consistent with our findings
based on the qualitative comparisons. Bi-layer get the worst
results because it generates unfaithful faces for most artistic
portraits (Figure 7 (Column 5)). CSIM is based on the face
recognition model [45], so it focuses more on local areas of
the face that are easier to identify rather than the whole
face. Since our method is based on the coarse reenactment
results, the increase of CSIM is little between our and
our coarse. The CSIM of LIA is relatively high, but it is
meaningless since their results exhibit noticeable artifacts
without obvious changes in poses and expressions (Figure 7
(Rows 3 and 4)). The results of PIRenderer and MRAA are
close to ours, since they keep a lot of textures for faces and
backgrounds via warping the source input.

4.2 Ablation Study

We report some ablation studies of our method in terms
of the effectiveness of the 3D Artistic Face Reconstruction
module in Section 4.2.1, the effectiveness of the Artistic

Refinement module in Section 4.2.2, and the effectiveness
of the contour loss in Section 4.2.3.

4.2.1 Effectiveness of 3D Artistic Face Reconstruction
We leverage parsing maps to preserve the geometry of input
artistic faces. Since these parsing maps are rendered from
the 3D mesh Ṽs and inpainted based on its semantics (Sec-
tion 3.2.1), the reconstructed mesh influences the geometry
accuracy of results. To evaluate the effectiveness of the 3D
Artistic Face Reconstruction module (Section 3.1), we com-
pare results generated with and without the deformation
step (Section 3.1.1).

Figure 8 shows representative results of the paired reen-
acted parsing maps and the corresponding generated artistic
faces, with and without the deformation step. The shape
of each facial semantic part (eyes, mouth, nose) without
deformation (Figure 8 (b)) exhibits the characteristics of
real human faces. For example, rectangular eyes ((a)-Bottom
Row) are fitted as oval eyes ((b)-Bottom Row). Additionally,
compared with the source faces (Figure 8 (a)), the sizes and
proportions of these parts and their relative locations are not
maintained (see the short nose and two symmetrically posi-
tioned eyes in (b)-Top Row). This issue is mainly because the
identity bases in 3DMM are extracted from real human faces
and the 68 landmarks commonly used on real human faces
are too sparse for artistic faces. In contrast, the deformed 3D
meshes guarantee a better geometry representation of the
artistic faces (Figure 8 (c)).

4.2.2 Effectiveness of Artistic Refinement
Since a large artistic portrait dataset with a similar style
both in texture and geometry is unachievable, one-shot
reenactment training on the human face dataset is a feasible
way to reenact several human-like artistic faces. Meanwhile,
the fine-tuning procedure plays a key role in breaking the
gap between the real human face domain and the artistic
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Driving (a) (b) (c)

Fig. 8. The ablation study for the 3D Artistic Face Reconstruction mod-
ule. Each example in (a) shows an input artistic face and its correspond-
ing parsing map. The reenacted parsing maps and faces without and
with the deformation step are given in (b) and (c), respectively.

face domain. To evaluate the effectiveness of the Artistic
Refinement Module, we perform a set of ablation studies
as shown in Figure 9, including the coarse reenactment
data after inpainting, the cGAN without the fine-tuning
stage, fine-tuned with the single source via the style loss,
fine-tuned with the single source via the cycle loss, and
fine-tuned with the coarse reenactment data respectively.
Since there is no directly pixel-level relationship between
the synthesized results and the source input (in different
poses), the content loss and reconstruction loss cannot be
used to fine-tune with one-shot setting.

As shown in Figure 9, only the results from our Artistic
Refinement Module achieve identity consistency with the
source. While the pre-trained model can only synthesize a
real face, for the human-like sample (Row 1), it extracts the
color of the face and hair, but for samples (Rows 2 and 3)
with large deviations from real human faces, the pre-trained
cGAN only transfers the color of the source background.
Intuitively, the reason is that the texture variance of the
background region is large, while that of the human face
is very limited in the human dataset. Thus, the module re-
gards such samples as the whole background. Although we
provide the initially inpainting for the coarse reenactment
faces (Column 3), there are still artifacts in the eyes, mouth,
side face and stitching regions after completing with the
symmetrical texture. In addition, it is obvious to see the
textures losing in the background. Fine-tuned with the style
loss (Column 5) provides more related texture but still loses
some details. Meanwhile, when the pose changes greatly
(Rows 2 and 3), the reenacted faces look like the copy of
the source except for the nose, eyes and mouth, which is
due to the lack of 3D supervision. Fine-tuned with the cycle
loss (Column 6) fails to produce clear results because the
many-to-one (multi-pose fake images to a single ground
truth) optimization will easily fall into local optimum. The
network does not learn the specific texture characteristics
for each reenacted parsing map, but simply provides an easy
way to restore the source artistic face. Thus, the effectiveness
of our Artistic Refinement Module is demonstrated.

Our personalized cGAN is supervised with the source
artistic face and a large number of coarse reenactment
faces via different losses. We evaluate the effectiveness of
each loss by testing the performance of our model trained
in various ways, including trained only with the source

artistic face (w/ Lsty2), trained with the coarse reenactment
faces (w/ Lsty1 + Lcon), trained with both of them (w/
Lsty2 + Lsty1 + Lcon), and trained with all the losses (w/
Lsty2 +Lsty1 +Lcon +Lrec). Since the previous works [19],
[46], [47] generally calculate the perceptual loss (i.e., the
addition of the content loss and style loss) with the same
ground truth, we regard the Lsty1 and Lcon as a whole in
our ablation study.

As shown in Figure 10, training with the source face via
Lsty2 achieves semantic style transfer but fails to preserve
the identity (Top and Middle Rows). That means that a sin-
gle source artistic face is not enough for training. When we
provide the coarse reenactment faces as the ground truth to
calculate Lsty1 and Lcon, the identity consistency improves
a lot, but the textures are rough, especially in the regions
that are not present in the source view (Top and Bottom
Rows). This is possibly because the incorrect textures of Ṽs

are masked by Mc,d (Section 3.2.1). Combining the Lsty2

with the Lsty1 and Lcon can ensure the quality of results.
Then, the incorporation of Lrec can better supplement low-
frequency information such as lines (Top Row) and color
(Bottom Row), thus further improving visual quality. In
short, Lsty1 and Lcon are the most effective in training the
personalized cGAN while Lsty2 and Lrec can help polish
the results.

4.2.3 Effectiveness of Contour Loss
Since the contour lines are an important symptom of artistic
face images and there is no existing work to discuss it, we
propose the contour loss Lcot to supervise the training of
contour regions extracted from EB(Ps,d).

To validate the efficiency of the contour loss, we first ab-
late the binary contour mask EB(Ps,d) and then with such
a mask, we provide a dedicated supervision for contour
regions from the source contour image (EB(Ps) · Is) by the
style loss and our contour loss. Figure 11 shows the results
separately produced from the same structured cGANs but
trained with different losses.

Without special consideration for the contour regions
(Column 2), the results show weaker boundaries. This is
because without the 3D consistency, the contour lines do
not exist in coarse reenactment data and the strong guidance
of the contour regions in such data makes the model learn
wrong information. Thus, in the follow-up experiments,
we use EB(Ps,d) to hide these regions in coarse data and
learn the reenacted contour lines only from such regions
in the source. Supervised by the style loss (Column 3), the
model seems to generate a lot of line segments instead of
smooth lines. Such lines disappear for parts, as seen in the
one side of the face (Row 2). We speculate that the style
loss helps the model obtain the overall style of color and
texture, but ignores the whole structure of the contour in
the source. Hence, we design the contour loss. From the
results (Column 4), it can be found that our method can
synthesize faithful lines that match the contour style of the
original artistic face.

5 APPLICATIONS

The personalized GAN model trained by our method can
be applied to various applications, such as image editing,
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Pre-trainedCoarse One-shot
w/ style loss

Ours One-shot
w/ cycle loss 

Driving Source

Fig. 9. Comparison of the results generated from our model variants with different settings given the same inputs. From column 3 to column 7: the
textured face model (coarse), the cGAN without fine-tuning (pre-trained), fine-tuned with the single input (one-shot) with the style loss, fine-tuned
with the single input (one-shot) with the cycle loss, and fine-tuned with both the single input and multiple coarse data (our final results). It is obvious
that the coarse reenactment faces can greatly help cGAN to learn 3D-consistent texture distribution.

Driving Source w/ 𝐿!"#$ w/ 𝐿!"#%
+ 𝐿&'(

w/ 𝐿!"#$
+ 𝐿!"#%
+ 𝐿&'(

w/ 𝐿!"#$
+ 𝐿!"#%

+𝐿&'( + 𝐿)*&

Fig. 10. The ablation study for the loss terms in the Artistic Refinement
module.

image/video stylization, cartoon characters animation, etc.
In this section, we show two typical applications in details.

5.1 Artistic Portrait Editing

The recent state-of-the-art editing methods [48], [49], [50] are
based on StyleGAN [29]. They are trained from a large and
diverse dataset which contains various identities, editing
via the direction in the latent space. The results from the
random latent codes are impressive. But given a specific
portrait, the latent code generated from GAN inversion
does not fully preserve facial features. Hence, using such a
latent code for editing suffers from the identity preservation
problems.

In this paper, we train a personalized cGAN with 3D
prior for each artistic identity via coarse reenactment results.
Then, the editing of geometry attributes for such an artistic

(a) Rendered (b) Inpainted (c) w/ Cov mask (d) w/ Bd mask

(a) (b) (c) (d)

Source Rendered Inpainted
Source w/ 𝐿𝑠𝑡𝑦𝑙𝑒 w/ 𝐿𝑐𝑜𝑡w/o 𝐸𝐵(𝑃𝑠,𝑑)

Fig. 11. The ablation study for the contour loss.

face is directly determined by the parsing maps, including
implicitly or explicitly control. The former is to control the
expression/pose coefficients, and then our model produces
the corresponding parsing map and result in turn. The latter
is to subjectively edit the parsing map, considering everyone
has some desired ideas for their beloved artistic characters,
such as the exaggerated expressions and the shape of the
face. With the input of a user-specified parsing map, our
cGAN outputs the editing face. Several editing parsing
maps and results are shown in Figure 12.

5.2 Face Video Stylization

Face Video Stylization task aims to smoothly transfer the
style of an artistic image to each frame of a driving face
video. Different from transferring the whole texture style
using Adaptive Instance Normalization (AdaIN) [51], our
model transfers the style in a semantically meaningful man-
ner as [48], [49], [52] by using the parsing maps of the
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Coarse OurSourceDriving

Image Edited Parsing Maps and Results

Fig. 12. Application of artistic portrait editing. The top example is edited
by a user in the source view. The bottom example is controlled by the
expression coefficients in the front view. In each example, the first row is
the input edited parsing maps and the second row is the edited artistic
faces.

driving video to guide the personalized cGAN. We start
to train a style-customized cGAN for the provided artistic
texture image. We then use the method in [39] to predict
a parsing map for each frame of the input video. Finally,
such cGAN predicts stylized frames with the inputs of these
corresponding parsing maps. Two stylization examples are
shown in Figure 13.

6 CONCLUSIONS AND DISCUSSIONS

We presented ReenactArtFace, a novel coarse-to-fine
pipeline for reenacting single artistic face images with vari-
ous styles. To address varying styles of artistic images and
the lack of a large artistic face image dataset, we proposed to
use the reconstructed 3D model to render a large number of
coarse results as the guide, enabling the personalized cGAN
training. Our technique might promote the development of
cartoon production in the future.

Additionally, we for the first time have tried to handle
the specific contour style of 2D artistic faces and proposed
a feasible solution for such a style. Extensive experiments
have demonstrated that our ReenactArtFace generates the
reenacted artistic faces preserving both exaggerated geome-
try and the imaginative texture consistency with the source
input and outperforms the existing methods. The flexible
control of inputs and attractive results from the applications
show the practicality and significance of our method.

But there are still some limitations in our method. First,
the blank background regions after pose transfer without
corresponding inpainting textures are only supervised by
the source input via the style loss. Although it can bring

Style Original Frames and Stylization ResultsStyle Original Frames and Stylization Results

Fig. 13. Application of face video stylization. In each example, the first
and second rows are three frames of a face video and the corresponding
sylization results, respectively.

reasonable results, it can also produce ambiguity and arti-
facts, especially when the area is large, as shown in Figure
14 (Top). This issue might be addressed by modeling the
background area and the other areas (face, hair, upper
body) separately at the image meshing and then treating
the background static rather than rotating with the head
pose to reduce the area of missing textures. Second, we
directly use the symmetry texture to inpaint without consid-
ering the relationship between light and shade in the initial
pose. Especially for some realistic oil painting portraits, this
simple copy-and-paste leads to discordant results, as shown
in Figure 14 (Bottom). With such supervision, our cGAN
alleviates this issue, but the results are still not satisfactory.
A possible direction is to use Poission blending [53] in
the inpainting step, and the choice of boundary constraints
without the pixels located in the contour lines is important.
Another limitation is that we deal with the contour style by
extracting these regions from the boundaries of the parsing
map. Thus, our method can only get boundaries of uniform
thickness and assume that the contour line style is consistent
across the extracted areas. For complex artworks, the style
of contour lines with inconsistent thickness and various
texture is common (e.g., the first example in Figure 9).
Thus, how to model the contour and interior of an artistic
face separately and then seamlessly merge them would
be a worthy research direction. Lastly, our model requires
manual annotation for the landmark and parsing map. Since
our method requires rendering coarse reenactment results
at each iteration during the fine-tuning stage, the whole
process for reenacting an artistic face is time-consuming. In
the future, we are interested in reducing or even eliminating
the dependency on such auxiliary information, modeling
exaggerated expressions of artistic portraits, and decreasing
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the fine-tuning time. Additionally, artistic faces by different
artists exhibit very different styles. Since the numbers of
images with similar or same styles are small in our current
dataset, we treat all the artistic faces as one category in
our current FID evaluation. Hence, we also are interested
in constructing a larger dataset of artistic images to enable a
more thorough evaluation of our proposed technique (e.g.,
calculating FID scores for each category of images with
similar or same styles.

Coarse OursSourceDriving

Fig. 14. Two less successful examples. The top row shows the artifacts
appearing in the background regions highlighted by the red dotted box,
while the bottom row shows the unnatural assembling result between
the red dotted region and the original part.
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