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Abstract

Removing outlier correspondences is one of the critical
steps for successful feature-based point cloud registration.
Despite the increasing popularity of introducing deep learn-
ing techniques in this field, spatial consistency, which is
essentially established by a Euclidean transformation be-
tween point clouds, has received almost no individual at-
tention in existing learning frameworks. In this paper, we
present PointDSC, a novel deep neural network that ex-
plicitly incorporates spatial consistency for pruning out-
lier correspondences. First, we propose a nonlocal fea-
ture aggregation module, weighted by both feature and spa-
tial coherence, for feature embedding of the input corre-
spondences. Second, we formulate a differentiable spectral
matching module, supervised by pairwise spatial compati-
bility, to estimate the inlier confidence of each correspon-
dence from the embedded features. With modest computa-
tion cost, our method outperforms the state-of-the-art hand-
crafted and learning-based outlier rejection approaches on
several real-world datasets by a significant margin. We also
show its wide applicability by combining PointDSC with
different 3D local descriptors. [code release]

1. Introduction
The state-of-the-art feature-based point cloud registra-

tion pipelines commonly start from local feature extraction
and matching, followed by an outlier rejection for robust
alignment. Although 3D local features [4, 41, 18, 28, 34]
have evolved rapidly, correspondences produced by feature
matching are still prone to outliers, especially when the
overlap of scene fragments is small. In this paper, we focus
on developing a robust outlier rejection method to mitigate
this issue.

Traditional outlier filtering strategies can be broadly
classified into two categories, namely the individual-based
and group-based [72]. The individual-based approaches,
such as ratio test [42] and reciprocal check [10], identify
inlier correspondences solely based on the descriptor simi-
larity, without considering their spatial coherence. In con-

Figure 1: Taking advantage of both the superiority of tradi-
tional (e.g. SM [38]) and learning methods (e.g. DGR [16]),
our approach integrates important geometric cues into deep
neural networks and efficiently identifies inlier correspon-
dences even under high outlier ratios.

trast, the group-based methods usually leverage the under-
lying 2D or 3D scene geometry and identify inlier cor-
respondences through the analysis of spatial consistency.
Specifically, in a 2D domain, the spatial consistency only
provides a weak relation between points and epipolar lines
[13, 9, 78]. Instead, in a 3D domain, the spatial consistency
is rigorously defined between every pair of points by rigid
transformations, serving as one of the most important geo-
metric properties that inlier correspondences should follow.
In this paper, we focus on leveraging the spatial consistency
in outlier rejection for robust 3D point cloud registration.

Spectral matching (SM) [38] is a well-known traditional
algorithm that heavily relies on 3D spatial consistency for
finding inlier correspondences. It starts with constructing a
compatibility graph using the length consistency, i.e., pre-
serving the distance between point pairs under rigid trans-
formations, then obtains an inlier set by finding the main
cluster of the graph through eigen analysis. However, this
algorithm has two main drawbacks. First, solely relying on
length consistency is intuitive but inadequate because it suf-
fers from the ambiguity problem [58] (Fig. 4a). Second, as
explained in [73, 72], spectral matching cannot effectively
handle the case of high outlier ratio (Fig. 1, left), where the
main inlier clusters become less dominant and thus are dif-
ficult to be identified through spectral analysis.

Recently, learning-based 3D outlier rejection methods,
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such as DGR [16] and 3DRegNet [51], formulate outlier
rejection as an inlier/outlier classification problem, where
the networks embed deep features from correspondence in-
put, and predict inlier probability of each correspondence
for outlier removal. For feature embedding, those meth-
ods solely rely on generic operators such as sparse con-
volution [17] and pointwise MLP [57] to capture the con-
textual information, while the essential 3D spatial relations
are omitted. Additionally, during outlier pruning, the ex-
isting methods classify each correspondence only individ-
ually, again overlooking the spatial compatibility between
inliers and may hinder the classification accuracy.

All the aforementioned outlier rejection methods are
either hand-crafted with spatial consistency adopted, or
learning-based without spatial consistency integrated. In
this paper, we aim to take the best from both line of meth-
ods, and propose PointDSC, a powerful two-stage deep neu-
ral network that explicitly leverages the spatial consistency
constraints during both feature embedding and outlier prun-
ing.

Specifically, given the point coordinates of input corre-
spondences, we first propose a spatial-consistency guided
nonlocal module for geometric feature embedding, which
captures the relations among different correspondences by
combining the length consistency with feature similarity to
obtain more representative features. Second, we formulate
a differentiable spectral matching module, and feed it with
not only the point coordinates, but also the embedded fea-
tures to alleviate the ambiguity problem. Finally, to bet-
ter handle the small overlap cases, we propose a seeding
mechanism, which first identifies a set of reliable corre-
spondences, then forms several different subsets to perform
the neural spectral matching multiple times. The best rigid
transformation is finally determined such that the geometric
consensus is maximized. To summarize, our main contribu-
tions are threefold:

1. We propose a spatial-consistency guided nonlocal (SC-
Nonlocal) module for feature embedding, which ex-
plicitly leverages the spatial consistency to weigh the
feature correlation and guide the neighborhood search.

2. We propose a differentiable neural spectral match-
ing (NSM) module based on traditional SM for outlier
removal, which goes beyond the simple length consis-
tency metric through deep geometric features.

3. Besides showing the superior performance over the
state-of-the-arts, our model also demonstrates strong
generalization ability from indoor to outdoor scenar-
ios, and wide applicability with different descriptors.

2. Related Work
Point cloud registration. Traditional point cloud regis-
tration algorithms (e.g., [8, 1, 50, 33, 46, 46]) have been

comprehensively reviewed in [56]. Recently, learning-
based algorithms have been proposed to replace the indi-
vidual components in the classical registration pipeline, in-
cluding keypoint detection [4, 40, 34] and feature descrip-
tion [21, 22, 23, 55, 4, 18, 28, 32, 2]. Besides, end-to-
end registration networks [3, 67, 68, 76] have been pro-
posed. However, their robustness and applicability in com-
plex scenes cannot always meet expectation, as observed
in [16], due to highly outlier-contaminated matches.
Traditional outlier rejection. RANSAC [24] and its vari-
ants [19, 5, 37, 39] are still the most popular outlier rejec-
tion methods. However, their major drawbacks are slow
convergence and low accuracy in cases with large outlier ra-
tio. Such problems become more obvious in 3D point cloud
registration since the description ability of 3D descriptors is
generally weaker than those in 2D domain [42, 6, 44, 43, 45]
due to the irregular density and the lack of useful tex-
ture [11]. Thus, geometric consistency, such as length con-
straint under rigid transformation, becomes important and
is commonly utilized by traditional outlier rejection algo-
rithms and analyzed through spectral techniques [38, 20],
voting schemes [26, 74, 61], maximum clique [54, 12, 64],
random walk [14], belief propagation [81] or game the-
ory [59]. Meanwhile, some algorithms based on BnB [11]
or SDP [37] are accurate but usually have high time com-
plexity. Besides, FGR [82] and TEASER [70, 71] are tol-
erant to outliers from robust cost functions such as Geman-
McClure function. A comprehensive review of traditional
3D outlier rejection methods can be found in [73, 72].
Learning-based outlier rejection. Learning-based out-
lier rejection methods are first introduced in the 2D image
matching task [48, 78, 79, 65], where outlier rejection is
formulated as an inlier/outlier classification problem. The
recent 3D outlier rejection methods DGR [16] and 3DReg-
Net [51] follow this idea, and use operators such as sparse
convolution [17] and pointwise MLP [57] to classify the pu-
tative correspondences. However, they both ignore the rigid
property of 3D Euclidean transformations that has been
widely shown to be powerful side information. In contrast,
our network explicitly incorporates the spatial consistency
between inlier correspondences, constrained by rigid trans-
formations, for pruning the outlier correspondences.

3. Methodology
In this work, we consider two sets of sparse keypoints

X ∈ R|X|×3 and Y ∈ R|Y|×3 from a pair of partially
overlapping 3D point clouds, with each keypoint having an
associated local descriptor. The input putative correspon-
dence set C can be generated by nearest neighbor search
using the local descriptors. Each correspondence ci ∈ C is
denoted as ci = (xi, yi) ∈ R6, where xi ∈ X,yi ∈ Y
are the coordinates of a pair of 3D keypoints from the two
sets. Our objective is to find an inlier/outlier label for ci, be-
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Figure 2: Architecture of the proposed network PointDSC. It takes as input the coordinates of putative correspondences, and
outputs a rigid transformation and an inlier/outlier label for each correspondence. The Spatial Consistency Nonlocal (SC-
Nonlocal) module and the Neural Spectral Matching (NSM) module are two key components of our network, and perform
feature embedding and outlier pruning, respectively. The green lines and red lines are inliers and outliers, respectively. LS
represents least-squares fitting.

ing wi = 1 and 0, respectively, and recover an optimal 3D
rigid transformation R̂, t̂ between the two point sets. The
pipeline of our network PointDSC is shown in Fig. 2 and
can be summarized as follows:

1. We embed the input correspondences into high dimen-
sional geometric features using the SCNonlocal mod-
ule (Sec. 3.2).

2. We estimate the initial confidence vi of each corre-
spondence ci to select a limited number of highly con-
fident and well-distributed seeds (Sec. 3.3).

3. For each seed, we search for its k nearest neighbors in
the feature space and perform neural spectral match-
ing (NSM) to obtain its confidence of being an in-
lier. The confidence values are used to weigh the least-
squares fitting for computing a rigid transformation for
each seed (Sec. 3.4).

4. The best transformation matrix is selected from all the
hypotheses as the one that maximizes the number of
inlier correspondences (Sec. 3.5).

3.1. PointDSC vs. RANSAC

Here, we clarify the difference between PointDSC and
RANSAC to help understand the insights behind our algo-
rithm. Despite not being designed for improving classic
RANSAC, our PointDSC shares a hypothesize-and-verify
pipeline similar to RANSAC. In the sampling step, instead
of randomly sampling minimal subsets iteratively, we uti-
lize the learned embedding space to retrieve a pool of larger
correspondence subsets in one shot (Sec. 3.2 and Sec. 3.3).
The correspondences in such subsets have higher probabili-
ties of being inliers thanks to the highly confident seeds and

Figure 3: The spatial-consistency guided nonlocal layer. β
represents the spatial consistency matrix calculated using
Eq. 2 and F is the feature from the previous layer.

the discriminative embedding space. In the model fitting
step, our neural spectral matching module (Sec. 3.4) effec-
tively prunes the potential outliers in the retrieved subsets,
producing a correct model even when starting from a not-
all-inlier sample. In this way, PointDSC can tolerate large
outlier ratios and produce highly precise registration results,
without needing exhaustive iterations.

3.2. Geometric Feature Embedding

The first module of our network is the SCNonlocal mod-
ule, which receives the correspondencesC as input and pro-
duces a geometric feature for each correspondence. Previ-
ous networks [16, 51] learn the feature embedding through
generic operators, ignoring the unique properties of 3D
rigid transformations. Instead, our SCNonlocal module ex-
plicitly utilizes the spatial consistency between inlier cor-
respondences to learn a discriminative embedding space,
where inlier correspondences are close to each other.
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As illustrated in Fig. 2, our SCNonlocal module has 12
blocks, each of which consists of a shared Perceptron layer,
a BatchNorm layer with ReLU, and the proposed nonlo-
cal layer. Fig. 3 illustrates this new nonlocal layer. Let
fi ∈ F be the intermediate feature representation for cor-
respondence ci. The design of our nonlocal layer for up-
dating the features draws inspiration from the well-known
nonlocal network [66], which captures the long-range de-
pendencies using nonlocal operators. Our contribution is to
introduce a novel spatial consistency term to complement
the feature similarity in nonlocal operators. Specifically, we
update the features using the following equation:

fi = fi + MLP(
∑|C|

j
softmaxj(αβ)g(fj)) , (1)

where g is a linear projection function. The feature similar-
ity term α is defined as the embedded dot-product similar-
ity [66]. The spatial consistency term β is defined based on
the length constraint of 3D rigid transformations, as illus-
trated in Fig. 4a (c1 and c2).

Specifically, we compute β by measuring the length dif-
ference between the line segments of point pairs in X and
its corresponding segments in Y:

βij = [1−
d2ij
σ2
d

]+, dij =
∣∣ ‖xi − xj‖−‖yi − yj‖

∣∣, (2)

where [·]+ is the max(·, 0) operation to ensure a non-
negative value of βij , and σd is a distance parameter (see
Sec. 4) to control the sensitivity to the length difference.
Correspondence pairs having the length difference larger
than σd are considered to be incompatible and get zero for
β. In contrast, βij gives a large value only if the two corre-
spondences ci and cj are spatially compatible, serving as a
reliable regulator to the feature similarity term.

Note that other forms of spatial consistency can also be
easily incorporated here. However, taking an angle-based
spatial consistency constraint as an example, the normals of
input keypoints might not always be available for outlier re-
jection and the normal estimation task is challenging on its
own especially for LiDAR point clouds [80]. Our SCNon-
local module produces for each correspondence ci a feature
representation fi, which will be used in both seed selection
and neural spectral matching module.

3.3. Seed Selection

As mentioned before, the traditional spectral matching
technique has difficulties in finding a dominant inlier clus-
ter in low overlapping cases, where it would fail to provide
a clear separation between inliers and outliers [75]. In such
cases, directly using the output from spectral matching in
weighted least-squares fitting [8] for transformation estima-
tion may lead to a sub-optimal solution since there are still
many outliers not being explicitly rejected. To address this
issue, inspired by [13], we design a seeding mechanism to

Figure 4: (a) Inlier correspondence pairs (c1, c2) always
satisfy the length consistency, while outliers (e.g. c4) are
usually not spatially consistent with either inliers (c1, c2)
or other outliers (e.g. c3). However, there exist ambigu-
ity when inliers (c2) and outliers (c3) happen to satisfy the
length consistency. The feature similarity term α provides
the possibility to alleviate the ambiguity issue. (b) The cor-
respondence subsets of a seed (blue line) found by spatial
kNN (Left) and feature-space kNN (Right).

apply neural spectral matching locally. We first find reliable
and well-distributed correspondences as seeds, and around
them search for consistent correspondences in the feature
space. Then each subset is expected to have a higher inlier
ratio than the input correspondence set, and is thus easier
for neural spectral matching to find a correct cluster.

To select the seeds, we first adopt an MLP to estimate
the initial confidence vi of each correspondence using the
feature fi learned by the SCNonlocal module, and then ap-
ply Non-Maximum Suppression [42] over the confidence to
find the well-distributed seeds. The selected seeds will be
used to form multiple correspondence subsets for the neural
spectral matching.

3.4. Neural Spectral Matching

In this step, we leverage the learned feature space to aug-
ment each seed with a subset of consistent correspondences
by performing k-nearest neighbor searching in the feature
space. We then adopt the proposed neural spectral match-
ing (NSM) over each subset to estimate a transformation as
one hypothesis. Feature-space kNN has several advantages
over spatial kNN, as illustrated in Fig. 4b. First, the neigh-
bors found in the feature space are more likely to follow a
similar transformation as the seeds, thanks to the SCNon-
local module. Second, the neighbors chosen in the feature
space can be located far apart in the 3D space, leading to
more robust transformation estimation results.

Given the correspondence subset C ′ ⊆ C (|C ′| = k)
of each seed constructed by kNN search, we apply NSM to
estimate the inlier probability, which is subsequently used
in the weighted least-squares fitting [8] for transformation
estimation. Following [38], we first construct a matrix M
representing a compatibility graph associated with C ′, as il-
lustrated in Fig. 5. Instead of solely relying on the length
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Figure 5: Constructing the compatibility graph and associ-
ated matrix (Right) from the input correspondences (Left).
We set the matrix diagonal to zero following [38]. The
weight of each graph edge represents the pairwise compati-
bility between two associated correspondences.

consistency as [38], we further incorporate the geometric
feature similarity to tackle the ambiguity problem as illus-
trated in Fig. 4a. Each entry Mij measures the compati-
bility between correspondence ci and cj from C ′, which is
defined as

Mij = βij ∗ γij , (3)

γij = [1− 1

σ2
f

∥∥f̄i − f̄j
∥∥2]+ (4)

where βij is the same as in Eq. 2, f̄i and f̄j are the L2-
normalized feature vectors, and σf is a parameter to control
sensitivity to feature difference (see Sec. 4).

The elements of M defined above are always non-
negative and increase with the compatibility between corre-
spondences. Following [38], we consider the leading eigen-
vector of matrix M as the association of each correspon-
dence with a main cluster. Since this main cluster is sta-
tistically formed by the inlier correspondences, it is natural
to interpret this association as the inlier probability. The
higher the association to the main cluster, the higher the
probability of a correspondence being an inlier. The lead-
ing eigenvector e ∈ Rk can be efficiently computed by the
power iteration algorithm [47]. We regard e as the inlier
probability, since only the relative value of e matters. Fi-
nally we use the probability e as the weight to estimate the
transformation through least-squares fitting,

R′, t′ = arg min
R,t

∑|C′|

i
ei ‖Rxi + t− yi‖2 . (5)

Eq. 5 can be solved in closed form by SVD [8]. For the
sake of completeness, we provide its derivation in the sup-
plementary 7.6. By performing such steps for each seed
in parallel, the network produces a set of transformations
{R′, t′} for hypothesis selection.

3.5. Hypothesis Selection

The final stage of PointDSC involves selecting the best
hypothesis among the transformations produced by the
NSM module. The criterion for selecting the best transfor-
mation is based on the number of correspondences satisfied

by each transformation,

R̂, t̂ = arg max
R′,t′

∑|C|

i

q
||R′xi + t′ − yi|| < τ

y
, (6)

where J·K is the Iverson bracket and τ denotes an inlier
threshold. The final inlier/outlier labelsw ∈ R|C| are given
by wi = J||R̂xi + t̂ − yi|| < τ

y
. We then recompute

the transformation matrix using all the surviving inliers in a
least-squares manner, which is a common practice [19, 5].

3.6. Loss Formulation

Considering the compatibility graph illustrated in Fig. 5,
previous works [16, 51] mainly adopt node-wise losses,
which supervise each correspondence individually. In our
work, we further design an edge-wise loss to supervise the
pairwise relations between the correspondences.
Node-wise supervision. We denote w∗ ∈ R|C| as the
ground-truth inlier/outlier labels constructed by

w∗i = J||R∗xi + t∗ − yi|| < τ
y
, (7)

where R∗ and t∗ are the ground-truth rotation and transla-
tion matries, respectively. Similar to [16, 51], we first adopt
the binary cross entropy loss as the node-wise supervision
for learning the initial confidence by

Lclass = BCE(v,w∗), (8)

where v is the initial confidence predicted (Sec. 3.3).
Edge-wise supervision We further propose the spectral
matching loss as our edge-wise supervision, formulated as

Lsm =
1

|C|2
∑

ij
(γij − γ∗ij)2, (9)

where γ∗ij = Jci, cj are both inliersK is the ground-truth
compatibility value and γij is the estimated compatibility
value based on the feature similarity defined in Eq. 4. This
loss supervises the relationship between each pair of cor-
respondences, serving as a complement to the node-wise
supervision. Our experiments (Sec. 5.4) show that the pro-
posed Lsm remarkably improves the performance.

The final loss is a weighted sum of the two losses,

Ltotal = Lsm + λLclass, (10)

where λ is a hyper-parameter to balance the two losses.

4. Implementation Details
Training. We implement our network in PyTorch [52].
Since each pair of point clouds may have different num-
bers of correspondences, we randomly sample 1,000 corre-
spondences from each pair to build the batched input during
training and set the batch size to 16 point cloud pairs. For
NSM, we choose the neighborhood size to be k = 40. (The
choice of k is studied in the supplementary 7.5). We make
σf learned by the network, and set σd as 10cm for indoor
scenes and 60cm for outdoor scenes, since σd has a clear
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physical meaning [38]. The hyper-parameter λ is set to 3.
We optimize the network using the ADAM optimizer with
an initial learning rate of 0.0001 and an exponentially de-
cayed factor of 0.99, and train the network for 100 epochs.
All the experiments are conducted on a single RTX2080 Ti
graphics card.
Testing. During testing, we use a full correspondence set
as input. We adopt Non-Maximum Suppression (NMS) to
ensure spatial uniformity of the selected seeds, and set the
radius for NMS to be the same value as the inlier threshold
τ . To avoid having excessive seeds returned by NMS and
make the computation cost manageable, we keep at most
10% of the input correspondences as seeds. To improve
the precision of the final transformation matrix, we further
adopt a simple yet effective post-refinement stage analogous
to iterative re-weighted least-squares [31, 7]. The detailed
algorithm can be found in the supplementary 7.1.

5. Experiments
The following sections are organized as follows. First,

we evaluate our method (PointDSC) in pairwise registration
tasks on 3DMatch dataset [77] (indoor settings) with differ-
ent descriptors, including the learned ones and hand-crafted
ones, in Sec. 5.1. Next, we study the generalization abil-
ity of PointDSC on KITTI dataset [25] (outdoor settings)
using the model trained on 3DMatch in Sec. 5.2. We fur-
ther evaluate PointDSC in multiway registration tasks on
augmented ICL-NUIM [15] dataset in Sec. 5.3. Finally, we
conduct ablation studies to demonstrate the importance of
each proposed component in PointDSC.

5.1. Pairwise Registration

We follow the same evaluation protocols in 3DMatch to
prepare training and testing data, where the test set contains
eight scenes with 1, 623 partially overlapped point cloud
fragments and their corresponding transformation matrices.
We first voxel-downsample the point clouds with a 5cm
voxel size, then extract different feature descriptors to build
the initial correspondence set as input. The inlier threshold
τ is set to 10cm.
Evaluation metrics. Following DGR [16], we use three
evaluation metrics, namely (1) Registration Recall (RR), the
percentage of successful alignment whose rotation error and
translation error are below some thresholds, (2) Rotation
Error (RE), and (3) Translation Error (TE). RE and TE are
defined as

RE(R̂) = arccos
Tr(R̂TR∗)− 1

2
, TE(̂t) =

∥∥t̂− t∗
∥∥
2
,

(11)
where R∗ and t∗ denote the ground-truth rotation and trans-
lation, respectively, and the average RE and TE are com-
puted only on successfully registered pairs. Besides, we
also report the intermediate outlier rejection results, in-

cluding Inlier Precision (IP)= #kept inliers
#kept matches and Inlier Re-

call (IR)=#kept inliers
#inliers , which are particularly introduced to

evaluate the outlier rejection module. For RR, one registra-
tion result is considered successful if the TE is less than
30cm and the RE is less than 15°. For a fair comparison,
we report two sets of results by combining different outlier
rejection algorithms with the learned descriptor FCGF [18]
and hand-crafted descriptor FPFH [60], respectively.
Baseline methods. We first select four representative tra-
ditional methods: FGR [82], SM [38], RANSAC [24], and
GC-RANSAC [5], as well as the state-of-the-art geometry-
based method TEASER [71]. For learning-based methods,
we choose 3DRegNet [51] and DGR [16] as the baselines,
since they also focus on the outlier rejection step for point
cloud registration. We also report the results of DGR with-
out RANSAC (i.e., without the so-called safeguard mech-
anism) to better compare the weighted least-squares solu-
tions. We carefully tune each method to achieve the best re-
sults on the evaluation dataset for a fair comparison. More
details can be found in the supplementary 7.2.
Comparisons with the state-of-the-arts. We compare
our PointDSC with the baseline methods on 3DMatch.
As shown in Table 1, all the evaluation metrics are re-
ported in two settings: input putative correspondences con-
structed by FCGF (left columns) and FPFH (right columns).
PointDSC achieves the best Registration Recall as well as
the lowest average TE and RE in both settings. More statis-
tics can be found in the supplementary 7.4.
Combination with FCGF descriptor. Compared with the
learning-based baselines, PointDSC surpasses the second
best method, i.e., DGR, by more than 9% in terms of F1
score, indicating the effectiveness of our outlier rejection al-
gorithm. Besides, although DGR is only slightly worse than
PointDSC in Registration Recall, it is noteworthy that more
than 35% (608/1623) registration pairs are marked as fail-
ure and solved by RANSAC (safeguard mechanism). If no
safeguard mechanism is applied, DGR only achieves 86.5%
Registration Recall.

Different from the conclusion in [16], our experiments
indicate that RANSAC still shows competitive results when
combined with a powerful descriptor FCGF. Nevertheless,
our method is about 60 times faster than RANSAC-100k
while achieving even higher Registration Recall. We also
report the performance of RANSAC with the proposed post-
refinement step to clearly demonstrate the superiority of our
outlier rejection module. SM and TEASER achieve slightly
better Inlier Precision than PointDSC, however, they have
much lower Inlier Recall (38.36% and 68.08% vs. 86.54%
(Ours)). We thus conclude that PointDSC achieves a better
trade-off between precision and recall.
Combination with FPFH descriptor. We further evalu-
ate all the outlier rejection methods equipped with the tra-
ditional descriptor, FPFH. Note that for testing learnable
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FCGF (learned descriptor) FPFH (traditional descriptor)
RR(%↑) RE(°↓) TE(cm↓) IP(%↑) IR(%↑) F1(%↑) Time(s) RR(%↑) RE(°↓) TE(cm↓) IP(%↑) IR(%↑) F1(%↑) Time(s)

FGR [82] 78.56 2.82 8.36 - - - 0.76 40.67 3.99 9.83 - - - 0.28
SM [38] 86.57 2.29 7.07 81.44 38.36 48.21 0.03 55.88 2.94 8.15 47.96 70.69 50.70 0.03
TEASER [71] 85.77 2.73 8.66 82.43 68.08 73.96 0.11 75.48 2.48 7.31 73.01 62.63 66.93 0.03
GC-RANSAC-100k [5] 92.05 2.33 7.11 64.46 93.39 75.69 0.47 67.65 2.33 6.87 48.55 69.38 56.78 0.62
RANSAC-1k [24] 86.57 3.16 9.67 76.86 77.45 76.62 0.08 40.05 5.16 13.65 51.52 34.31 39.23 0.08
RANSAC-10k 90.70 2.69 8.25 78.54 83.72 80.76 0.58 60.63 4.35 11.79 62.43 54.12 57.07 0.55
RANSAC-100k 91.50 2.49 7.54 78.38 85.30 81.43 5.50 73.57 3.55 10.04 68.18 67.40 67.47 5.24
RANSAC-100k refine 92.30 2.17 6.76 78.38 85.30 81.43 5.51 77.20 2.62 7.42 68.18 67.40 67.47 5.25
3DRegNet [51] 77.76 2.74 8.13 67.34 56.28 58.33 0.05 26.31 3.75 9.60 28.21 8.90 11.63 0.05
DGR w/o s.g. [16] 86.50 2.33 7.36 67.47 78.94 72.76 0.56 27.04 2.61 7.76 28.80 12.42 17.35 0.56
DGR [16] 91.30 2.40 7.48 67.47 78.94 72.76 1.36 69.13 3.78 10.80 28.80 12.42 17.35 2.49
PointDSC 93.28 2.06 6.55 79.10 86.54 82.35 0.09 78.50 2.07 6.57 68.57 71.61 69.85 0.09

Table 1: Registration results on 3DMatch. RANSAC-100k refine represents RANSAC with 100k iterations, followed by the
proposed post-refinement step. DGR w/o s.g. represents DGR [16] without the safeguard mechanism (RANSAC). The Time
columns report the average time cost during testing, excluding the construction of initial input correspondences.

RR(↑) RE(↓) TE(↓) F1(↑) Time
SM [38] 79.64 0.47 12.15 56.37 0.18
RANSAC-1k [24] 11.89 2.51 38.23 14.13 0.20
RANSAC-10k 48.65 1.90 37.17 42.35 1.23
RANSAC-100k 89.37 1.22 25.88 73.13 13.7
DGR [16] 73.69 1.67 34.74 4.51 0.86
PointDSC 90.27 0.35 7.83 70.89 0.31
DGR re-trained 77.12 1.64 33.10 27.96 0.86
PointDSC re-trained 98.20 0.35 8.13 85.54 0.31

Table 2: Registration results on KITTI under FPFH setting.

outlier rejection methods including PointDSC, we directly
re-use the model trained with the FCGF descriptor with-
out fine-tuning, since it is expected that the outlier rejec-
tion networks are seamlessly compatible with different fea-
ture descriptors. As shown in Table 1, the superiority of
PointDSC becomes more obvious when evaluated with the
FPFH, where PointDSC achieves 78.5% in Registration Re-
call and remarkably surpasses the competitors. RANSAC-
1k and RANSAC-10k perform significantly worse since the
outlier ratios are much higher when using FPFH to build
the input correspondences. RANSAC-100k with the post-
refinement step still achieves the second best performance
at the cost of the high computation time. In summary, all
the other methods suffer from larger performance degrada-
tion than PointDSC when equipped with a weaker descrip-
tor, strongly demonstrating the robustness of PointDSC to
the input correspondences generated by different feature de-
scriptors.

5.2. Generalization to Outdoor Scenes

In order to evaluate the generalization of PointDSC to
new datasets and unseen domains, we evaluate on a LiDAR
outdoor dataset, namely the KITTI odometry dataset, using
the model trained on 3DMatch. We follow the same data
splitting strategy in [18, 16] for a fair comparison. We use
30cm voxel size and set the inlier threshold τ to 60cm. The
evaluation metrics are the same as those used in the indoor
setting with a 60cm TE threshold and a 5° RE threshold.
Comparisons with the state-of-the-arts. We choose SM,
DGR, and RANSAC as the baseline methods, and combine
them with the FPFH descriptor. We choose FPFH because
the results with FCGF are more or less saturated. (The re-
sults with FCGF can be found in the supplementary 7.5.)

Living1 Living2 Office1 Office2 AVG
ElasticFusion [69] 66.61 24.33 13.04 35.02 34.75
InfiniTAM [35] 46.07 73.64 113.8 105.2 84.68
BAD-SLAM[63] fail 40.41 18.53 26.34 -
Multiway + FGR [82] 78.97 24.91 14.96 21.05 34.98
Multiway + RANSAC [24] 110.9 19.33 14.42 17.31 40.49
Multiway + DGR [16] 21.06 21.88 15.76 11.56 17.57
Multiway + PointDSC 20.25 15.58 13.56 11.30 15.18

Table 3: ATE(cm) on Augmented ICL-NUIM. The last col-
umn is the average ATE over all scenes. Since BAD-SLAM
fails on one scene, we do not report its average ATE.

We report two sets of results for DGR and PointDSC ob-
tained when trained from scratch (labelled “re-trained”) and
pre-trained on 3DMatch (no extra label). As shown in Ta-
ble 2, PointDSC trained on 3DMatch still gives compet-
itive results, demonstrating its strong generalization abil-
ity on the unseen dataset. When re-trained from scratch,
PointDSC can be further improved and outperform the base-
line approaches by a significant margin.

5.3. Multiway Registration

For evaluating multiway registration, we use Augmented
ICL-NUIM dataset [15], which augments each synthetic
scene [29] with a realistic noise model. To test the general-
ization ability, we again use the models trained on 3DMatch
without fine-tuning. Following [16], we first perform pair-
wise registration using PointDSC with FPFH descriptor to
obtain the initial poses, then optimize the poses using pose
graph optimization [36] implemented in Open3D [83]. We
report the results of baseline methods presented in [16]. The
Absolute Trajectory Error (ATE) is reported as the evalua-
tion metric. As shown in Table 3, our method achieves the
lowest average ATE over three of the four tested scene types.

5.4. Ablation Studies

Ablation on feature encoder. To study the effectiveness
of the proposed SCNonlocal module, we conduct extensive
ablation experiments on 3DMatch. Specifically, we com-
pare (1) PointCN (3D version of [48], which is the feature
extraction module adopted by 3DRegNet [51]); (2) Nonlo-
cal (the SCNonlocal module without the spatial term, i.e.,
the same operator as in [66]); and (3) SCNonlocal (the pro-
posed operator). All the above methods are combined either
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Figure 6: The distribution of feature similarity of inlier pairs
and non-inlier pairs (i.e. at least one outlier in the pair).

RR(↑) IP(↑) IR(↑) F1(↑) Time
PointCN + classifier 78.19 58.05 39.59 42.65 0.04
Nonlocal + classifier 83.30 65.49 67.13 64.28 0.07
SCNonlocal + classifier 88.17 74.74 77.86 75.04 0.07
PointCN + NSM 92.48 78.48 82.10 79.98 0.06
Nonlocal + NSM 92.54 78.68 83.13 80.58 0.09
SCNonlocal + NSM 93.28 79.10 86.54 82.35 0.09

Table 4: Ablation experiments of SCNonlocal module.
Rows 1-3 and Rows 4-6 show the registration results of
different feature extractors combined with a classification
layer and the neural spectral matching module, respectively.

with a classification layer [16, 51] or a proposed NSM layer,
resulting in six combinations in total. Other training or test-
ing settings remain unchanged for a fair comparison.

As shown in Table 4, the proposed SCNonlocal module
consistently improves the registration results across all the
settings and metrics. The spatial term plays a critical role in
the SCNonlocal module, without which the Nonlocal mod-
ule performs drastically worse. Furthermore, we compute
the feature similarity defined in Eq. 4 between each pair of
correspondences and plot the distribution in Fig. 6. With
the SCNonlocal module, the similarity of the inlier pairs is
concentrated near 0.8 and is generally much larger than that
of the non-inlier pairs. This implies that inliers are closer
to each other in the embedding space. In contrast, for the
baseline methods, the inliers are less concentrated, i.e., the
average similarity between inliers is low.
Ablation on spectral matching. We further conduct
ablation experiments to demonstrate the importance of
NSM module. As shown in Table 5, the comparison be-
tween Rows 1 and 2 shows that augmenting the traditional
SM with neural feature consistency notably improves the
result. For +seeding, we adopt the neural spectral matching
over multiple correspondence subsets found by the feature-
space kNN search from highly confident seeds, and deter-
mine the best transformation that maximizes the geometric
consensus. This significantly boosts the performance be-
cause it is easier to find the inlier clusters for the consistent
correspondence subsets.

5.5. Qualitative Results

As shown in Fig. 7, PointDSC is robust to extremely high
outlier ratios. Please refer to the supplementary 7.7 for more

RR(↑) RE(↓) TE(↓) F1(↑) Time
Traditional SM 86.57 2.29 7.07 48.21 0.03
+ neural 88.43 2.21 6.91 48.88 0.06
+ seeding 92.91 2.15 6.72 82.35 0.08
+ refine 93.28 2.06 6.55 82.35 0.09
w/o Lsm 92.61 2.07 6.75 81.58 0.09

Table 5: Ablation experiments of NSM module. Note that
every row with ‘+’ represents the previous row equipped
with the new component. +refine is our full model. The
last row is the full model trained without Lsm.

Figure 7: Visualization of outlier rejection results on exam-
ples with high outlier ratios from 3DMatch (first row) and
KITTI (second row). From left to right: input correspon-
dences, results of RANSAC-100k, and results of PointDSC.

qualitative results.

6. Conclusion
We have designed a novel 3D outlier rejection network

that explicitly incorporates spatial consistency established
by Euclidean transformations. We have proposed a spatial-
consistency guided nonlocal module (SCNonlocal) and
a neural spectral matching module (NSM) for feature
embedding and outlier pruning, respectively. We further
proposed a seeding mechanism to adopt the NSM module
multiple times to boost the robustness under high outlier
ratios. The extensive experiments on diverse datasets
showed that our method brings remarkable improvement
over the state-of-the-arts. Our method can also generalize
to unseen domains and cooperate with different local
descriptors seamlessly.
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7. Supplementary Material

7.1. Implementation Details of PointDSC

We provide additional information about the implementa-
tion and training details of our PointDSC. The source code
will be made publicly available after the paper gets ac-
cepted.
Post-refinement. Alg. 1 shows the pseudo-code of our
post-refinement step. Inspired by [7], we iteratively alter-
nate between weighing the correspondences and computing
the transformation, to improve the accuracy of the trans-
formation matrices. The inlier threshold τ is set to 10cm
and 60cm for 3DMatch and KITTI, respectively. We set the
maximum iteration number to 20.

Algorithm 1: Post-Refinement Algorithm

Input: R̂, t̂: initial transformation; X,Y
Output: R̂, t̂: refined transformation.
Parameter: τ .
if iter < maxiter then

# Compute the residual and the inlier num.
resi = ||R̂xi + t̂− yi||2
wi = Jresi < τ

y

num =
∑
wi

# If inlier num does not change, then stop.
if ∆num = 0 then

break
else

# Compute the weighting term.
φi = (1 + ( resiτ )2)−1

# Estimate transformation.
R̂, t̂ =
arg minR,t

∑N
i φiwi ‖Rxi + t− yi‖2

iter = iter + 1

else
break

Calculation of M. In Sec. 3.4 of the main text, we calcu-
late the compatibility between correspondences by multi-
plying the spatial consistency term and the feature similar-
ity term mainly because of its simplicity and good perfor-
mance. Other fusion schemes such as the weighted arith-
metic average and weighted geometric average can also be
used to define the compatibility metric. We have explored
several alternatives but found only a marginal performance
difference.
Power iteration algorithm. The power iteration algorithm
can compute the leading eigenvector e of the matrix M in
several iterations. For M ∈ Rk×k, the power iteration op-
erator is

eiter+1 =
Meiter

‖Meiter‖
. (12)

We initialize e0 = 1. By iterating Eq. 12 until convergence,
we get the vector e, whose elements can take real values in
[0, 1]. In practice, we find that the power iteration algorithm
usually converges in fewer than five iterations.
Data augmentation. During training, we apply data aug-
mentation, including adding Gaussian noise with standard
deviation of 0.005, random rotation angle ∈ [0◦, 360◦)
around an arbitrary axis, and random translation ∈
[−0.5m, 0.5m] around each axis.
Hyper-parameters. The hyper-parameter σd controls the
sensitivity to length difference, serving as a pairwise coun-
terpart of the unary inlier threshold τ . The larger σd, the
more length difference between two pairs of correspon-
dences we can accommodate. It is set manually for a spe-
cific scene and kept fixed. Picking a scene-specific value of
σd is easy due to its clear physical meaning. However, σf
controlling the sensitivity to feature difference has no clear
physical meaning. We thus leave σf to be learned by the
network.

7.2. Implementation Detail of Baseline Methods

The baseline methods RANSAC [24] and FGR [82] have
been implemented in Open3D [83]. For GC-RANSAC [5]
and TEASER [71], we use the official implementations.
Note that we use TEASER with reciprocal check; oth-
erwise, it takes an extremely long time for testing when
the number of input correspondences becomes large. For
DGR [16], we use its official implementation and the re-
leased pre-trained model. Due to the unsatisfactory results
of publicly released code, we re-implement SM [38] and
3DRegNet [51], with the implementation details as follows.
Spectral matching. Traditional spectral matching [38] uses
a greedy algorithm based on a one-to-one mapping con-
straint to discretize the leading eigenvector into the in-
lier/outlier labels. However, the greedy algorithm often
does not show satisfactory performance in real cases. For
example, if the input correspondences are pre-filtered by
reciprocal check, the greedy algorithm could not reject any
correspondences since all of them already satisfy the one-
to-one mapping constraint. The Hungarian algorithm [49]
can also be used for discretization but provides results sim-
ilar to the greedy algorithm. In our work, we simply select
10% of the input correspondences with the highest confi-
dence values as the inlier set. This approach empirically
shows to be effective throughout our experiments. Then the
transformation between two point clouds can be estimated
using the selected correspondences.
3DRegNet. We keep the network architecture proposed in
3DRegNet [51] and train it on 3DMatch using the same set-
tings as PointDSC. However, as observed in [16], 3DReg-
Net does not converge during training and the registration
block cannot produce reasonable results. We speculate that
directly regressing the pose results in the poor performance
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due to the non-linearity of the rotation space [53, 30]. Thus
we regard the output of the classification block as the in-
lier confidence and use the confidence as the weight for
weighted least-squares fitting. We then train the network
using the classification loss only, since we find the regis-
tration loss does not improve the performance. The modi-
fied 3DRegNet becomes a 3D variant of PointCN [48] and
achieves reasonable results.

7.3. Time Complexity Analysis

We report the average runtime of each component in
the proposed pipeline on the 3DMatch test set (roughly
5k putative correspondence per fragment) in Table 6.
The reported times are measured using an Intel Xeon 8-
core 2.1GHz CPU (E5-2620) and an NVIDIA GTX1080Ti
GPU.

SCNonlocal Seed Selection NSM Post Refine Overall
62.0 2.0 14.4 11.1 89.5

Table 6: Runtime of each component in milli-seconds, av-
eraged over 1,623 test pairs of 3DMatch. The time of hy-
pothesis selection is included in the NSM module.

7.4. Additional Statistics

We report the area under cumulative error curve (AUC)
of the rotation and translation errors defined in Eq. 11 at
different thresholds, as shown in Table 7. PointDSC consis-
tently outperforms the state-of-the-arts on both the AUC of
the Rotation Error (RE) and Translation Error (TE).

RE AUC TE AUC
5◦ 10◦ 15◦ 5cm 10cm 15cm 20cm 25cm 30cm

SM 50.14 67.24 74.37 16.29 35.98 48.61 56.90 62.57 66.67
DGR 50.22 69.98 77.78 14.13 35.28 49.32 58.50 64.74 69.19
RANSAC 49.99 70.43 78.31 12.16 33.15 47.99 57.81 64.33 68.95
GC-RANSAC 52.81 71.56 78.90 15.33 36.77 50.94 59.95 65.94 70.19
PointDSC 57.32 74.85 81.50 17.85 40.63 54.56 63.32 69.02 73.00

Table 7: Registration results on 3DMatch. We calculate the
exact AUC following [62]: the higher, the better. We run
100k iterations for both RANSAC and GC-RANSAC.

We also report the scene-wise registration results of our
method on 3DMatch in Table 8.

RR(%) RE(°) TE(cm) IP(%) IR(%) F1(%)
Kitchen 98.81 1.67 5.12 80.57 88.83 84.26
Home1 97.44 1.87 6.45 83.34 88.91 85.88
Home2 82.21 3.36 7.46 71.39 80.20 74.78
Hotel1 98.67 1.88 6.04 83.96 91.48 87.38
Hotel2 92.31 1.98 5.74 81.07 86.97 83.82
Hotel3 92.59 2.00 5.87 82.65 88.57 85.03
Study 89.04 2.29 9.20 77.00 83.72 79.97
Lab 80.52 1.91 8.41 70.31 77.88 73.46

Table 8: Scene-wise statistics for PointDSC on 3DMatch.

7.5. Additional Experiments

Registration results on KITTI. Due to the space limita-
tion and the saturated performance under the FCGF setting,
we only report the registration results on KITTI under the
FPFH setting in the main text. Here we report the perfor-
mance of all the methods combined with FCGF in Table 9.
For the learning-based models DGR and PointSM, we re-
port the performance of the models trained from scratch (la-
belled “re-trained”) and pre-trained on the indoor dataset
3DMatch (no extra label) with the FCGF descriptor.

RR(↑) RE(↓) TE(↓) F1(↑) Time
SM 96.76 0.50 19.73 22.84 0.10
RANSAC-1k 97.12 0.48 23.37 84.26 0.22
RANSAC-10k 98.02 0.41 22.94 85.05 1.43
RANSAC-100k 98.38 0.38 22.60 85.42 13.4
DGR 95.14 0.43 23.28 73.60 0.86
PointDSC 97.84 0.33 20.99 85.29 0.31
DGR re-trained 96.90 0.33 21.29 73.56 0.86
PointDSC re-trained 98.20 0.33 20.94 85.37 0.31

Table 9: Registration results on KITTI under the FCGF set-
ting. The reported time numbers do not include the con-
struction of initial correspondences.

Under low-overlapping cases. Recently, Huang et. al [32]
have constructed a low-overlapping dataset 3DLoMatch
from the 3DMatch benchmark to evaluate the point cloud
registration algorithms under low-overlapping scenarios. To
demonstrate the robustness of our PointDSC, we further
evaluate our method on the 3DLoMatch dataset and re-
port the results1 in Table 10. Note that we directly use
the model trained on 3DMatch without fine-tuning and keep
5cm voxel for the FCGF descriptor. All the other settings
are the same as [32] for a fair comparison.

5000 2500 1000 500 250 ∆
FCGF[18] + RANSAC 35.7 34.9 33.4 31.3 24.4 -
FCGF[18] + PointDSC 52.0 51.0 45.2 37.7 27.5 +10.74
Predator[32] + RANSAC 54.2 55.8 56.7 56.1 50.7 -
Predator[32] + PointDSC 61.5 60.2 58.5 55.4 50.4 +2.50

Table 10: Registration recall on the 3DLoMatch dataset us-
ing different numbers of points to construct the input cor-
respondence set. The last column is the average increase
brought by PointDSC.

As shown in Table 10, our method consistently outper-
forms RANSAC when combined with different descriptors.
Moreover, our method can further boost the performance of
Predator [32], a recently proposed learning-based descrip-
tors especially designed for low-overlapping registration,
showing the effectiveness and robustness of our method un-
der high outlier ratios. PointDSC increases the registration
recall by 16.3% and 7.3% under 5000 points setting for
FCGF and Predator, respectively. Note that PointDSC does

1The computation of registration recall is slightly different with ours,
we refer readers to [32] for more details.
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not bring much performance gain when only a small number
of points (e.g. less than 500) are used to construct the input
correspondences mainly because some of the point cloud
pairs have too few (e.g. less than 3) correspondences to
identify a unique registration.
Prioritized RANSAC. Despite the common usage of the
inlier probability predicted by networks in weighted least-
squares fitting [16, 27], little attention has been drawn to
leverage the predicted probability in a RANSAC frame-
work. In this experiment, we derive a strong RANSAC
variant (denoted as Prioritized) by using the inlier proba-
bility for selecting seeds to bias the sampling distribution.
For a fair comparison, we implement Prioritized using the
same codebase (Open3D) as RANSAC. As shown in Ta-
ble 11, Prioritized outperforms classic RANSAC by more
than 30% in terms of registration recall, indicating that the
inlier probability predicted by our method is meaningful
and accurate, and thus could help RANSAC to sample all-
inlier subsets earlier and to achieve better performance in
fewer iterations. This RANSAC variant can also be used
for each correspondence subset to replace the weighted LS
in Eq. 5, denoted as Local Prioritized in Table 11. Still,
PointDSC outperforms the strong baselines with better ac-
curacy and faster speed.

RR(%) RE(°) TE(cm) F1(%) Time(s)
RANSAC-1k 40.05 5.16 13.65 39.23 0.08
Prioritized-1k 74.31 2.83 8.26 67.58 0.13
Local Prioritized 78.00 2.08 6.42 69.44 0.24
PointDSC 78.50 2.07 6.57 69.85 0.09

Table 11: Results on 3DMatch test set using FPFH.

Ablation on loss function. The Lsm is proposed to provide
additional supervision, i.e., the pairwise relations between
correspondences, serving as a complement to the node-wise
supervision. The edge-wise supervision encourages the in-
liers to be concentrated in the embedding space, and this is
the key assumption of our NSM module. To demonstrate
its effectiveness, we compare the model trained with Eq. 10
and the model trained without the proposed spectral match-
ing loss Lsm (Eq. 9) in Table 5. As shown in Table 12, Lsm
improves the registration recall by 0.67% over the strong
baseline.

RR(↑) RE(↓) TE(↓) F1(↑) Time
PointDSC 93.28 2.06 6.55 82.35 0.09
w/o Lsm 92.61 2.07 6.75 81.58 0.09

Table 12: Ablation experiments of NSM module.

Effect of neighborhood size k. The size of correspondence
subset, k, (Sec. 3.4) is a key parameter of our proposed
method, and controls the size of each correspondence subset
for neural spectral matching. We test the performance of our
method with k being 10, 20, 30, 40, 50, 60, 100, and 200,
respectively. As shown in Table 13, the results show that our
method is robust to the choice of k. We ascribe the robust-

ness to the neural spectral matching module, which effec-
tively prunes the potential outliers in the retrieved subsets,
thus producing a correct model even when starting from a
not-all-inlier sample. We finally choose k = 40 for its best
Registration Recall and modest computation cost.

RR(↑) RE(↓) TE(↓) IP(↑) IR(↑) F1(↑)
10 92.73 2.04 6.44 79.01 85.51 81.87
20 92.79 2.04 6.50 78.88 85.86 81.96
30 93.10 2.04 6.50 79.07 86.35 82.25
40 93.28 2.06 6.55 79.10 86.54 82.35
50 93.10 2.05 6.54 79.10 86.47 82.34
60 92.91 2.04 6.51 79.14 86.61 82.42
100 92.91 2.04 6.53 78.87 86.25 82.12
200 92.79 2.04 6.51 78.96 86.37 82.22

Table 13: Performance of our PointDSC when varying the
size of correspondence subsets in the NSM module.

Joint training with descriptor and detector. In this part,
we explore the potential of jointly optimizing the local fea-
ture learning and outlier rejection stages. A recently pro-
posed method D3Feat [4], which efficiently performs dense
feature detection and description by a single network, best
suits our need. By back-propagating gradients to the in-
put descriptors, the detector network can also be updated.
Thus we build an end-to-end registration pipeline by tak-
ing the output of D3Feat as the input to our outlier rejec-
tion algorithm. We establish the correspondences using soft
nearest neighbor search proposed in [27] to make the whole
pipeline differentiable. We first train the feature network
and the outlier rejection network separately, and then fine-
tune them together using the losses in [4] and Eq. 10.

However, we did not observe performance improvement
for the feature network in this preliminary joint training ex-
periment. We suspect that the current losses are unable to
provide meaningful gradients to the feature network. We
believe that it is an interesting future direction to design
proper loss formulations for end-to-end learning of both
feature and outlier rejection networks.

Nevertheless, it is noteworthy that within a reasonable
range, D3Feat + PointDSC achieves improved results when
using fewer but more confident keypoints to build the input
putative correspondences for outlier rejection. We ascribe
the performance improvement to the elimination of key-
points in non-salient regions like smooth surface regions,
reducing the failure registration caused by large symmet-
ric objects in the scene. (See the visualization of failure
cases Fig. 11 for more detail.) The results of D3Feat +
PointDSC under different numbers of keypoints (labelled
by Joint(#num)) are provided in Table 14 for comparisons.

7.6. Derivation of Eq. 5

For completeness, we summarize the closed-form so-
lution of the weighted least-squares pairwise registration
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RR(↑) RE(↓) TE(↓) IP(↑) IR(↑) F1(↑)
PointDSC 93.28 2.06 6.55 79.10 86.54 82.35
Joint (5000) 92.42 1.83 5.87 79.02 85.14 81.72
Joint (4000) 92.67 1.86 5.88 79.67 85.54 82.26
Joint (3000) 93.35 1.85 5.92 80.78 86.26 83.19
Joint (2500) 93.59 1.86 6.00 81.05 86.40 83.38
Joint (2000) 93.53 1.85 6.02 81.14 86.11 83.30
Joint (1000) 90.82 1.96 6.38 78.75 83.41 80.64

Table 14: Registration results of joint training with descrip-
tor and detector on 3DMatch.

problem [8],

R̂, t̂ = arg min
R,t

N∑
i

ei ‖Rxi + t− yi‖2 , (13)

where (xi, yi) is a pair of corresponding points, with xi

and yi being from point clouds X ∈ RN×3 and Y ∈ RN×3,
respectively. Let x̄ and ȳ denote the weighted centroids of
X and Y, respectively:

x̄ =

∑N
i eixi∑N
i ei

, ȳ =

∑N
i eiyi∑N
i ei

. (14)

We first convert the original coordinates to the centered co-
ordinates by subtracting the corresponding centroids,

x̃i = xi − x̄, ỹi = yi − ȳ, i = 1, ..., N. (15)

The next step involves the calculation of the weighted co-
variance matrix H,

H = X̃TEỸ, (16)

where X̃ and Ỹ are the matrix forms of the centered co-
ordinates and E = diag(e1, e2, ..., eN ). Then the rotation
matrix from X to Y can be found by singular value decom-
position (SVD),

[U,S,V] = SVD(H), (17)

R̂ = V

 1 0 0
0 1 0
0 0 det(VUT)

UT, (18)

where det(·) denotes the determinant, which is used to avoid
the reflection cases. Finally, the translation between the two
point clouds is computed as,

t̂ = ȳ − R̂x̄. (19)

7.7. Qualitative Results

We show the outlier rejection results on 3DMatch and
KITTI in Fig. 9 and Fig. 10, respectively. For the KITTI
dataset, we use the FPFH descriptor to better demonstrate

the superiority of our method. RANSAC suffers from sig-
nificant performance degradation because the FPFH de-
scriptor results in large outlier ratios, where it is harder to
sample an outlier-free set. In contrast, our PointDSC still
gives satisfactory results.

We also provide the visualization of failure cases of our
method on 3DMatch in Fig. 11. One common failure case
happens when there are large symmetry objects (e.g., the
wall, floor) in a scene, resulting in rotation errors around
90°or 180°. In this case, the clusters formed by outlier cor-
respondences could become dominant, leading to incorrect
transformation hypotheses. Then an incorrect transforma-
tion is probably selected as the final solution since a large
number of outlier correspondences would satisfy this trans-
formation. To highlight this issue, we draw the distribution
of rotation errors of unsuccessful registration pairs on the
3DMatch test set in Fig. 8, from which we can find that a
large portion of pairs has around 90°and 180°.

Figure 8: Rotation errors of unsuccessful registration pairs
of PointDSC on the 3DMatch test set.
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Figure 9: Visualization of outlier rejection results on the 3DMatch dataset. From left to right: input correspondences con-
structed by FCGF, results of RANSAC-100k, and results of PointDSC. Best viewed with color and zoom-in.
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Figure 10: Visualization of outlier rejection results on the KITTI dataset. From left to right: input correspondences con-
structed by FPFH (we choose FPFH to better demonstrate the robustness of our method to high outlier ratios), results of
RANSAC-100k, and results of PointDSC. Best viewed with color and zoom-in.

Figure 11: Two representative failure examples of our method on 3DMatch. In each example, ground-truth registration (Left)
and estimated registration (Right). We observe that our method fails mainly due to the symmetries in the scene.
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