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PlanNet: A Generative Model for
Component-Based Plan Synthesis

Qiang Fu*, Shuhan He, Xueming Li, Hongbo Fu

Abstract—We propose a novel generative model named as PlanNet for component-based plan synthesis. The proposed model
consists of three modules, a wave function collapse algorithm to create large-scale wireframe patterns as the embryonic forms of floor
plans, and two deep neural networks to outline the plausible boundary from each squared pattern, and meanwhile estimate the
potential semantic labels for the components. In this manner, we use PlanNet to generate a large-scale component-based plan dataset
with 10K examples. Given an input boundary, our method retrieves dataset plan examples with similar configurations to the input, and
then transfers the space layout from a user-selected plan example to the input. Benefiting from our interactive workflow, users can
recursively subdivide individual components of the plans to enrich the plan contents, thus designing more complex plans for larger
scenes. Moreover, our method also adopts a random selection algorithm to make the variations on semantic labels of the plan
components, aiming at enriching the 3D scenes that the output plans are suited for. To demonstrate the quality and versatility of our
generative model, we conduct intensive experiments, including the analysis of plan examples and their evaluations, plan synthesis with
both hard and soft boundary constraints, and 3D scenes designed with the plan subdivision on different scales. We also compare our
results with the state-of-the-art floor plan synthesis methods to validate the feasibility and efficacy of the proposed generative model.

Index Terms—Generative model, wave function collapse, floor plan synthesis.

✦

1 INTRODUCTION

Designing plausible plan layouts is an essential part of
various design tasks like urban design [1], architectural
design [2], and interior design [3], [4]. Even on different
scales, these applications face the same problem that how
to compartmentalize the space to guarantee functionality
and diversity. Recently, AI-assisted techniques that auto-
matically generate floor plans for residential buildings with
input boundaries, become one of the hottest research [5], [6].

One way to tackle the floor plan generation problem
is to straightforwardly divide inner walls given a hard
outer room boundary. There have been recent efforts in this
direction, with varying levels of success (e.g., [5], [6]). How-
ever, as an important step in architecture design, creating
the floor plan configuration, i.e., an outer room boundary,
also requires lot of manual workload for architects. In fact,
architectural shape, floor plan boundary, and interior space
division impact each other in an architect’s design work-
flow. For example, when designing a building or a living
quarter on a plot of land, the boundary of the land is not
necessarily the boundary of the design result. Therefore,
heuristic models that generate floor plans with differential
configurations but are constrained inside the same outer
boundary, what we call soft boundary constraints, are also
useful for architectural design.
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Another way of floor plan generation is example-driven.
The example-driven idea is popular in research on 3D mod-
eling, e.g., for man-made objects [7] and indoor scenes [8],
[9]. The main challenge of employing the example-driven
idea on floor plan generation is how to collect huge num-
bers of floor plans with both various shapes and plausible
layouts. Since collecting a large amount of data of floor
plans produced by human designers is expensive, especially
for different scales and scene categories, automatic plan
generation methods could mitigate this issue and make
floor plan examples cheaper and more accessible. Besides,
the generation model should be able to make variations of
both inner and outer walls. For the generated floor plans,
pre-room semantic labels should also be provided to assist
architects in further design. Since floor plan generation is
actually a way of space division, if we determine the proper
semantic labels for the generated floor plans, they could also
be used for larger outdoor scenes like flats or villas. It could
enable the floor plan generation model to tackle scenes on
multiple scales.

To address the above problems, we propose PlanNet, a
generative model for component-based plan synthesis. Our
method is based on two major insights: i) to make generated
plans be more general, the generative model should be
decoupled with specific scene categories, i.e., using no priors
related to any scene categories; ii) the generative model
should be able to automatically create large numbers of plan
examples with plausible inner layouts and adequate varia-
tions, thus supporting example-driven floor plan design. To
this end, we jointly use the wave function collapse algorithm
(WFC for short) [10], which is efficient in automatic map
generation for computer games, and two deep networks
to design a generative model. Firstly, we hierarchically
construct a set of binary pixel tiles, and use the WFC to
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Fig. 1. Our PlanNet learns to generate a large-scale dataset of component-based floor plans (a). Given an input boundary (b), our approach
retrieves dataset plan examples to guide the synthesis of indoor and even outdoor 3D scenes (c-d)-Bottom. We also have an interactive subdivision
workflow to further subdivide the plan components (e.g., the one highlighted with a red star at (d)-Top.) to create more complex plans (e.g., (e)).

Fig. 2. Elements of PlanNet : a WFC module to generate various squared
embryonic plans, a segmentation network module to extract a floor plan
(highlighted in blue) from the embryonic plan, and a labeling network to
suggest potential semantic labels for the floor plan components.

generate embryonic plans, i.e., squared wireframe patterns
that have explicitly divided sub-spaces and can be further
outlined with various boundaries. Then two deep neural
networks are employed with the RPLAN dataset provided
by [5] as the training set, aiming at retaining partial of the
square patterns and suggesting plausible semantic labels
for the divided sub-spaces (see the pipeline in Figure 2).
In this manner, the embryonic plans can be converted to
floor plan examples. The WFC and two networks jointly
create a large-scale plan dataset with adequate variations.
Specifically, our network architecture consists of a segmen-
tation network based on the U-net to outline the boundary
given a square pattern (i.e., embryonic plan), and a labeling
network based on graph convolution to suggest potential
semantic labels for the components of the generated floor
plans. In this manner, we generate a large number of floor
plan examples (10K) with adequate variations as well as the
per-room semantic labels (Figure 1-(a)). For indoor scenes,
we use adjacency relations to set doors on the inner walls
and windows on the outer walls, once the floor plans
are generated. We also make some attempts that establish
semantic relations between indoor and outdoor scenes, so
that the generated floor plans could be used for outdoor
scenes such as flats or villas.

For the application of plan design under boundary con-
straints, we employ an example-driven method that trans-

fers the space layout from the dataset floor plans to the hard
or soft boundary constraints based on their configuration
similarities. Given a boundary (Figure 1-(b)), we retrieve
similar examples from the floor plan dataset and map the
layout of a user-specified retrieved floor plan to the input.
By setting different scale factors, designers can use our
interface to recursively subdivide the plan, thus creating a
series of floor plans, which are useful for not only residential
buildings but also outdoor scenes (Figure 1-(c-e)).

We claim three main contributions in this work: 1) a
joint framework to combine the wave function collapse
algorithm and deep neural networks for automatic floor
plan generation; 2) two networks, which tackle component-
based plan synthesis and semantic estimation for each com-
ponent; 3) an interactive workflow that assists users to create
floor plans under hard or soft boundary constraints, and
supports recursive subdivision as well. We demonstrate the
effectiveness of our method through various experiments
and comparisons with the state-of-the-art methods [5], [6],
[11], [12], [13].

2 RELATED WORK

In this section, we first review the existing studies on layout
generation in various application fields. Then, we introduce
some recent works that leverage deep learning to tackle
the problem of layout and floor plan generation. Lastly, we
discuss some related works on architectural and interior
design to show how plan layouts facilitate 3D modeling
tasks.

Layout Generation. In general, layout generation is a
task to arrange a group of components for certain purposes
(e.g., [14], [15]). Such a task is essential to many applications,
such as graphic design [16], [17], furniture design [18], urban
or architecture design [2], [19], [20], [21], computer games
[22], and indoor scene synthesis [3], [23], [24]. However, due
to different scales and design purposes, these works focus
on specific objects and design rules. For example, urban
design methods consider more about the connectivity and
layout of underlying networks (e.g., street networks [1]),
and floor plan design for architecture focuses on generating
a valid interior space division under a set of high-level
constraints, e.g., room size, room position, etc. (e.g., [25]),
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while indoor scene synthesis tackles the arrangement of
indoor objects, aiming at understanding and representing
the structure of scenes, and preserving the relations of co-
existing indoor objects (e.g., [26]). Moreover, considering
scenes with convertible layouts have also been studied [27],
floor plans with various layouts become a rising demand.
Recently, focusing on the space division of indoor scenes, a
series of automatic layout generation models have been pro-
posed (e.g., [12], [13], [28]). Most of them rely on the relation
graphs of indoor scene elements (i.e., room categories). In
our work, we expect to develop a more general model for
scene layout generation on different scales (e.g., apartments,
buildings, and living quarters). Hence, our method does not
rely on any priors associated with scene categories. Even
though our method is mainly for the floor plan generation
of architecture, we can easily extend our method to plans on
different scales, such as a living quarter with multiple build-
ings. We also provide an interactive workflow to support
the subdivision of the generated plans for more complex
designs.

Deep Networks for Interior Design. Recently, deep-
learning-based methods have been successfully introduced
to address the problems of interior design. Tasks such as
object arrangement for indoor scenes have been tackled by
deep learning methods. For example, Wang et al. [29] pro-
posed a deep convolutional neural network to learn priors
from a large-scale database for indoor scene synthesis. Li et
al. [30] presented a recursive neural network to generate
plausible 3D indoor scenes. Wang et al. [31] presented a
framework for indoor scene synthesis by combining a high-
level relation graph representation with spatial prior neural
networks. Fu et al. [32] proposed to leverage the deep rein-
forcement learning method to address the layout generation
problem. These works focus more on the object-level layouts
of indoor scenes.

On the other hand, the problem of floor plan generation
for residential buildings can also be addressed by deep
learning. For instance, Wu et al. [5] introduced a deep
network for the generation of floor plans of residential
buildings. Hu et al. [6] introduced a learning framework for
automated floor plan generation by combining a graph neu-
ral network and user-in-the-loop designs to set constraints.
Our method is more related to the floor plan generation
methods (e.g., [5], [6], [11]). However, since the training
dataset often has floor plans with the same outer boundary
but different inner layouts, using an outer contour as the in-
put might make the convolutional network fail to converge.
These methods thus used several strategies, e.g., starting
the generation from the living room or using a relation
graph as constraints. Instead, our generative model does
not rely on boundary inputs as the constraints to create
plans. It can generate a large-scale floor plan dataset with
various configurations and space layouts as an alternative to
data produced by human designers. For the scenario when
certain boundary constraints are required, we employ an
example-driven method to synthesize plans with the same
or similar boundaries as the inputs.

Example-Driven Design. Example-driven modeling is
popular in many computer graphics problems, such as
man-made object synthesis and indoor scene modeling. The
structure or style of examples can be used as references to

Fig. 3. An example of the WFC process. We illustrate the final embryonic
plan (e), and two pairs of adjacent intermediate states, i.e., (a-b) and (c-
d). Note that after the eigenstate of an element (blue) is determined,
the WFC will randomly select one of the neighbors (orange) around all
determined tiles in the next iteration.

decrease the difficulty of 3D modeling. For example, struc-
ture examples of man-made objects can guide assemble-
based object synthesis and even across different categories
(e.g., [33], [34]). Design examples can also provide priors
such as component style and fabricable template to facilitate
3D modeling (e.g., [7], [35]). For indoor scenes, examples
of object arrangement can directly guide layout generation
(e.g., [8]). Some works leveraged indoor scene images [36]
or floor plans [37] as examples to transfer the color styles
or layouts from the examples to synthesized indoor scenes.
Besides, plan examples can be combined or deformed to
generate new ones. For instance, Aliaga et al. [38] extracted
a street network and per-parcel aerial-view images from
real-world urban layouts, and employed an example-based
approach to synthesizing new urban layouts based on data
from the example layout fragments. Peng et al. [39] pro-
posed a method to generate layouts via tiling a domain
with a set of deformable templates. Motivated by [38], [39],
our method also employs the example-driven method for
layout generation of floor plans. The difference is, we jointly
use the WFC and two networks to generate plan examples
as the dataset for example-driven plan synthesis. Moreover,
the plans synthesized by our method can be applied to both
indoor and even outdoor scenes.

3 WFC-BASED EMBRYONIC PLAN GENERATION

Wave function collapse is a concept in quantum mechanics.
It occurs when a wave function initially in a superposition
of several eigenstates reduces to a single eigenstate due
to interaction (i.e., observation) from the external world.
In computer graphics, an algorithm that imitates this phe-
nomenon has been proposed to facilitate 2D and 3D virtual
scene synthesis [10]. The WFC algorithm can randomly
generate large patterns, since it addresses the problem of
how to splice small tiles to form a large pattern, especially
when certain tiles can be used for multiple times.

For the WFC algorithm, the scale of tiles should be
restricted to an appropriate range to ensure plausible con-
tent of generated plans. If we use a boundary input to
constrain an initial state of a plan and then start the WFC
algorithm, the WFC would easily fail since only a few tiles
with superposed eigenstates exist. Therefore, we leverage
the WFC algorithm to first generate wireframe patterns as
the embryonic plans (e.g., Figure 3), and then employ a
convolution neural network to extract plausible floor plans
from the embryonic plans. Aiming at improving the training
efficiency of the neural network, we limit the resolution of
the embryonic plan, which is the network input. Since we
focus on indoor and simple outdoor scenes, our goal of
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Fig. 4. Top: five kinds of tiles and the corresponding vectors. Middle:
a tile can be rotated with 90◦/180◦/270◦ when performing the WFC
algorithm. Bottom: when a tile (red box on the left) makes its neighbor
be zero eigenstates (i.e., no available tile), backtracking can change the
eigenstate of the previous tile to enable the WFC to continue.

plan synthesis is different from that for urban plans often
involving very dense content. Therefore, we use a fixed
proportion between the plan resolution and line width on
the plan. For these reasons, we empirically set each tile
to be a 70 × 70-pixel wireframe image with its line width
set to 2 pixels. Totally, we choose 5 basic kinds of tiles
to participate in the pattern generation, as illustrated in 4-
(Top). We encode each kind of tile as a feature vector with
four binary elements. Specifically, we denote the element
as T i

k for the k-th kind of tile about its i-th side. T i
k = 1

indicates there is a line that crosses such a side of the tile,
and T i

k = 0 otherwise. In this manner, we can define the
adjacency relation between two kinds of tiles as follows:

R(T i
k, T

j
m) =

{
1, if T i

k = T j
m

0, otherwise , (1)

where R(T i
k, T

j
m) = 1 indicates the i-th side of the k-th

tile kind can be combined with the j-th side of the m-th
tile kind. Note that for two sides that are not possible to
combine, e.g., combining the top side of one tile to the left
side of the other one, we allow the tile to be rotated so
that such two sides can be combined. This also means the
basic tiles can be rotated to change their feature vectors, thus
leading to more eigenstates (see Figure 4-(Middle)).

In our implementation, an embryonic plan consists of
5×5 tiles, i.e., 350×350 pixels. We represent each embryonic
plan by a matrix with 5 × 5 elements, with each denoting
a kind of tile at the associated position of the embryonic
plan. In the beginning, each element can have all tile types
representing all eigenstates. Therefore, once an element of
the embryonic plan is determined as tile kind k, its eigen-
states will reduce to a single one, and the eigenstates of its
neighbor element about the i-th side will also reduce to a
set of tile kinds {m}, where ∃j,R(T i

k, T
j
m) = 1, based on

Equation 1.
More specifically, the WFC algorithm starts from a ran-

dom element, and randomly reduces its eigenstates to a sin-
gle tile kind. We randomly rotate the tile with 0◦, 90◦, 180◦,
or 270◦, and then update the eigenstates of its four-side

neighbors as aforementioned. In each iteration, the element
with the fewest eigenstates is picked. We randomly choose
a tile kind from all eigenstates of the picked element and
then update its neighbors with more than one eigenstate.
Note that the chosen tile might also need rotation to satisfy
Equation 1.

During this iterative process, a certain element might
have zero eigenstate after updating. Namely, from all of
its eigenstates, there is no tile that can be rotated by the
same angle to be combined with all of its neighbors. If so,
we perform backtracking on the matrix and then choose
another eigenstate to continue the iteration (see Figure 4-
(Bottom)). Finally, all elements of the matrix have been
reduced to a single kind of tile, and thus an embryonic plan
is created. Since this is a random process, we can use the
WFC algorithm to generate embryonic plans to construct
our dataset. In our implementation, we generate 10K em-
bryonic plans in total. On average, it takes 49 steps per
embryonic plan construction. For 10K embryonic plans, the
zero eigenstate occurs 623 times. All of these zero eigenstate
can be addressed with only single-step backtracking.

4 SEGMENTATION AND LABELING NETWORKS

Aiming at collecting the plan examples with adequate shape
and layout variations, we propose to perform two deep
neural networks on the embryonic plans in two stages. The
first one focuses on the task of dividing a region with a
plausible boundary from a squared embryonic plan, while
the second is proposed to estimate the semantic labels for
each part of a floor plan.

4.1 Network Architecture

As illustrated in Figure 5, we use a U-Net architecture [40]
as the segmentation network in the first stage. It has a
contracting path (left side) and an expansive path (right
side) to convert an input image to an output mask. In our
implementation, the contracting path consists of repeated
application of two 3× 3 convolutions, a rectified linear unit
(ReLU), and a 2 × 2 max pooling operation with stride 2
for downsampling. The expansive path has a symmetrical
structure but with upsampling operations. Note that the
number of feature channels should also be doubled at each
downsampling step, while halved at each upsampling step.
Since the U-net employs an overlap-tile strategy to tackle
the image segmentation in local regions, there is no need to
resize the input image to the same size as the first layer.
The purpose of the segmentation network is to outline
a plausible boundary inside the input squared embryonic
plan. Namely, the network input is a pattern, while the
output is a two-channel feature map encoding the proba-
bilities of both the foreground and background per pixel.
In our implementation, the foreground provides a plausible
boundary for the given embryonic plan.

Prior to the second stage, we perform a plan refinement
operation, which will be discussed later. An adjacency graph
will be extracted from the refined floor plan. Each node of
the graph represents a certain part of the plan, while the
edge between two nodes indicates that such two parts are
adjacent. Then we feed it to the network of the second stage.
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Fig. 5. The architectures of the segmentation and labeling networks. The input is a squared embryonic plan generated by WFC, and the network
output is the associated boundary and the semantic labels for individual components.

Fig. 6. An example of the training data extracted from the floor plans of
the RPLAN dataset (Left), including the wireframe pattern, binary mask,
adjacency graph, and semantic vector.

Here we adopt the graph convolution network [41] as the
labeling network, which takes the adjacency graph of a plan
as input and outputs a vector of semantic labels according
to each node of the graph (Figure 5). More specifically, each
training data provides an adjacency graph with N nodes
represented as a vector with N elements as the network
input. We first initially set up the vector by using the area
ratio of each component to the whole plan for each element.
After three layers of graph convolution and a soft-max layer,
the network outputs an N × 12 matrix, where each row is
a 1 × 12 vector denoting the probabilities of the node with
respect to 12 kinds of semantic labels. We use cross-entropy
as the loss function.

4.2 Training of Two Networks
We use the RPLAN dataset [5], a large-scale dataset con-
taining more than 80K real floor plans with dense anno-
tations, to prepare our training data. Since two networks
of our method are independent, we train them separately.
For each RPLAN data (e.g., Figure 6), we extend it to
a square wireframe image to make it the same as our
network input, where black represents the wall and white
represents the room. The original boundary of the floor plan
is also recorded as a binary mask. Meanwhile, we extract
an unlabeled adjacency graph from each RPLAN layout,
and encode the corresponding annotations to a vector of
semantic labels.

In total, we have 80,788 square layout images with masks
to train the segmentation network. We randomly pick 60,591
images as the training set, 13,455 images as the test set,
and 6,742 images as the validation set. Since dividing a
boundary from the input is a binary classification problem,
we use binary cross-entropy as the loss function for training.
The segmentation network is trained through a deep learn-
ing library PaddlePaddle [42] with batch size = 64, epoch
number = 10, learning rate = 0.001, and Adam optimizer.

On the other hand, for 80,877 graph-label pairs extracted
from the RPLAN dataset, we use the unlabeled graph as the
network input and the vector of semantic labels as the out-
put to complete supervision training. Hence, we randomly
pick 70,000 and 10,877 graph-label pairs as the training set
and test set, respectively. Such a graph convolution network
is trained through the PaddlePaddle framework with batch
size = 512, epoch number = 100, learning rate = 0.001, and
Adam optimizer.

4.3 Plan Example Dataset
We construct the plan example dataset by jointly employing
the WFC and the two networks. Aiming at balancing the
diversity of the plans and the retrieval efficiency, we limit
the size of the dataset to 10K. Specifically, we first generate
12,150 embryonic plans via the WFC. Then we use the
trained segmentation network to delimit the outline for each
embryonic plan. Note that we also have a plan refinement
operation to improve the quality of the network-generated
boundaries, and filter out the undesired low-quality plan
results from the dataset. After that, the adjacency graphs
of the generated floor plans can be calculated, and then
used for semantic estimation by the trained labeling net-
work. Each floor plan can have two sets of semantic labels
corresponding to indoor and outdoor scenes, respectively.
For better usage on indoor scenes, we also employ an
appendage suggestion operation to determine the potential
positions of windows and doors in the plan examples.
Totally, we collected 10,028 plan examples in our dataset
for plan synthesis. To improve the efficiency of the next
retrieval stage, when constructing the dataset, we extract
the shape features, i.e., vectors consisting of the area and
perimeter of the plan examples, and count the number of
their components. Such a simple shape feature can be used
to explore a small set of candidate floor plans from a large-
scale dataset in a short time, then we can employ a time-
consuming fine comparison between the input and the small
candidate set to retrieve floor plans that suit the input.

Plan Refinement. The main quality issues of the gen-
erated plan examples exist in the connectivity and com-
pleteness of the region, and smoothness of the boundary.
We propose two refinement mechanisms to fill holes and
fit the boundary to a polygon (Figure 7-(b-c)). Specifically,
we first perform morphological open and close operations
on the network-output plans, in order to eliminate the
noise and fill the unexpected holes. Then, we employ the
Douglas–Peucker algorithm [43] to generate the polygon
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Fig. 7. After the segmentation network outlines a rough boundary (b) for a given embryonic plan (a), the plan refinement operation then fills the
holes, and fits the plan with a polygon boundary (c). For indoor scenes, we also estimate the positions of windows and doors (d) on the outer and
inner boundaries of the plan (e). For outdoor scenes, the refined plans can be directly used with no appendages (f).

boundary of each plan. In addition, since the shapes of cer-
tain floor plans might be over-changed after the refinement,
we leverage the IOU (“intersection over union”) of the areas
between the floor plans before and after refinement to filter
out the over-changed plans. In our implementation, we set
a threshold to 70% to filter out the plans whose IOU values
are below the threshold.

Appendage Suggestion. For the application of floor plan
design, we attempt to suggest plausible appendages, i.e.,
windows and doors, on both the outer and inner boundaries
of the plan examples (e.g., Figure 7-(d)). We always choose
the central positions on the walls for the appendages. For
simplicity, we assume that windows only exist on the outer
boundary, but we randomly choose one position on the
outer boundary of the largest component (which could be
the living room) to set the entrance door. Afterward, we
go through the inner boundaries between components, to
set interior doors. Since the positions or even the numbers
of the appendages might require further refinement, in our
user interface, the windows and doors can be interactively
modified to satisfy the design purposes.

5 EXAMPLE-BASED PLAN SYNTHESIS

The constructed plan example dataset can be used to facil-
itate component-based plan synthesis. We develop a user
interface to assist users in designing plan layouts given
a hard or soft boundary constraint. After users input a
polygon to our system or specify a certain component for
subdivision, our method employs an example-driven ap-
proach to retrieving proper plan examples from the dataset
with component-level semantic labels to guide the plan
synthesis.

User Interface. Figure 8-(a) illustrates our web-based
user interface developed through the Flask framework. We
choose a web-based interface so that we can deploy the plan
example dataset on the server side and make the client side
lightweight. The input panel of the UI allows users to create
a polygon by setting the vertex positions, and choose it as a
hard or soft boundary constraint. Our system also employs
third-order Bezier curves to allow users to create curved
inputs (e.g., Figure 8-(b)). Users can edit the position of the
two control points between two endpoints to change such a
curve. After that, a series of plan examples from the dataset
are retrieved and presented in the example panel for users to
choose from. The order of the listed plan examples depends
on their configuration similarities to the input boundary. In
addition, to enable users to control the synthesized plans,

Fig. 8. (a) Our user interface consists of a function menu (Top), an input
panel to draw a polygon (Bottom-Left), an example panel to display
the retrieved plan examples (Bottom-Middle), and an output panel to
show the generated plan for further editing (Bottom-Right). (b) Users
can specify the number of components and input curved boundary
through the input panel. (c) An example that shows how users follow
the suggestion (Left) to modify the floor plan (Right).

our system UI allows users to specify the amount of the
plan components as a constraint input. Since the number of
components of all plan examples in the dataset have been
recorded, such input can ensure the retrieval plan examples
meet the user demands.

Our system has a modification suggestion mechanism
for certain low-quality rooms to assist users to refine their
designs. In the output panel, our system provides two
ways for users to refine the designed plans. First, users can
manually edit certain inner walls to change the component
shapes or merge two components (e.g., Figure 8-(c)). Other
elements, such as the windows and doors, are also editable
by users. Note that the user-edited plans can be uploaded
to our dataset as new examples for enriching the diversity
of our dataset. Besides, if users choose one component on
the generated plan, its boundary can be used as the input
polygon for further subdivision. More complex plans on
different scales can be generated via recursively subdividing
components into smaller ones (e.g., Figures 1 and 17).

Plan Retrieval and Synthesis. Each plan example in our
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Fig. 9. Top: We gather the semantic labels of both indoor and outdoor
scenes into three groups, illustrated in the red, green, and blue boxes,
respectively. Bottom: an example to show how the random selection
algorithm works.

dataset has boundary information, i.e., a binary image in
which the white region is inside while the black is outside,
hence we convert the user-input polygons or inputs with
curved boundaries to the same kind of binary image for
retrieval. We first normalize the white regions of both the
masks of the dataset plans and the mask created by the input
boundary into the same scale. Since these white regions
represent the configurations of the plans, we directly use the
IOU value between the white regions of the dataset plan and
input boundary as the metric to measure the configuration
similarity. Note that since the pair-wise IOU-based compar-
ison is time-consuming, we separate the plan retrieval into
two phases: a primary retrieval that leverages the distances
of the shape features between the input boundary and the
dataset floor plans to explore Top-1000 plan candidates with
smaller distances, and a fine retrieval that leverages the
IOU-based comparison to explore floor plans from the 1000
candidates similar to the input. This could speed up the
retrieval stage and avoid the huge computational effort as a
result of the dataset size increasing. Considering most of the
plans are axis-aligned, we also rotate the input boundary by
0◦, 90◦, 180◦, and 270◦, respectively, to obtain the max IOU
value as the comparison result. The retrieved dataset plan
examples are ranked based on their IOU values compared
to the input from high to low and return Top-10 results on
the UI for users to select.

Moreover, if the polygon input is a hard constraint, we
need to map the layout of the chosen plan example to the
input. This is implemented by a simple reshaping approach.
More specifically, we first align the input polygon and
the user-selected retrieved plan example by the associated
rotation angle. For each corner point of a plan example, we
find the closest pixel on the input polygon to establish the
correspondence. To preserve the shape of the plan compo-
nents, we only seek for the pixels closest to the corner points
in the horizontal and vertical directions. Then, we set the
positions of the corners to their corresponding boundary
pixels to reshape the plan example and fill potential holes to
make the shape of the plan fit the input polygon well. If the
polygon input is used as the soft boundary constraint, we
use the input boundary to clip the retrieved dataset plan ex-

ample. Namely, the plan example regions outside the input
polygon would be clipped, thus changing the configuration
of the dataset plan example to meet the user demand. Since
the network-output plan examples might have too many
corners even after plan refinement, our system highlights
the non-right angle corners and allows users to remove
certain of them to optimize the plan boundary.

Lastly, we are to leverage the pre-stored semantic labels
of each plan example to determine the semantics of each
component for the final plan result. To ensure the diver-
sity and expandability of the generated plans, we propose
a random selection algorithm to make variations on the
semantic labels of the components. More specifically, we
focus on the interchangeability among different scene types,
namely, groups of semantic labels that all suit the same part
of a plan. For example, a study room and a guest room are
interchangeable when considering the function of a certain
room. In Figure 9-Top, we show how we define the groups
and their members.

For the output semantic labels of our labeling network,
the selection algorithm randomly replaces a certain compo-
nent label with another one from the same group in turns
(e.g., Figure 9-Bottom highlighted by the black arrows). We
set the probabilities for the labels of certain components fol-
lowing these criteria: i) the probabilities of semantic labels in
the same group are associated with the rank of component
size on the plan, e.g., larger components would be more
likely to be master rooms rather than child rooms; ii) labels
such as master room, kitchen, and bathroom should each
have at least one component present, while labels such as
study room and kitchen should be at most one component.
Moreover, our user interface also allows users to set the
scenario as outdoor scenes. For this purpose, we set the
correspondence between the semantic labels of indoor and
outdoor scenes based on their functional similarity. Since
there are few types of semantic labels for outdoor scenes,
if the neighbors of a component are already labeled as
buildings, we just reduce the probability of building labels
for that component.

Modification Suggestion. To help users enhance their
floor plans, we develop a mechanism for modification
suggestion based on established design guidelines in the
building sector, such as ISO 9836:2017 and GB/T 50362-2022.
These guidelines consider a room’s aspect ratio, smallest
area, and shortest edge length when determining its quality.
In other words, a high-quality room should have enough
space and illumination so that it should not be too narrow
or small. We use three metrics to evaluate a floor plan’s
rooms: aspect ratio (Ra), component area ratio (Rc), and
relevant edge length (Re). To calculate these metrics, we first
find the short and long edge lengths for each room and the
entire floor plan. Ra is the ratio of a room’s short to long
edge lengths. Rc is the ratio of a room’s area to the entire
floor plan’s area. Re is the ratio of a room’s edge length to
the corresponding edge length of the entire floor plan. Note
that we can use the minimum values of these factors for
all rooms in a floor plan as the lower limits to evaluate the
quality of a floor plan.

Using these room metrics, we created a new mechanism
to suggest changes for rooms that may need adjustments.
We set the lower limit thresholds for Ra, Rc, and Re to
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Fig. 10. We compare our method with direct online generation in two
cases (Left and Right). In each case, we show the input boundary
(a-Top), our result (a-Bottom), the online-generated floor plan and its
segmentation from the embryonic plan (b), and a more proper outer
boundary for the same embryonic plan suggested by our segmentation
network (c). Note that we constrain the outer walls of plans in (c) to be
straight for comparability.

Fig. 11. Two examples of the floor plan retrieval process. We illustrate
the feature space of all dataset floor plans, highlight the Top-1000
primary retrieval results in green, and highlight the Top-10 fine retrieval
results in red. We also show certain according floor plans in the bottom,
next to each input boundary.

0.5, 0.1, and 0.2, respectively. Our system can suggest three
types of modifications: deleting a room (by merging it with
a neighboring room), or moving a wall (top, bottom, left,
or right) to make the room larger or smaller. If a room’s
metric falls below the threshold, our system will suggest
moving certain walls or even deleting the room. To prevent
changes from affecting other rooms besides the living room,
our system will only suggest making a room larger if its
neighbor that shares the wall is the living room.

6 EXPERIMENTAL RESULTS

In this section, we first report the quantitative analysis on
two networks of the proposed PlanNet and show some
retrieval results, to evaluate the constructed plan example
dataset. Then we show several plan synthesis results under
both hard and soft boundary constraints, and present some
3D scene modeling examples guided by the designed plans.
We also compare our method with the state-of-the-art plan
generation methods [5], [6] and conduct a user study to
evaluate these methods.

6.1 System Evaluation

Firstly, we compare our retrieval-based synthesis method
with online floor plan generation. Specifically, we use em-
bryonic plans randomly generated by the WFC algorithm
to create floor plans by aligning the input boundary with
the center of the embryonic plan and segmenting it. This

Fig. 12. Top: Comparisons between the RPLAN dataset (indigo) and
three new datasets of 10K plans generated by our method, respectively
(cyan). Note the overlapping regions are blue. Bottom: We show the
plan examples are closest to position #1, #2, and #3, respectively from
the top to bottom. In each row, we show the RPLAN floor plan (a) and
our results (b-d) in the same order as their datasets in the top figure.

TABLE 1
Dataset comparison based on the layout statistics.

Dataset Avg. R Avg. C Avg. A
RPLAN 6.79 5.31 0.48

Ours 6.37 4.28 0.44

eliminates the need for a plan dataset. However, due to
the randomness of WFC-generated embryonic plans, the
input boundary may not always fit the online-generated
embryonic plan, resulting in unstable floor plan quality. For
instance, Figure 10 shows two cases where an unsuitable
embryonic plan (e.g., the right case) results in an improper
inner layout. In contrast, our segmentation network, which
is trained by RPLAN and leverages interior design priors
to determine more proper boundaries for each embryonic
plan, ensures high-quality floor plan designs. Since the
WFC algorithm may not always produce an appropriate
embryonic plan for the given boundary, instead of using
the WFC algorithm to directly generate a floor plan for the
given boundary, we use WFC to create a dataset of floor
plans and retrieve suitable ones. Then, We evaluate the
proposed generative model through quantitative analysis
in two stages. For the segmentation network, we achieve
an average IOU of 84.6% on the test set for the task of
boundary segmentation. The reason the IOU result is not
very high is mainly that there exist similar embryonic plans
but different layouts in the RPLAN dataset. Namely, multi-
solvability exists in the task of delineating the boundaries
of floor plans. However, such accuracy is sufficient for
the trained segmentation network to obtain plausible plan
boundaries. For the labeling network, we achieve average
accuracy 51%, precision 48%, and recall 49% on the test
set with respect to 12 semantic labels. Note that since some
kinds of semantic labels are interchangeable, their deep
features extracted from the graph convolution operation
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Fig. 13. Left: polygon boundary inputs. Middle retrieved plan examples ranked by their IOU values associated with the input (from left to right).
Right: retrieved plan examples with the user-specified component amounts ranging from 4 (left) to 8 (right).

Fig. 14. Plan synthesis results with hard boundary constraints (a & b)
and soft boundary constraints (c).

Fig. 15. Plan synthesis results by using the same dataset plan examples
(Left) with different input boundaries. We show the modification scheme
suggested by our system for the bottom case.

are very similar. Therefore, using over-refined semantic
labels for the evaluation is too strict for the plan synthesis
application. In fact, for the labeling task with three label
groups, we achieve average accuracy 76%, precision 80%,
and recall 80%. Consequently, in our plan example dataset,
the network-generated semantic labels associated with each
example plan are meaningful. On average, it takes 0.8s,
0.07s, 1.5s, and 0.06s for performing WFC, segmentation net-
work, plan refinement, and labeling network respectively.
The training times for segmentation and labeling network
are 8h and 1h, respectively. Besides, the plan retrieval takes
about 9.6s. The experiments were run on a PC with Intel
Core i9-10900K CPU, 64GB RAM, and a TITAN RTX GPU.

In Figure 11, we illustrate our dataset based on its 2D
shape features, i.e., area-perimeter vectors. The area of a
floor plan is calculated by counting the number of pixels

Fig. 16. By using the random selection algorithm, the given boundaries
and the retrieved plan examples (Left) can lead to more various plans
for both indoor and outdoor scenes (Right).

within the plan. The perimeter is determined by counting
the number of pixels along the outer boundary of the entire
floor plan. Note that both the left and right of Figure 11
show the feature space of the same dataset, in which all
floor plans are normalized to 32 × 32 pixels. Each point
represents a floor plan in the dataset created by our PlanNet.
We highlight the retrieval results of two different input
boundaries on the left and right, respectively. We can see
that the plans of the near points have similar boundaries,
while the far points always have different shapes. Since the
shape feature is mainly used to encode the shape of the
floor plan instead of their inner space layouts, we can also
see that even the plans with similar boundaries could have
different inner space layouts. This ensures the inner space
diversity of the synthesized floor plans given a boundary
input. However, the simple area-perimeter shape features
can hardly measure the exact shape of a floor plan, e.g. point
distribution of the Top-1000 plans is not gathered in the left
case, we still need to perform fine retrieval in the 1000 floor
plan candidates. On the other hand, lots of RPLAN data
have small balconies, bathrooms, and storerooms on the
boundary. The created plan examples in our dataset thus
also have small rooms on the boundary or corner due to the
segmented network trained by RPLAN.

In Table 1, we compare the RPLAN dataset and ours by
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Fig. 17. Three groups of plan-driven 3D scene synthesis results. In each row, we show the input boundary (a)-Top, the retrieved plan example
(a)-Bottom, the generated floor plan (b), and the associated 3D scene (c). We also show further subdivision results in (d) about the components
highlighted with red stars in (b). These plans are used to design 3D scenes on larger scales (e).

using the layout statistics, including the number of rooms
(R), the number of rooms connected to the living room (C),
and the area ratio of the living room (A). It shows that our
generation model can automatically create floor plans with
similar layout statistics as data produced by human design-
ers. To test the stability of the distributions of floor plans
generated by our method, we produce three additional 10K
datasets. We then use area-perimeter vectors to compare
their feature space with that of the RPLAN dataset (Fig-
ure 12-Top). To make our plans comparable with RPLAN,
we constrain their boundaries to be either horizontal or
vertical. The distributions show that our generative models
can produce plans with greater configuration variation. The
similarity of the distributions of the three new datasets also
demonstrates the stability and consistency of our method. In
Figure 12-Bottom, we display three groups of plans closest
to three specified positions (red points in Figure 12-Top). It
can be seen that plans with similar features can still vary in
shape and inner layout. This underscores the importance
of using IOU-based retrieval and increasing the number
of datasets to achieve greater diversity in plan synthesis
of inner layouts. On the other hand, our method might
generate some uncommon floor plan shapes (e.g., those
closest to point #1), and some rooms may have low-quality
shapes. In our retrieval-based plan synthesis method, plan
examples would only be explored when given unnatural
boundary inputs. To enhance the floor plans’ quality, users
can manually modify the walls in this scenario.

6.2 Plan Retrieval and Synthesis
We first test our dataset plan examples through plan re-
trieval to demonstrate their ability to support plan synthesis.

In Figure 13, we validate the feasibility of our plan dataset
through three groups of retrieval results. Given a polygon
boundary (Left), proper plan examples from the dataset can
be retrieved in terms of configuration similarities (Middle).
These plan examples are ranked from left to right illustrat-
ing the similarity in descending order. In Figure 13-Right,
we show the retrieval results subject to both the user input
boundaries and the user-specified component amounts.

In Figure 14, we first show the plan synthesis results
with hard boundary constraints (columns a & b). Column
(a) shows the synthesized plans with polygon inputs, while
the middle column shows the results with input curved
boundaries. Like the polygon inputs, the curved boundary
inputs have binary maps for plan retrieval and pixels for
plan reshaping. Hence, our plan synthesis method for poly-
gon inputs can also be used for curved boundary inputs.
Then, we show the plan synthesis results with soft boundary
constraints in column (c). We use the semantic labels of
outdoor scenes to show the design of living quarters with
two plots of lands. Note that the retrieved plan examples
are clipped by the input boundaries. In Figure 15-Left, we
choose three low-quality plan examples from the retrieval
results in Figure 13. For the three results on the right, the
first one use the same boundary in Figure 13-Left. We use
two boundaries similar to the first one to create the other
two results. These results demonstrate that, by using the
inputs as hard boundary constraints, even the low-quality
plan examples can be reshaped to be plausible floor plans.
Note that the design can be further improved by following
the modification suggestions made by our system (e.g., in
the bottom of Figure 15).

In addition, We provide several examples of 3D indoor
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TABLE 2
Layout statistics comparisons between our method and Wu et al. 2019 [5] (a), Hu et al. 2020 [6] (b), Sun et al. 2022 [11] (c), respectively. Under

each metric, the left value of each vertical bar belongs to the compared method while the right one is ours. Note that for the last three metrics, our
results consist of the metric value of the floor plan before applying the suggested modifications, plus the increase in value after the modifications.

Figure 18 Avg. C Avg. A V AVG. Min. Ra AVG. Min. Rc AVG. Min. Re

(a) 4.67 | 4.33 0.47 | 0.47 2.20 | 1.45 0.76 | 0.73 + 0.04 0.15 | 0.15 + 0.01 0.29 | 0.32 + 0.01
(b) 4.50 | 5.33 0.44 | 0.40 2.00 | 1.33 0.76 | 0.68 + 0.03 0.15 | 0.15 + 0.01 0.28 | 0.31 + 0.02
(c) 5.83 | 5.00 0.44 | 0.38 1.57 | 1.08 0.65 | 0.67 + 0.06 0.13 | 0.13 + 0.02 0.26 | 0.28 + 0.04

and outdoor scene synthesis guided by our designed plans.
In Figure 16, we show the input boundaries and the re-
trieved dataset plan examples on the left, along with the
3D scenes (two for indoor and two for outdoor) constructed
by the synthesized plans on the right. Note that the ran-
dom selection algorithm adjusts the component semantic
labels thus impacting the constructed scenes. In Figure
17, we illustrate how our subdivision workflow works in
progressive 3D scene construction. The users can set up the
plan scale and further subdivide certain component(s) to
obtain more complex designs on different scales. These plan
synthesis results and constructed 3D scenes demonstrate
the feasibility of our generative model in component-based
plan synthesis. Note the 3D scenes in both Figure 16 and 17
are created manually, but their floor plans that guided the
manual scene modeling are generated by our system. These
results show how our system facilitates 3D scene modeling
at multiple scales.

6.3 Comparisons
We compare our results with the state-of-the-art floor plan
synthesis methods [5], [6], [11], [12], [13]. We directly collect
high-quality floor plan results from these papers and use
the same boundaries to create plans using our system. The
dataset plan examples used for our results are manually
selected from the Top-10 retrieval results explored by our
system.

In Figure 18, we compare our method with Wu et al.
2019 [5] (a), Hu et al. 2020 [6] (b), and Sun et al. 2022 [11]
(c), respectively. For a fair comparison, we specify the same
number of rooms for our system as the compared methods.
The number of rooms (R) thus cannot be used as a metric
in this comparison. Therefore, we only compare the number
of rooms connected to the living room (C), the area ratio
of the living room (A), and the variance of A (denoted
as V ), between our results and those by the compared
methods. Besides, our results are slightly adjusted following
the modification suggestion. We also compare the average
minimum room metrics for these floor plans. For values
of AVG. Min. Ra, Rc, and Re, a larger value indicates a
better floor plan. The quantitative comparison results are
summarized in Table 2. From the first two metrics, we
can see that the results of the compared methods all have
plausible inner layouts based on the ground truth (RPLAN)
in Table 1. The variance V shows that the area ratio of the
living room of our results is more consistent than that of the
other methods. The last three room metrics show that the
modification schemes suggested by our system can enhance
the quality of the synthesized floor plans. Additionally, our
results outperform those of other methods in terms of these

Fig. 18. Visual comparisons with Wu et al. 2019 [5] (a), Hu et al. 2020
[6] (b), and Sun et al. 2022 [11] (c). In each plan pair, we show the result
of the compared method (Left) and ours (Right).

Fig. 19. Comparisons with Nauata et al. 2021 [13] (Left) and Para et
al. 2021 [12] (Right). On each side, we show the plan generated by the
compared method (a), our semantic prediction result for the same plan
(b), and our result, given the same out boundary (c).

room metrics, indicating that our method generates floor
plans that are well-suited for indoor scenes.

In addition, we also conducted a user study to quan-
titatively compare these results. 30 postgraduate students
who majored in art & design were invited to this study. All
pairs of floor plans in Figure 18 were used in the user study
via a forced choice preference approach, i.e., we asked the
participants to choose one plan from each presented plan
pair. Note that the floor plans in each pair are in a random
order. The user study results show that our results got 98,
101, and 90 votes from a total of 180 votes, when compared
with [5], [6], and [11] respectively.

We also qualitatively compare our method with the
layout generation methods (Nauata et al. 2021 [13] and
Para et al. 2021 [12]). These methods leverage the relation
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graphs of indoor scenes to generate floor plans and make
variations. In Figure 19, we select the high-quality floor
plans generated by the compared methods (column (a) on
both sides). Considering that their results are guided by
scene graphs, we first remove the plan labels and then use
our labeling network to predict the component semantic
labels (column (b) on both sides). The results show that, like
[12], [13], our method also can establish correct relations
between the semantic labels and plan components. The
column (c) on both sides is generated by our system, given
the same outer boundaries as column (a). Our system gives
different but equally reasonable results, demonstrating the
multi-solvability of indoor scene space division.

These comparisons demonstrate that our work, even
relying on an example-driven method for plan synthesis,
can still achieve competitive results compared with state-
of-the-art methods. This also validates the usability of the
proposed PlanNet in plan creation with adequate variations.
Moreover, our method can be extended to outdoor scenes
much easier than the other two methods, and is available
for soft boundary inputs to assist the prototype design of
architecture.

7 CONCLUSION

In this paper, we have introduced a novel generative model
PlanNet for component-based plan synthesis. The proposed
model consists of a WFC-based module for embryonic plan
generation, and two deep neural networks to outline the
plausible boundary from each embryonic plan and estimate
the semantic labels of the components on each created plan.
We use PlanNet to construct a dataset with 10K plan exam-
ples. The plan example dataset can facilitate the component-
based plan synthesis given a polygon constraint. Our user
interface provides a recursive subdivision workflow to en-
rich the designed plans on different scales and a random
selection algorithm to generate plausible per-component se-
mantic labels for the floor plan. We show several experimen-
tal results and comparisons to demonstrate the feasibility
and efficacy of our method.

Limitations. Our current method still has several limita-
tions. First, our method cannot directly generate plans with
regular layouts such as plans with aligned rooms of equal
size, or symmetrical layouts. For these demands, extra rules
are required to splice the generated plans of our method into
a larger one with a regular or symmetrical layout. Second,
although we try to establish a correspondence between
the pre-component semantic labels of indoor and outdoor
scenes to extend our method to outdoor scenes, our method
is still not very suitable for designing outdoor scenes. This
is because we train our segmentation network using only
an indoor scene dataset (RPLAN), so the components of the
floor plan have more characteristics of indoor scenes. Ad-
ditionally, simple correspondences are not always accurate.
For example, we label the living room as corresponding to
the road label because both of them connect other compo-
nents. However, the shape of a living room is not similar
to that of a road in outdoor scenes, which can result in
generated outdoor scenes with too wide and spacious roads.
Third, due to the discretized tiles adopted in the WFC pro-
cess, the designed floor plans only have straight inner walls

and right-angle corners, and the relevant distances of their
inner walls would be limited to some constant values. This
would limit the style variation of the floor plans generated
by our method. Lastly, the current plan retrieval employs a
time-consuming pair-wise comparison, making our system
not efficient enough. We find that decreasing the number of
candidates explored from the feature-based ranking could
speed up the plan retrieval. For example, if we use Top-100
candidates for pair-wise comparison, the time cost of plan
retrieval decreases from 9.6s to 1.0s. However, this would
also decrease the retrieval accuracy.

In the future, we plan to extend our method to 3D space
division, which means plans on different floors in a house
can be jointly synthesized, and the layout of decoration
on the wall can also be considered. Besides, we are also
interested in exploring common rules from the domain
knowledge between urban design and architectural design
to enhance our generative model and improve the quality of
synthesized plans. We believe that the automatic plan syn-
thesis method would inspire more applications in various
fields.
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