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Figure 1: An overview of our system. Given a blank layout containing a few concentric regions, the user selects an element from the element
database and drags it into one of the regions. Trained on a separate dataset of ring-based objects such as plates, our machine learning model
takes into account the user input and recommends the user with a list of ranked elements for the empty regions. Our system then synthesizes
the final design by arranging the recommended elements according to the predicted composition. Our framework is applicable to a wide
range of objects such as vases, pots and plates.

Abstract
Creating aesthetically pleasing decorations for daily objects is a task that requires deep understanding of multiple aspects of
object decoration, including color, composition and element compatibility. A designer needs a unique aesthetic style to create
artworks that stand out. Although specific subproblems have been studied before, the overall problem of design recommendation
and synthesis is still relatively unexplored. In this paper, we propose a flexible data-driven framework to jointly consider two
aspects of this design problem: style compatibility and spatial composition. We introduce a ring-based layout model capable of
capturing decorative compositions for objects like plates, vases and pots. Our layout representation allows the use of the hidden
Markov models (HMM’s) technique to make intelligent design suggestions for each region of a target object in a sequential
fashion. We conducted both quantitative and qualitative experiments to evaluate the framework and obtained favorable results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Decorating everyday objects is not only a designer’s work but also a
hobby of many people. A hand-decorated object such as a greeting

card, a living-room wall or a flower vase always makes the sur-
rounding environment more stylistic and pleasing to the owner’s
taste. It is, however, not easy for an inexperienced person to deco-
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Figure 2: Ceramic objects from various countries.

rate an object since the task requires numerous design skills such
as composition, coloring, creating elements and mixing elements.
Even a professional designer can have to invest a great amount of
time to come up with a satisfactory decoration [Owe00]. Nowa-
days, with the availability of collections of decorative elements on
the Internet, designers are, to some degree, freed from creating ev-
ery element from scratch and can focus more on the composition.
Nevertheless, the element composition task requires the designer
to have a strong personal style in order to create unique and aes-
thetically pleasing decorations. The main objective of our work is
to build an automatic design recommendation system that, given
some user constraints such as the element style and the arrangement
type for one region, suggests stylistically compatible elements and
arrangement types for other regions.

Several aspects of our problem have appeared in com-
puter graphics and vision literature, for instance, the prob-
lems of finding compatible elements [LKS15, GAGH14], pat-
tern coloring [HZMH14, KYKL14, LRFH13] and pattern compo-
sition [LA15, YBY∗13]. There is, however, little work integrat-
ing these aspects together to build a complete computer-aided
design system dedicated to object decoration. The well-known
model factor graphs [Bis06] has been used for design recommen-
dation [LRFH13, YBY∗13]. This model is, however not directly
applicable to our problem domain as decorative objects always
have highly flexible layouts while factor graphs can only have fixed
structures.

To allow a more flexible solution to design recommendation, we
treat object decoration as a sequential process, in which each step is
dependent only on the previous step. We limit the scope of our work
to those decorative patterns that have ring-based layouts. Consider
the case of ceramic design. Figure 2 shows ceramic objects from
different cultures, all of which are decorated in a sequential fashion
(region by region). For the case of the plate, the surface is divided
into 2D ring-like regions. Each region contains a certain type of
elements repeated according to some arrangement rule. Similarly,
for vases, the surface is divided into 3D rings, wrapping around the
object. We demonstrate our design suggestion system mainly in the
context of ceramic plates.

This sequential design assumption is the key of our method, as it
greatly simplifies our problem and allows the use of robust machine
learning models designed for this type of data. To start, we intro-
duced a ring-based layout (Figure 3), which consists of a sequence
of rings. Each ring covers a region on the surface of an object and
contains a single element. We also consider regions with multiple
elements by allowing rings to overlap. Next, we designed a hid-
den Markov model (HMM) that explicitly takes composition and
style compatibility into account. Although it is possible to incor-
porate color into our model, we decided not to consider this factor

because color compatibility has been studied before [LRFH13]. In
our model, each time step in the HMM is equivalent to a ring in
the layout. The hidden states encode decorative styles and com-
patibility between elements. We trained our model on a dataset of
annotated plate images, and used it to generate novel decorations
automatically with no or little user intervention. We conducted both
quantitative and qualitative experiments to assess the performance
of our model and obtain promising results. Figure 1 summarizes
our pipeline. We will discuss it in detail in Section 3.1.

2. Related Works

We briefly review two research fields directly related to our work,
style compatibility analysis and pattern synthesis.

2.1. Style Compatibility and Similarity

Artistic style analysis has been studied by both computer scien-
tists and psychologists [GB14, HGR10, GFRF10]. Wavelets is one
of the conventional tools for artist identification [JJHB∗08]. More
recently, Hughes et al. applied sparse coding to quantify artistic
style [HGR10]. Shamir et al. used a large set of image features
to classify painting according to its school of art [SMO∗10]. In
the field of computer graphics, researchers are interested more in
measuring similarity in style between photographs or decorative
elements. Garces et al. extracted features using metric learning to
measure similarity in style between pieces of clip-art [GAGH14].
Bell and Bala applied deep learning to learn the similarity between
different product designs [BB15]. O’Donovan et al. [OAH15]
trained an energy-based model to characterize stylistic layouts. Al-
though these works demonstrated promising performance, few of
them attempted to perform style interpolation, which could be use-
ful when the size of training data is small. In fact, our goal is to
design a model that is flexible enough to work with a dataset of any
size, ranging from a few dozens to millions.

2.2. Pattern Synthesis

Pattern synthesis is another topic that is closely related to our
work. The classic work of Wong et al. [WZS98] proposed an al-
gorithmic approach for generating floral pattern. Lu et al. intro-
duced a technique to synthesize a coherent pattern along a user-
provided line [LBW∗14]. Although the technique in [LBW∗14] is
non-learning, it can achieve stylistic results through the use of ex-
amples that belong to a certain style category. Wu et al. [WWY14]
introduced an energy function and an Expectaion-Maximization-
based method to synthesize art patterns and textures by repeating
an input example with user constraints. This field of pattern syn-
thesis is different from ours as we are concerned more about the
semantic and compatibility of the examples rather than the synthe-
sis process itself.

Lin et al. introduced a learning model capable of synthesiz-
ing stylistic coloring by training on a certain set of color pat-
terns [LRFH13]. The work of Yeh et al. [YBY∗13] used a set of
factor graphs to capture sub-structures within larger patterns such
facades or decorative frames. This work is similar to ours as its ob-
jective is also to learn and to synthesize structural patterns. Their
patterns, however, have tiled layout rather than ring layout, as in
our case. Another difference is, they do not explicitly consider style
compatibility between regions.
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Figure 3: In a ring layout, a surface is divided into sequential
rings, each of which covers a certain decorative region.
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Figure 4: There are 5 types of arrangements: (1) Rotation, (2)
Translation, (3) Procedural Fill, (4) Rigid, and (5) Empty.

3. Methodology

In this section, we explain how the data were collected, what fea-
tures were used and our learning model.

3.1. System Overview

Our system aims to simultaneously suggest both stylistic elements
and their composition to the user. Figure 1 illustrates the function-
ing pipeline of our system. In the initial step, the user is presented
with a blank plate to decorate. In the second step, the user places
an initial decorative element onto the surface. In the next step, our
system queries a database of decorative elements and presents the
most relevant ones to the user. In addition, the system also rec-
ommends an aesthetically pleasing way to arrange these elements.
To achieve these goals, we train a machine learning model on a
separate database of images containing decorated objects, collected
from the Internet, and then use it to predict composition and style
of the entire decoration. Style is represented in our model as a 9-
dimensional feature vector. Composition is realized with three fac-
tors: the density of elements in a region, the shape of each element
and their arrangement type. Details about the arrangement types
will be explained in Section 3.2. Given any factor or a combina-

Figure 5: Our dataset consists of plate images that adhere to our
ring layout.

tion of these factors as the constraint, we predict the missing infor-
mation and synthesize a complete design with or without any user
intervention. If the user desires to have more control over the the
synthesis, we introduce incremental design, a design process that
makes use of our recommendation engine but still allows the user
to jump in at any step (See Section 3.6.1).

3.2. Ring Layout

Figure 3 visualizes our ring layout. Each region enclosed by the col-
ored lines (red, pink and green) indicates a decorative region in the
layout. A decorative region contains a single element type circled
in blue and is associated with an arrangement type. By observing
real-world plate designs, we derive 5 types of arrangement, which
are common among the designs: Rotation, Translation, Procedural
Fill, Rigid and Empty. These types of arrangement are illustrated
in Figure 4. While Translation and Rotation are familiar concepts,
we define Procedural Fill as a type of arrangement that uses a sim-
ple element to fill an arbitrary region by following a certain proce-
dure. In [WZS98], the authors discussed similar arrangement types,
among which the glide reflection can be thought as a particular case
of Procedural Fill. Rigid is a type of arrangement that only has a
single instance of the element and can scale it to fit in a region.

3.3. Data Collection and Annotation

We collected a dataset of 184 plate images from search engines like
Google Images and Flickr. Figure 5 shows some examples from the
dataset. The plates selected for training have at least two separate
regions that follow the ring layout explained in Section 3. All im-
ages were cropped and resized to have a fixed size of 800x800 pix-
els. Since we do not consider color in our model, we converted all
images to grayscale and binarized them to match the format of our
element database. The images were binarized by a global thresh-
old, which was determined by first sampling from local patches
along strong edges (identified by the Laplacian of Gaussian (LOG)
filter) and then choosing the threshold to be the mean edge inten-
sity plus the standard deviation. The images were then manually
annotated with the following information: the inner and outer ring
boundaries, the scale of one typical element, the Euclidean distance
between two neighboring instances of an element, and the type of
arrangement used in each ring. For each ring, we only annotated
one element.

We also prepared a database of binary decorative elements
(called the Element DB), which was partially collected from the
Internet and partially self-designed. The elements fall into 3 aspect
ratios: 1x1, 2x1 and 3x1, suitable for different situations in the syn-
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thesis step. Figure 6 shows a subset of the elements in the database.

3.4. Features and Extraction Methods

In this section, we explain the features used in our model. Our fea-
ture set consists of 2 groups of features: Element Style features
and Composition features. The Element Style features were ex-
tracted from annotated elements while the Composition features
were computed for each region in the layout. All features were nor-
malized before any learning/inference step.

3.4.1. Element Style Features

Although many features have been proposed for representing the
style of images [HGR10, SMO∗10], we find them unsuitable for
our application for the following reasons. First, these features were
developed for discriminative purposes such as classification and
retrieval, thus they tend to have high number of dimensions – a
few thousands. With a relatively small dataset, our model can-
not use high-dimensional features for fear of over-fitting. Second,
these features do not allow meaningful interpolation, which is im-
portant for generating novel designs. For the reasons above, we
design our own feature set – a 9-dimensional vector composed
of texture-based features (2D), curvature-based features (4D) and
pixel-counting features (3D). Inspired by prior works on visual
style recognition [LC09,GAGH14], we aim to use our feature set to
capture different characteristics of decorative style such as simplic-
ity/complexity (via texture-based features), hardness/smoothness
(via curvature-based features) and boldness/thinness (via pixel-
counting features). We demonstrate the performance of our features
in Figure 6, in which we applied conventional clustering and man-
ifold learning techniques to visualize the Element DB.

Texture-based features consist of a pair of real numbers [κ,λ],
where λ represents the variability and κ is the max kurtosis value –
indicating how the peaks and the tails of a distribution differ from
a normal distribution. To extract λ and κ, we first use a sliding win-
dow to extract low-level features from the image. The low-level
feature being used is the Maximum-Response 8 (MR8) [VZ05]. κ

is the maximum kurtosis value across all 8 dimensions of MR8. λ

is the parameter of an exponential function, fitted to the sorted his-
togram of MR8 clustering means in the context of a Bag-of-Words
model. The dictionary for the bag-of-words model was produced
with K-means.

Curvature-based features consist of the first 4 statistical mo-
ments (mean, standard deviation, kurtosis and skewness) of the
curvature values sampled along prominent edges in the element.
To extract edges, we first apply the Canny edge detector [Can86]
and then mask out edges lying further than some distance from the
element center. This distance threshold is the radius of the circle
bounding an element and was specified at the data annotation step
(Section 3.3). Figure 7 (A, C) demonstrates the steps to extract cur-
vature. (A) is the element image, (C) shows the edge map in which
we sample curvature values at random points on the edges. Given a
center point and 4 pairs of neighboring points (spaced 2, 3, 4, and
5 pixels from the center point) on the same edge, we estimate the
curvature with the method described by Anoshkina et al. [ABS02].
We also segment out the edges (connected edge pixels) before es-
timating the curvature to avoid the noise arising when edges are
too close. The connectivity between pixels is determined by a 3x3
cross-shaped neighborhood, which includes adjacent pixels along
vertical and horizontal directions.

Pixel-counting features consist of the number of curves in the el-
ement, the average thickness of curves, and the ratio between the
number of black and white pixels over the entire element image.
To calculate the average thickness of curves we apply the exact Eu-
clidean distance transform to find up to 200 peaks in the binary
image. Next, we compute the ratios between the number of black
and white pixels within 9× 9 pixel windows centered at the peaks
(yellow boxes in Figure 7 (B, D)) and average them across all win-
dows. In Figure 6 (Left), we demonstrate the usefulness of our fea-
ture vector by carrying out a clustering task on our set of elements.

3.4.2. Composition Features

As mentioned in Section 3.1, the composition in a ring is governed
by three factors: the element density, the shape of element and their
arrangement type.

• The arrangement type is encoded by an integer 1 : 5.
• Element shape is represented by a pair of real numbers, the width

and height of the element relative to the ring radius (See Figure
3).

• Element density is measured by the smallest distance between
any pair of instances of an element and was manually annotated
during data preparation (See Section 3.3).

3.5. Learning and Inference

Our learning model is derived from a standard hidden Markov
model (HMM) with discrete hidden states, where each time step
is equivalent to a ring in our ring layout. In our context, the hid-
den states can be thought as the implicit styles behind a design. A
sequence of hidden styles will decide the final look of a design. An-
other important concept in HMM is the emission densities, which
translate the implicit styles into actual elements and compositions.
We utilize custom emission densities that take into account both
discrete and continuous observations. The last piece of informa-
tion needed to describe an HMM is the transition matrix and the
starting probability, which connect the hidden states. HMMs are
conventionally used to model sequential data, which is typically
time-series data [RJ93]. We, however, found that the model is also
useful for modeling design processes that involve sequential steps.
We call this type of design sequential design.

Figure 8 shows how HMM is used in our problem. At each time
step/ring, we have a set of random variables:

• zn: The hidden state. It is a discrete variable and can take values
1 : K, with K being the number of hidden states.

• gn: The element style (9 dimensional vector, continuous). (See
Section 3.4.1).

• en: The element’s width and height, relative to the ring’s thick-
ness (2 dimensional vector, continuous).

• un: The density of elements (scalar, continuous).
• sn: The type of arrangement (discrete, one of 5 values: rotation,

translation, procedural fill, rigid or empty).
• rn: The ring’s thickness, relative to the plate’s radius (scalar, con-

tinuous).
• dn: The distance from the middle of the ring to the center of the

plate, relative to the plate’s radius (scalar, continuous).

In our model the transition distribution p(zn|zn−1,A) and the
distribution of the initial state p(z1|b) are the same as in the
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Figure 6: (Left) Clustering performance with our feature set– each row is a cluster. (Right) We visualize the manifold of elements using MDS.

A B

C D

Figure 7: Curvature-based and Pixel-counting-based feature ex-
traction. (A) original image. (B) thresholded binary image. (C)
edge map. (D) Euclidean distance transform map.

standard model [Bis06]. Whereas, the continuous variables cn =
[gn,en,rn,dn,un] are modeled as a Gaussian emission density:

p(cn|zn,µ,Σ) =
K

∏
k=1
N (cn|µk,Σk)

znk , (1)

and the discrete arrangement type sn is modeled as a Categorical
emission density:

p(sn|zn,E) =
K

∏
k=1
C(sn|Ek)

znk , (2)

where znk = 1 if the n-th state has value k. The parameters of our
model include:

• A ∈ RK×K : A transition matrix.
• b ∈ RK : The prior for the initial state in a sequence.
• µk ∈ R14,Σk ∈ R14×14,k ∈ 1 : K: Parameters of Gaussian emis-

sion probabilities. In practice, we used diagonal covariances, as-
suming the independence between continuous variables.
• Ek ∈RK×5: The emission probabilities for all possible values of

sn (5 types of arrangement).

The joint probability distribution of the model is:

p(X,Z|b,A,φ) = p(z1|b)

[
N

∏
n=2

p(zn|zn−1,A)

]
N

∏
m=1

p(cn,sn|zn,φ),

where X = x1, . . . ,xN is the training dataset.The parameters were

estimated using Expectation-Maximization algorithm (EM) with
the forward-backward algorithm.

Inference

Our use case is that some information will be given to a few rings
in the layout and we aim to reconstruct the missing information.
For example, in a design with 3 rings, the user may have specified
their preferred elements for the first and the second rings but did
not provide the desired element for the last ring, or the arrange-
ment type or element density for any ring. Our strategy is to make
use of as much observed information as possible and to ignore the
missing information by using default emission densities—a Gaus-
sian distribution with zero mean, identity covariance, or a uniform
distribution. When some continuous variables are available, we use
the marginal Gaussian distribution of those variables instead. In
this way, we are able to approximate the conditional distribution
p(cn,sn|zn,φ), needed for the forward-backward [Bis06].

To recover the missing information, we first estimate the hidden
states zn for each ring and then use the emission densities to gen-
erate the missing information. Formally, we want to sample from
the distribution p(z1:N |x1:N), where x1:N is the input dataset with
missing data and N is the number of rings in the input layout. We
have:

p(z1:N |x1:N) = p(zN |x1:N)
N−1

∏
n=1

p(zn|zn+1,x1:N)

= p(zN |x1:N)
N−1

∏
n=1

p(zn|zn+1,x1:n).

. (3)

We notice that p(zn|zn+1,x1:n) does not depend on xn+1:N since
zn+1 is given. We sample this distribution in a reverse order, from
the last ring zN to the first ring z1. The procedure is:

1. Sample ẑN from γN = p(zN |x1:N), where γN is estimated with
the backward-forward algorithm.

2. Sample ẑn from

p(zn|ẑn+1,x1:n)∝ p(ẑn+1|zn)p(ẑn|x1:n),

where p(ẑn+1|zn) is taken from the transition matrix and
p(ẑn|x1:n) is from the forward algorithm.

Once we have obtained all the hidden states, the emission distribu-
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Figure 8: Hidden Markov model.

tions (2) and (1) are used to generate the observations. This step
concludes our sampling/inference process.

3.6. Decoration Synthesis

The final decoration is governed by a set of variables
{gn,en,sn,un}N

n=1, where N is the number of rings in the decoration
and gn,en,sn and un describe element style, element size, arrange-
ment type and element density (see Section 3.5). Note that we do
not consider rn, and dn as the ring layout is assumed to be given
in our model. During the inference step, rn,dn are always observed
and we only need to generate gn,en,sn and un for the rings with
missing information using the sampling method described in Sec-
tion 3.5. The predicted gn are then used as a query to retrieve the
style-compatible elements from the element database. To do this,
we first extract the style features, as described in Section 3.4, for
each element in the element database. Let the feature vectors ex-
tracted from this database be {gi}E

i=1, where E is the total number
of elements in the element DB. Then, the elements selected for the
synthesization will be the ones that are closest to the queries gn,
measured with Euclidean distance.

To arrange the elements in each ring (indicated by sn), we used
simple methods to visually show 4 types of arrangement: Rotation,
Translation, Procedural Fill and Rigid. Figure 4 illustrates these
methods. For Rotation, we duplicate and rotate the elements around
the center. For Translation, we distribute instances of an element on
a grid. For Procedural Fill, we randomly distribute the instances in
the designated region. The scales of the element instances are var-
ied by a small amount (±0.5) around the predicted scales (en in the
model). The spacing between elements is determined by the density
variable (un in the model). Note that our Procedural Fill visualiza-
tion is only to indicate that a region should be filled by an actual
procedural algorithm. When there were more than two neighboring
rotational rings with similar densities, we adjusted the positions of
the elements so that an element in one ring would interleave with
two adjacent elements in the next ring. This minor adjustment is a
common practice in plate design and is not encoded in our learning
model.

3.6.1. User Interface

Figure 9 shows our user interface. The interface has 4 main areas,
allowing the user to interact with the synthesis engine through 3
methods. Area (1) shows the layout of the design, which may come
from a database of plate layouts or be randomly generated. Area (1)

2

1

3

4
Drag

Figure 9: User interface.

also shows the final results after receiving results from the synthe-
sizer. Area (2) displays a list of available elements, which can be
customized by the user. The user can drag an element into a ring in
area (1) to indicate that they want that particular element to appear
there. Area (3) shows a list of recommended elements, each row
containing the elements suitable for a ring in the layout that bears
the same color. Below each element is a label showing how likely
that element could fit in the ring. This score was generated by com-
paring the actual feature vector extracted from the element and the
one predicted by the model—the smaller, the better. Area (3) also
reacts to new inputs; as soon as the user changes some elements
in the layout, new recommendations will be immediately updated.
Area (4) allows the user to input all the information about a ring,
including the density, the element size, the type of arrangement and
the element itself.

Incremental Design Our sequence-based learning and inference
engine offers an interactive way for the designer to interact with
the system during the design process. In Figure 10, we illustrate
this idea. In Figure 10 (A), the user dragged the first element into
the innermost ring. The system then generated an array of element
suggestions with accompanied ranking. The first element in the first
row of each sub-figure is the input and therefore always has 0 dis-
tances from the style vectors. Each row includes a list of elements
bearing the same style, predicted to be suitable for a particular ring.
As the first row provides suggestions for the first ring, the user
might change the first element to those alternatives suggested by
the system. In step (B), the user chose the third suggestions in the
second row and triggered the system generating a new list of com-
patible elements. In the last step, the user chose the last element
and had the system do the remaining tasks such as deciding ele-
ment size, arrangement and density. The final result is shown in the
rightmost figure. As the array now only contains the alternatives for
each ring, the user will be able to refine the results just by clicking
on one of these suggestions.

4. Experiments and Results

Since our system involves multiple aspects of object decoration
such as composition and visual style, we conducted experiments
to study each aspect separately (Section 4.2, 4.3) and then we show
how the two aspects work together under our model in Section 4.4.

4.1. The Baseline Method

Since there is no previous work that is designed for our problem,
we use simple distributions estimated directly from ring data as
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Final Result

A B C

0.00 0.21 0.31 0.00 0.21 0.31 0.00 0.21 0.31

0.55 0.68 0.69 0.00 0.12 0.15 0.00 0.12 0.15

2.77 2.89 2.92 0.23 0.25 0.29 0.00 0.17 0.21

Figure 10: A demonstration of incremental design.

the baseline to compare with our method. Specifically, to model
the style vector gn, we estimate a multivariate Gaussian distribu-
tion over a dataset G of gn from all the rings in the dataset. Sim-
ilarly, we estimate Gaussian distributions to model en and un. For
the arrangement type, we use the multinomial distribution instead.
Whenever required, these distributions can be used to generate a
feature descriptor for an arbitrary region. The synthesis step is the
same as for our method and is discussed in Section 3.6.

4.2. Composition Study

To demonstrate the capability of our system for spatial composi-
tion recommendation, we fixed the style descriptors for all the rings
in a layout and let the model infer the element shape, the density
and the arrangement type. From Figure 11, it is apparent that with
our prediction, the elements have been arranged smoothly into the
layout while the baseline results appear to be quite unsatisfactory.
The first row shows a typical behavior of our model when dealing
with adjacent rotational rings. That is, when a ring is too dense, the
next ring usually becomes much sparser. In contrast, the baseline
method was not aware of the neighboring rings and ended up leav-
ing too much empty spaces in the outermost ring. One may notice
that, when a complex element such as the woman portrait in the
second row and the town in the first row are placed at the central
ring, they should be rigid elements instead of a rotational element,
as in the results of the baseline method. Moreover, when given a
large empty space, our method figured out that it should repeat the
element in a procedural way – see the first result of the last row in
Figure 11. In the 2nd row, we also demonstrate the capability of in-
terleaving elements by having two overlapping rings in the layout.

4.3. Style Study

We assess the performance of our model in predicting element style
in two ways: Querying with different element styles and studying
how the user perceives our synthesis results.

4.3.1. Query with Different Element Styles

In Figure 12, we demonstrate the capability of our system to rec-
ommend elements that resemble the style of the input. To produce
the figure, we chose a fixed layout of 3 rings and specified one
element with four different styles into the middle region. By con-
sidering the style of the input element and the layout parameters,
our method predicts the style vectors for each of the empty regions.
Our system recommended 4 elements for each region by measur-
ing the Euclidean distance between the predicted style vectors and
the ones in the Element DB. Each row of each example in Figure

12 is a set of 4 recommended elements; the colored rows are or-
dered to match the corresponding colored rings in the layout. The
Euclidean distances are marked under each recommended element.
The recommended elements in each row resemble the input style.
For example, in (A) and (D), our system recommended elements
with thin lines similar in style with the input. In contrast, the input
elements in (C) and (B) have bold details and this implicit style was
reflected in the recommendations. Although there is similarity in
styles between the inputs and the recommendations, the elements
themselves are not repeating, as repetitive elements would make
the final designs look boring. The quality of the recommended el-
ements is further examined through a user study in Section 4.3.2.

4.3.2. A User Study for Style Compatibility

To understand how much a user appreciates the set of elements
recommended by our system, we conducted a user study on the
compatibility of the predicted elements. To carry out the study, we
first prepared a set of 10 pairs of input elements picked randomly
from the Element DB. Each element was given to an arbitrary ring
of a layout that contains up to 5 rings. All other factors (compo-
sitions and layout parameters) were fixed. Thus, our model made
use of the given information to make predictions while the baseline
method simply sampled random results from the distributions in
Section 4.1. The element style vectors for the remaining rings were
then generated by the models and were used to retrieve 1 element
for a ring from the Element DB. We asked 11 users with different
backgrounds, such as college students, designers and high school
teachers, to pick a pair of designs that they preferred. Figure 13
shows a typical test appeared in our user study. Each column con-
tains a pair of results from one of the two methods and were gener-
ated automatically given the input. The common element appear in
the designs is the input element. We used a pair of images instead
of one because both methods depend on randomization, which may
create biases in the results. The order of appearance of each method
was counter-balanced so that each method will appear on the left
and on the right exactly 5 times. The result shows that the users
favored our method as they chose our results 80 times out of 110
times, equivalent to 73%. We ran an independent t-test on the num-
bers of times the users preferred the methods and got a t-statistic of
7.15 with p-value < 0.0001.

4.4. Joint Composition and Style Study

We generated random examples by individually sampling from the
distributions described in Section 4.1 to obtain a complete descrip-
tor for each ring, including element style, element shape, element
density and arrangement type, and then used these information to
synthesize the final results (see Section 3.6). To obtain the ring de-
scriptors with our learning model, we used the feature vector of
an arbitrary ring as the input and predicted the style and the com-
position for other rings. The same synthesis method was used for
both cases. Figure 14 shows that our results are visually more nat-
ural than the random results. In all tests, our method was able to
select additional elements that go well with the input element at
the middle column. Consider the first row as an example. Style-
wise, our model was aware that the input element had thin and
curvy lines so it predicted the style vectors to be compatible with
that style, which results in the central element and middle element.
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Figure 11: The decorations were generated by fixing the input elements and letting the algorithms decide the compositions. Each row, from
left to right, contains the synthesis results from our method, the input elements and the baseline results. The inputs were ordered inside-out.

A

C D

B

Figure 12: Different input styles result in recommendations bearing dedicated motifs. The inputs are shown with the layout next to each
recommendation array.

Composition-wise, our method constantly predicted that the mid-
dle element should have low density—just 4 elements—which is
reasonable because those predicted elements are quite long. In con-
trast, the elements predicted by the baseline method are quite arbi-
trary as there is no consistency in both style and composition be-
tween the regions. By looking at row 1, 2 and 3 at once, one might
notice that our model always chooses the densities for the unknown
regions so that the overall density appears neither too dense nor too
sparse. When the input density is high, the adjacent regions are ad-
justed to be sparser. Similar behaviors can be seen in row 4 and 5.

4.5. Quantitative Experiments

In this section, we quantitatively evaluate our model by performing
4 experiments, each experiment will test whether a variable or some
variables can be a good cue to predicting other variables.

1. Given the style vector and the layout parameters for all the rings
(gn,rn,dn), predict the compositions (en,un,sn).

2. Given the compositions and the layout for all the rings
(en,un,sn,rn,dn), predict the style of each ring (gn).

3. Given the style, the element size and the layout parameters
(gn,en,rn,dn) of an arbitrary ring, predict the styles and com-
positions for other rings.

4. Given the layout (rn,dn), predict the style and the compositions
for all rings.
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Figure 13: A typical test image given to the user. Each column con-
tains two designs generated by either our method or the baseline
method.

- Test 1 Test 2 Test 3 Test 4
- A B A B A B A B

e (MSE) 0.019 0.122 - - 0.035 0.100 0.066 0.117
g (MSE) - - 0.011 0.061 0.021 0.058 0.029 0.061
u (MSE) 0.038 0.245 - - 0.032 0.251 0.083 0.239

s (%) 92% 42% - - 92% 44% 71% 43%

Table 1: Prediction results averaged over 40 random splits. A is
our method and B is the baseline method. Element’s size (e), style
(g) and density (u) are measured with mean squared errors—the
lower, the better—and arrangement type prediction was measured
with accuracy—the higher, the better.

To measure the prediction accuracy, we normalize gn,en,rn,dn,un
to the range of (0, 1) and concatenate them together with sn into a
feature vector for each ring. We divided the data into training and
testing sets with a ratio of {0.7}. We experimentally determined
that 40 was an appropriate number of hidden states to use. The
error rates for gn,en,un were measured with the Mean Squared Er-
ror (MSE) and the accuracy for sn was measured in percent (%).
We compare our prediction method with the baseline method men-
tioned in Section 4.1. As shown in Table 1, our method shows im-
pressive performances for test (1) and (3) where it correctly pre-
dicted the arrangement type with 92% of the time. This perfor-
mance has been demonstrated visually in Section 4.2. The MSE
for u in for both (1) and (3) is 0.016, equivalent to an angle of 2.88
degrees, which is quite small. In Figure 15, we show how the MSE
between style vectors (gn) is related to the visual dissimilarities be-
tween the actual elements. In test (4), as the given information is
just the layout parameters rn and dn, we see a significant drop in
the performance as only 71% of the arrangement types were cor-
rectly predicted. Along with the results in Test (3), this test implies
that other factors such as the element style and the element shape
are important cues to predicting the overall look of a design. Test
(1) and (2) give us a hint that, given either the composition or the
style of a design we can make much more accurate prediction about
the other variable. This has been shown visually in Section 4.3 and
4.2.

5. Conclusion and Limitations

In this paper we presented a recommendation system for sequen-
tial design. The main contribution is twofold. First, we introduced

a ring-based layout system, which is capable of describing a wide
range of real-world objects such as plates, vases, pots etc. Second,
we designed an HMM-based learning model to capture the rules of
decorating these objects and successfully produced novel decora-
tions that resemble the training data. Our quantitative experiments
show that the quality of the decorations produced by our system
is significantly better when compared to the baseline. Our work,
however, suffers a number of limitations. First, our synthesis mod-
ule does not consider multiple elements per region and the method
to achieve Procedural Fill is relatively primitive. The lack of an ad-
equate synthesis engine kept us from studying each of the arrange-
ment types from the user perspective. Second, since the elements in
the Element DB and in the training dataset can be different, there
appears to be a misalignment between the feature vectors extracted
from the two sets. Even though we have binarized the training el-
ement images before performing feature extraction, the predicted
style vectors are sometimes different from the available style vec-
tors, which could result in undesirable effects. One way to improve
this is to increase the number of elements in the Element DB.

Future work: In Figure 1, we show some preliminary results for
vase where we had used a ring layout similar to that in Figure
3 (Right). For demonstration purpose, we directly used a model
trained on plate images for prediction. In the future, we would like
to further investigate other ring-based objects such as vase, pot and
decorative frames. Another promising direction is to incorporate
symmetry into the model as this could be a strong cue for predict-
ing other variables.
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