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OrthoAligner: Image-based Teeth Alignment
Prediction via Latent Style Manipulation

Beijia Chen Hongbo Fu Kun Zhou Youyi Zheng

Abstract—In this paper, we present OrthoAligner, a novel method to predict the visual outcome of orthodontic treatment in a portrait
image. Unlike the state-of-the-art method, which relies on a 3D teeth model obtained from dental scanning, our method generates
realistic alignment effects in images without requiring additional 3D information as input and thus making our system readily available
to average users. The key of our approach is to employ the 3D geometric information encoded in an unsupervised generative model,
i.e., StyleGAN in this paper. Instead of directly conducting translation in the image space, we embed the teeth region extracted from a
given portrait to the latent space of the StyleGAN generator and propose a novel latent editing method to discover a geometrically
meaningful editing path that yields the alignment process in the image space. To blend the edited mouth region with the original portrait
image, we further introduce a BlendingNet to remove boundary artifacts and correct color inconsistency. We also extend our method to
short video clips by propagating the alignment effects across neighboring frames. We evaluate our method in various orthodontic
cases, compare it to the state-of-the-art and competitive baselines, and validate the effectiveness of each component.

Index Terms—Teeth alignment, GAN inversion, StyleGAN

✦

1 INTRODUCTION

M Ethods for facial image beautification [1], [2], [3], [4]
have attracted increasing attention in recent years.

Despite the recent progress in auto makeup and wrinkle
removal, little attention has been paid to tools that enable
the alignment of teeth. As one part of human facial ap-
pearance, teeth have a profound influence on one’s facial
identity (see Fig. 1). A set of aligned teeth in one’s smiling
portrait help greatly build self-confidence. Besides its great
potential in facial image beautification, a teeth alignment
tool also enables a quick pre-review of post-treatment effects
in orthodontics. Such a tool, even inaccurate in orthodontics,
could largely help enhance the engagement between poten-
tial patients and dentists if made accessible to commodity
users.

Building an effective teeth alignment tool faces several
challenges. First, it requires the tool to infer for each indi-
vidual tooth a series of movements, which are essentially in
3D space. Second, to get holistic alignment effects, one needs
to hallucinate the teeth appearance changes along with the
teeth shape changes while also maintaining their original
characteristics (so that the aligned teeth appear to be a ‘real’
transform from the original ones). To tackle these challenges,
Yang et al. [5] proposed to explicitly leverage a 3D teeth
model obtained from dental scanning to delegate the ge-
ometric transformation of each tooth and further use an
appearance-structure disentangled variational autoencoder
(VAE) [6] to generate the final teeth image. Although their
approach achieves remarkable results, their dependency on
an accurate 3D teeth model of a patient leads to the cost
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of tedious manual geometric preprocessing (e.g., scanning,
3D reconstruction, denoising, manual segmentation, etc.),
and also prevents their tool from being used by commodity
users.

In this paper, we develop a novel system named Or-
thoAligner to produce realistic teeth alignment effects in
images with no additional user or 3D input. The central
idea of our method is inspired by the recent findings in
unsupervised generative adversarial networks (GANs) [7],
[8], [9], [10]: the manifold of 2D images, usually parameter-
ized by certain latent space in unsupervised GANs, contains
rich 3D geometric clues [11], such that walking along certain
paths on the manifold could lead to meaningful geometric
transformation of an underlying object (e.g., rotation and
translation [12], [13], [14], [15]). In essence, our goal is to
discover in the latent space a particular path which corre-
sponds to the teeth alignment process.

To this end, we face two sub-problems: 1) GAN inversion
problem [16], [17], [18]: given a malpositioned teeth image
extracted from a patient portrait, we need to invert it to
the latent space of a pretrained unsupervised GAN. 2) The
editing problem: after finding an optimal latent represen-
tation of a specific image, we need to find an editing path
that corresponds to the “alignment” process. Both problems
are non-trivial. First, current GAN inversion methods [16],
[17], [18] often suffer from the well-known reconstruction-
or-editing dilemma [18], [19], i.e., the latent vector that
produces faithful reconstruction of a given image might per-
form poorly when feeding to downstream editing methods.
This is because that most inversion methods simply expand
the original latent space to achieve better reconstruction
quality without considering the latent space statistics [18].
On the other hand, the editing problem poses additional
challenges. First, it requires the editing path to be solely
geometric, i.e., only adjusting the overall geometry between
different teeth. The appearance (such as color, lighting) and
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Fig. 1. Representative teeth alignment results for real portrait images by our method. For each case, we show the original portrait image with
unaligned teeth (Left) and the edited portrait image with aligned teeth (Right). The edited area has been enlarged for each case. We can observe
that teeth alignment positively influences one’s facial appearance.

identity (e.g., shape) of each individual tooth should remain
intact. Second, unlike other concepts (such as the head
orientation in a portrait image) that can be explicitly defined
as numeric numbers, “alignment” is a holistic status that
describes the complex interplay between teeth.

We present a set of techniques to address the afore-
mentioned challenges. We employ StyleGAN [9] to model
the manifold of teeth images, since it provides natural
disentangling of different levels of image features via con-
trolling the generation process by layer-wise latent codes
[9], [10]. To address the reconstruction-or-editing dilemma,
we adopt the state-of-the-art optimization-based inversion
method that incorporates the latent space statistics, thus
achieving a better trade-off between reconstruction and
editing quality. To discover the editing path corresponding
to the alignment process, we divide the style codes into three
groups, one of them corresponding to geometric transfor-
mations of teeth. Then, to enable our optimizer to find an
optimal “alignment” editing path, we manually annotate
each teeth image with a scalar score (1-10) to define its
mal-occluding level and pretrain a ScoreNet. The optimal
editing path, parametrized as a transformation in the latent
space, is obtained by minimizing the score evaluated by
the ScoreNet. The ScoreNet stores the concrete concepts of
what a malpositioned or an aligned teeth should look like
and drives the optimization to find the meaningful editing
path. It also enables us to visualize how an unaligned teeth
gradually evolves into an aligned one in the image space
(see Fig. 11).

The imperfect reconstruction in GAN inversion often
brings in boundary artifacts and color inconsistency when
mapping the edited teeth image back to the original portrait
image. To address this issue, we further introduce a Blend-
ingNet for boundary blending and color correction. Fig. 2
visualizes the overall pipeline. We also extend our teeth
alignment method to short video clips. Extensive results
shown that our method produces realistic aligned teeth
images, and it is comparable to the 3D-assisted method [5]
and surpasses competitive baselines.

In summary, our contributions are:

• We present the first method for teeth alignment
prediction in portrait images without explicitly em-
ploying any user or 3D input, making our method
available to average users.

• We present a novel latent editing method in Style-
GAN for finding the transformation path corre-

sponding to the teeth alignment process.
• We introduce a BlendingNet to remove visible ar-

tifacts and color inconsistency at boundaries when
mapping the edited teeth image back to the original
portrait. We also extend our align method to short
video clips.

2 RELATED WORKS

2.1 Image-based Teeth Alignment

Yang et al. [5] are among the first to develop a system to
enable preview of teeth alignment effects in images. Their
method relies on a pre-scanned 3D teeth model of a patient,
which is then aligned with an input image to predict the
3D transformations of individual teeth. The transformed
3D teeth are then rendered back to the 2D image space to
generate a teeth silhouette map, which represents the teeth
geometry, followed by an appearance-and-geometry disen-
tangled VAE to synthesize aligned results. Such a 3D teeth
model, requiring a tedious procedure of digital processing
(scanning, reconstruction, segmentation), hinders their tool
to be used for average users. On the other hand, without ex-
plicitly modeling the gum, their method sometimes suffers
from visual artifacts between the teeth-gum parts caused by
inaccurate rendering of the 3D teeth (as shown in Fig. 13). In
this paper, we build the first system for image-based teeth
alignment that relies on an input portrait image, without
any additional inputs.

2.2 Image-to-Image Translation

Image-to-image translation, which aims to convert a given
image across different domains, has attracted increasing
attentions. Starting from the groundbreaking work by Isola
et al. [20], which learns a deterministic mapping from paired
data in a supervised manner, diverse translating models
adapt the original idea to unsupervised situations [21], [22],
[23], [24], multi-label image attribute editing [25], [26], [27],
and multi-style image generation [21], [28], [29], etc. Instead
of directly conducting translation in the image space, our
work learns transformations in the latent space of an unsu-
pervised GAN. We benefit from this choice in two important
aspects: 1) The image quality generated by unsupervised
GANs (such as StyleGAN [9] and StyelGAN2 [10]) often
surpasses that of previously-mentioned translating models
[21], [22], [27], [28]. Therefore, by employing a well-trained
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Fig. 2. The overall pipeline of our method. Given a portrait image I with visible malpositioned teeth we preprocess it to obtain the teeth image It, the
mouth mask Im and the mouth background image Ib according to Fig. 3. The inversion stage inverts the teeth image It to the P -norm+ space of a
pretrained StyleGAN. The teeth structure latent codes ps are manipulated at the structure latent code editing stage. The edited structure codes p

′
s

with the original outer-mouth latent codes po and appearance codes pa are then transformed into the W+ space by passing them through a fixed
function T (·). The StyleGAN generator outputs the corresponding edited teeth image I

′
t . Finally, we use a BlendingNet, which blends the edited

teeth image I
′
t , mouth mask Im, and background image Ib, to obtain a realistic aligned image. In the figure, we use ∗ to label the components that

require pre-training and remain fixed during the whole pipeline.

StyleGAN as our generator, we naturally inherent the abil-
ity of generating high-quality images without the complex
training of a discriminator during the translation process. 2)
By decoupling several types of image semantics in the latent
space, we obtain a model that can be applied to multiple
tasks without redesigning the network. For example, we can
also transfer appearance from one teeth image to another, as
shown in Fig. 5.

2.3 Image Manipulation via GAN Latent Space Editing

Recent works have demonstrated that well-trained unsu-
pervised GANs [7], [8], [9], [10] encode rich semantics in
their latent space [12], [30], [31], [32]. Numerous methods
[12], [14], [15], [30] have been proposed to uncover such
semantics by identifying meaningful editing paths in latent
space that yield editing effects along one attribute while
remaining other image attributes intact. Generally, these
methods can be classified into the unsupervised ones [30],
[33] and the supervised ones [12], [14], [15]. Unsupervised
methods find the meaningful editing paths by analyzing
the characteristics encoded in pretrained GANs, such as
imposing constraints on latent space [33], examining the
weights of a pretrained GAN [30], and analyzing activation
maps [34]. Differently, supervised methods [12], [14], [15]
require a large amount of semantic annotation of sampled
data. They rely on learning paradigms to force their mod-
els to disentangle meaningful paths via carefully designed
losses and architectures. Differently, our method stays in the
middle ground between the two classes of the methods. We
resort to a pretrained ScoreNet, which evaluates the mal-
occluding level of a teeth image, to uncover the meaningful
editing paths in an easy and effective manner.

2.4 GAN Inversion
To apply meaningful edits on real images, one needs to
invert given images to the latent space of a pretrained
unsupervised GAN (we mainly focus on discussing Style-
GAN below), which is usually termed as the GAN inver-
sion problem [35]. Currently, GAN inversion methods can
be classified into 1) optimization-based methods [16], [17],
[18] and 2) learning-based methods [19], [36], [37], [38],
[39], [40], [41]. The optimization-based methods find the
optimal latent codes via minimizing the reconstruction loss.
The learning-based inversion methods train an additional
encoder that maps a given real image into the latent space.
Generally, the optimization-based methods are slow at in-
ference and perform poorly in downstream editing appli-
cations, but are better at reconstruction, while the learning-
based methods are fast in inference and yield better editing
quality but are limited in reconstruction. In this paper, we
consider employing the optimization-based methods since
the characteristics (such as teeth shape and appearance) of
the original image are required to be preserved as much
as possible for subsequent editing. The slow performance of
the optimization-based methods is less significant compared
to image quality.

3 METHODOLOGY

3.1 Overview
The overall pipeline of our method is shown in Fig. 2. Given
a portrait image I of a patient with visible malpositioned
teeth, our goal is to generate a portrait image I

′
with aligned

teeth. Specifically, our approach follows four main steps: 1)
data preprocessing, 2) GAN inversion, 3) latent code editing,
and 4) background-foreground blending.

As shown in Fig. 3, in the data preprocessing step, we
extract the mouth region Ir, a teeth image It, a mouth mask
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Fig. 3. Given a portrait image with visible malpositioned teeth, we first
obtain the mouth landmarks and a bounding box around the mouth
region using an off-of-shelf landmark predictor [42]. Then we extract the
mouth mask Im, the mouth background image Ib, and the teeth image
It from the original portrait I.

Im, along with a mouth background image Ib with the help
of an off-the-shelf landmark extractor [42]. We then focus on
editing the teeth image It to obtain its aligned counterpart
I

′

t , which will be blended with the background image Ib to
obtain the aligned result.

To edit a teeth image It, we first invert it to the latent
space of StyleGAN [9] and then we seek in the StyleGAN
latent space an optimal editing path that corresponds to
the “alignment” process to manipulate the latent code. The
whole editing process can be formulated as:

I
′

t = G(E(V (It))), (1)

where V (·) denotes the GAN inversion process that con-
verts a teeth image It to its corresponding latent code,
E(·) represents the latent code manipulator, and G(·) is the
pretrained StyleGAN generator, which outputs the manipu-
lated teeth image according to the edited latent codes.

We find that a straightforward copy-and-paste combi-
nation of the edited I

′

t and the original background Ib
will introduce visible artifacts and color inconsistency at
boundaries (see Fig. 9). Therefore, we propose to train a
BlendingNet adversarially to blend the edited teeth image
I

′

t with the background image Ib and obtain I ′.
In the following, for the completeness of our paper,

we will first introduce the StyleGAN generator in Sec. 3.2.
Then we will present the inverting method and the editing
method in Sec. 3.3 and Sec. 3.4, respectively. The details of
BlendingNet will be given in Sec. 3.5. Moreover, we also
extend the alignment effects in single images to short video
clips in Sec. 3.6.

3.2 The StyleGAN Generator

A basic structure of the StyleGAN generator is shown in
Fig. 4. Given a latent code z ∈ R512 sampled from the latent
space Z ⊂ R512, StyleGAN [9] first transforms it into a style
vector w ∈ R512 using a nonlinear mapping f , i.e., w =
f(z). To generate a teeth image It ∈ R256×256, we can inject
the same style vector w to n different AdaIn [43] blocks of
the generator G (n = 14 is the number of AdaIn layers),
which is highlighted as red arrows in Fig. 4. In this way, we
obtain a latent space W formed by all possible style vectors
w ∈ R512.

Alternatively, the StyleGAN generator allows us to feed
a different style vector into each layer to generate an image.

    latent space

    latent space

    latent space

non-linear mapping

    latent space style mixing

generator G

Output Image

Intput Noise

AdaIn Block

AdaIn Block

AdaIn Block

AdaIn Block

AdaIn Block

AdaIn Block

AdaIn Block

AdaIn Block

AdaIn Block

latent space 
extending

Fig. 4. The basic structure of the StyleGAN generator used in our
method. Please refer to Sec. 3.2 for more details.

To achieve so, we first extend W ⊂ R512 space to a larger
latent space W+ ⊂ R14×512 by concatenating n different
latent vectors sampled from W and then feed a different
style vector into each AdaIn block, as highlighted as blue
arrows in Fig. 4. This is termed as StyleMixing in the original
paper [9].

3.3 The Inverting Method
In this subsection, we consider solving the latent vectors
for a given teeth image It. Several works [16], [18] have
shown that the original W space ⊂ R512 in StyleGAN
is limited in reconstructing a real image. Compared to
the original image, the reconstructed image often exhibits
changes in structure, appearance, and moreover, lost fine-
grained details. Although W+ ⊂ R14×512 space gives a
faithful reconstruction of a real image [16], the solved la-
tent codes perform poorly when fed into the downstream
editing methods [18], [44]. Following [18], we seek a bal-
ance between the editing and reconstruction quality of the
inversion process by considering the P -norm+ space, which
is transformed from W by inverting the last LeakyReLU
layer [45] in the nonlinear transformation f . We use the
P -norm+ space for inversion since its unit-Gaussian prior
helps to regularize the inverted latent codes to lie in a valid
manifold. In particular, we adopt the spherical constraint
used in [18] as our baseline.

Therefore, the optimal latent codes in the P -norm+ space
can be solved by:

p = argmin ∥V GG(It)− V GG(G(T (p)))∥1 + λS(p), (2)

where V GG(·) is an image feature extraction network [46],
T (·) is a fixed transformation from the P -norm+ space to
the W+ space and consists of a re-normalization layer and
a LeakyRelu layer, G(·) is the StyleGAN generator, S(·) is
the spherical constraint on latent codes p, and λ controls the
trade-off between reconstruction and regularization. Specif-
ically, increasing λ imposes a stronger constraint during
inversion so that the reconstruction quality decreases while
the editability increases (see Sec. 2 in the supplementary
material for illustration). The detailed evaluations of various
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Fig. 5. We generate two sets of images (source A and source B) using
their respective latent codes (The first row displays images of source
B and the first column shows the images of source A). The images
shown in the middle are classified into 3 subsets (arranged in purple,
green and orange boxes respectively), each of which were generated
by copying a subset of styles from source B and taking the rest from
source A. Specifically, the images in the purple box borrow the outer-
mouth codes (the latent codes of the first 4 layers) from source B; the
images in the green box borrow the teeth structure codes (the latent
codes of the 5th-to-9th layers) from source B; the images in the orange
box borrow the appearance codes (the latent codes of the 10th-to-14th
layers) from source B. We can observe that the pretrained StyleGAN
generator provides a natural and spontaneous disentanlement of dif-
ferent image features(i.e. outer-mouth structure, teeth structure, and
overall appearance).

latent spaces and the choice of the values of λ on our
problem can be found in the supplementary material.

3.4 The Editing Method
In this stage, we aim to find an editing path in the P -norm+

space that transforms a malpositioned teeth image to an
aligned one without changing other image features (such
as the mouth shape and its overall appearance).

3.4.1 Disentangling teeth structure from other image fea-
tures
As shown in Fig. 4, the style vector wi provides a layer-
wise control on the activations of the feature maps in
StyleMixing. Karras et al. [9] have shown that style vec-
tors at different layers control the generation of images in
a coarse-to-fine manner: the latent codes at lower layers
often control the low-level information of generated objects
(such as location, shape, and structure), while style vectors
at higher layers control the high-level features (such as
appearance and color) of generated images. Based on this
precondition, we examine how the latent code at each layer
influences the generation and further manually group all
14 style vectors into three categories, as shown in Fig. 6:
1) structure latent codes of outer-mouth wo: style vectors

appearance codesstructure latent 
codes of teeth      

structuct latent codes 
of outer-mouth    

Fig. 6. The latent code grouping criterion for image feature disentangle-
ment.

of the first 4 layers; 2) structure latent codes of teeth ws:
style vectors from the 5th to 9th layers; and 3) the overall
appearance latent codes wa: style vectors of the last 5 layers.

To validate our choice, we show several mixing results
in Fig. 5, where we respectively generate three subsets of
images by alternatively mixing the three types of codes from
source A and source B. The results show that the pretrained
StyleGAN generator offers a natural, spontaneous, and
fine-grained disentangling of outer-mouth structure, teeth
structure, and appearance features, thus enabling us to edit
the teeth structure solely while leaving the other features
(i.e., the overall mouth shape and the teeth appearance)
unchanged. To further validate our choice, we also provide
a theoretical explanation and a rich gallery of experiment
results in Sec. 4 of the supplementary material.

Note that the relationships between the p-norm+ space
and the W+ space are layer-wise. We thus can group the
latent codes in the p-norm+ space into the outer-mouth
latent codes po, the teeth structure latent codes ps ∈ R5×512,
and the appearance latent codes pa accordingly.

Specifically, to only edit the teeth structure and keep the
other image features intact, we only edit ps in the P -norm+

space while leaving po and pa unchanged.

3.4.2 The editing of teeth structure

In the following, we explore the teeth structure latent space
to discover a specific editing path corresponding to an
“alignment” transformation.

Defining the aligning transformation in a StyleGAN gen-
erator to encode complex interplay between individual teeth
is nontrivial and essentially ill-posed since we have no prior
knowledge about the individual tooth shape, not to mention
how they transform to achieve aligned poses. One possible
consideration is to handcraft a series of rules that an aligned
teeth image should satisfy (e.g., the symmetry constraint).
However, hard-coded rules show limited flexibility when
dealing with diverse situations. Instead, we resort to a
pretrained ScoreNet S, which receives a teeth image as input
and outputs a scalar value (1-10) to rate its malocclusion
level, to drive the exploration. By showing a large number
of malpositioned teeth at different levels during training, the
ScoreNet S stores the concrete visual definition of what an
aligned teeth should look like implicitly. We show that min-
imizing the sequential malocclusion scores not only gives
us the dynamic process showing how the input unaligned
teeth is transformed progressively into the aligned one (see
Fig. 11), but also eases the underlying optimization.
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Fig. 7. The inversion process (a) and the editing process (b) of our
method.
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Fig. 8. A visual comparison between Poisson blending [48] and our
BlendingNet. (Zoomed in for better details.)

Following previous works [12], [47], we formulate the
editing path as a linear transformation towards a specific
direction, there concludes the editing process as:

v = argmin S(G(T (concat(po, ps+βv, pa))))+αC(v), (3)

where S(·) is the pretrained ScoreNet, β is the initial
mal-occluding level of It evaluated by ScoreNet S(·), and
concat(·) represents the concatenation operation. We move
the structure latent codes ps along a specific direction v with
a path length measured by β. The edited latent codes in P -
norm+ are then obtained by combining the edited structure
latent codes ps + βv with the original outer-mouth codes
po and appearance codes pa, which are further transformed
to the W+ space using the fixed transformation T . The pre-
trained StyleGAN generator G(·) takes the edited structured
latent codes in W+ space to generate the edited teeth image
I

′

t . Then the optimal moving direction v can be solved by
minimizing the unalignment score evaluated by S. Note that
we also impose a spherical constraint, denoted as C , on the
editing direction v to ensure the edited latent codes to lie
in the valid manifold (the strength of spherical constraint is
controlled by α). The editing process is illustrated in Fig. 7
(The details of training ScoreNet S can be found in Sec. 1.3
of the supplementary material.)

3.5 BlendingNet

To obtain the full edited portrait image I
′
, we need to map

the generated teeth image I
′

t back to the original portrait
I . However, we observe noticeable boundary artifacts and
color inconsistency in edited results if we simply employ
a copy-and-paste strategy (see Column (c) in Fig. 9 for

(a) (b) (c) (d)

Fig. 9. Visual comparisons of our BlendingNet with the direct copy-and-
paste method. (a) The original unaligned image. (b) Directly copying-
and-pasting the reconstructed teeth image with the mouth background.
(c) Directly copying-and-pasting the edited teeth image with the mouth
background. (d) Results obtained by our BlendingNet. The comparisons
show that the artifacts are introduced in the GAN inversion stage, and
our BlendingNet produces high-quality composition results.

illustration). We anticipate that these artifacts are not caused
by the editing of latent codes but are mainly introduced
by the imperfect reconstruction in the inverting stage. To
validate this, we visualize the results of directly copying-
and-pasting the reconstructed teeth image (i.e., without any
editing) into the original background Ib (see Column (b) in
Fig. 9), which exhibit similar boundary artifacts with results
in column (c). As shown in Fig. 8, an alternative solution of
Poisson blending [48] also has difficulties in blending fine
structure details and yields blurry results at boundaries.

To remove such artifacts, we introduce a self-supervised
BlendingNet, which exploits adversarial learning to gener-
ate high-quality results. Specifically, the BlendingNet con-
sists of a U-net generator G and a patch discriminator D. To
train the BlendingNet, we forge training pairs, one of them
containing synthesized artifacts. Specifically, for each image
in the training dataset, we extract the teeth image It, the
background image Ib, and the mouth mask Im, as shown
in Fig. 3. Then we obtain a degraded version Idt of It by
eroding [49] its boundaries and adding random color jitter
to it. Then the BlendingNet is trained to recover the original
image I . During inference, we replace the degraded teeth
image Idt with the edited result I

′

t , and feed the image set
{I ′

t , Im, Ib} to the generator so that the generator outputs a
realistic blended image I

′
. More details about the training

and architectures of BlendingNet can be found in Sec. 1.2 of
the supplementary material.

3.6 Video Teeth Alignment

To extend our editing method to short video clips, one
can run the editing process for each frame independently.
However, such a naive extension does not generalize well
to varying head poses since our method is built on the data
collected in a frontal pose (see Fig. 17 and Sec. 6 for further
illustration). On the other hand, the temporal incoherence
issue could arise if we edit each frame independently.

To create the alignment effect for video V =
{I1, I2, ...., In}, we resort to a modified method of [50]. The
general idea is to edit one frame and propagate the edits to
the rest (we assume that there exists one frame Ii which is
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Fig. 10. A series of representative aligning results for real portrait images by our method. For each case, from left to right we show the original
unaligned image, the inverted teeth image, and the edited teeth image (blended with the original background).

Fig. 11. The iterative optimization enables us to progressively visualize how the given unaligned teeth images (Leftmost) evolve into the aligned
ones (rightmost).

taken in a frontal pose). The end-to-end method [50] takes
a source image (Ii in our case) and a reference frame (say
Ij) and computes a set of corresponding keypoints, which
are fed into a motion network to predict a dense warping
field ϕ and an occlusion map o between the two images.
The computed ϕ, o, and the source image are then fed into
a generator to synthesize the target image whose motion
comes from the reference frame. We refer to [50] for more
details.

We find that a direct deployment of their method on
our portrait image leads to deficient results. First, their
method fails to hallucinating textures that do not exist
in the original image (e.g., when turning the head from
front to left). Moreover, their method generates low-quality
teeth movements since most of the detected keypoints are
scattered at the whole face, not at the teeth. To solve the
above problems, we make two modifications to the original
pipeline. First, we only synthesize the mouth region while
leaving the background untouched. Second, to make the net-
work focus on detect the movement of teeth, we constrain
their keypoint detector within the mouth mask area. We
retrain the modified model on 400 video clips (containing
44000 frames).

To evaluate the effectiveness of our improvements, we
compare the original pipeline and our improved one in
terms of the per-frame reconstruction loss on the test set.
Specifically, our improved pipeline achieves a lower recon-
struction error (0.0069) than the original approach (0.0206).

Fig. 12 shows a visual comparison. Observable artifacts
(e.g., enlarged incisors, blurry background) are presented

with a direct employment of [50] (Fig. 12 (a)). On the other
hand, editing each frame might cause temporally inconsis-
tent results (Fig.12 (c), highlighted with purple boxes). Our
method generates higher quality and temporally more co-
herent results. Currently, our method does not support large
head pose changes (such as turning head 90 degree to the
left/right from frontal pose). For more details, please refer to
Sec.5 in supplementary material, in which we include more
results and a discussion for video teeth alignment.

4 EXPERIMENTS

We conduct both qualitative and quantitative experiments to
evaluate our method. We first introduce the implementation
details of our method in Sec. 4.1. Qualitative and quantita-
tive comparisons with other methods are presented in Sec.
4.2 and 4.3 respectively.

4.1 Implementation Details

Our method contains several different components. Due
to the limited paper length, we only provide the details
of the used dataset, the inversion process, and the editing
method here. The training details of our StyleGAN Genera-
tor, BlendingNet, and ScoreNet can be found in Sec. 1 of the
supplementary material.
Dataset. We obtain a large dataset consisting of 6,000 pre-
treatment patient portraits from a dental company. Each
portrait image was taken in the front head pose, with
the malpositioned teeth visible. To model the manifold of
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(a) (b) (c)

Fig. 12. An example of video teeth alignment. The original unaligned
frame is shown in the first row. (a) the alignment results by [50] (b) the
alignment results by our improved method upon [50]; (c) the alignment
results by running our single-frame alignment method frame-by-frame.
We highlight the artifacts, i.e. the blurriness of background, the distorted
incisors and temporal incoherence in (a) and (c) with red, green and
purple bounding boxes respectively.

aligned teeth images, we additionally collect a set of 1,000
images with their teeth aligned using the method of [5] (We
pick those high-quality results without artifacts). We refer to
the whole dataset data as T .
The Inverting and Editing Processes. Both the inverting
process and the editing process are formulated as iterative
optimization. We use Adam optimizer [51] with a learning
rate of 0.01 for both steps. We set the maximum iteration
number for the inverting process as 1000 and 200 for editing.
Specifically, we set the parameter λ in Eq. 2 as 0.0002 and the
parameter α in Eq. 3 as 0.002. Both steps are implemented
using PyTorch with one NVIDIA RTX 3090ti (24 GB mem-
ory).

4.2 Qualitative Results
Fig. 10 shows diverse aligned results using our method. For
each case, we show the original image, the inverted teeth
image blended with the original background, and the edited

teeth image blended with the original background. For easy
comparison between the teeth before and after alignment,
we only show the edited areas around the mouth. We
observe that for most cases, our inversion method produces
a faithful reconstruction of the original images. Our editing
method further transforms the inverted unaligned teeth
images to their aligned counterparts with high fidelity. The
synthesis results preserve not only the low-level semantics
of the original teeth images (such as the total number of
the visible teeth, the shape and location of each individual
tooth, and the shape of the outer mouth shape), but also
the high-frequency details (such as appearance, textures,
and highlight). For more qualitative results in diverse cases,
please refer to the Sec. 4 in the supplementary material.

We also show the holistic aligned effect by our method
on one’s facial appearance in Fig. 1, from which we can
observe that the edited area is consistent with the whole
facial appearance. Moreover, the iterative formulation of
our editing process allows us to visualize how a set of
unaligned teeth gradually evolve into the aligned ones in
Fig. 11. Our editing method gives each individual tooth a
different transformation so that these transformations form
convinced intermediate results. For example, for case in the
first row, our editing method pushes the tooth highlighted
with a black bounding box from outside to inside and pulls
tooth highlighted with a red bounding box in an opposite
way while keeping the other teeth intact.

4.3 Comparisons

In this subsection, we present a series of qualitative and
quantitative comparisons to evaluate the superiority of our
full model. Specifically, we compare our approach with
the 1) state-of-the-art image-based teeth alignment method:
iOrthoPredictor [5]; 2) the deep-learning based image trans-
lation methods [52], [53], [54]; 3) other image manipulation
methods built on manipulating the latent space of StyleGAN
[30], [55].

For deep image translation methods, we only con-
sider the ones developed under unpaired settings due to
the absence of the ground-truth training pairs (i.e., pre-
orthodontic treatment portraits and their post-orthodontic
counterparts). Specifically, we choose Cycle-GAN [52], con-
trastive learning for unpaired image-to-image translation
[53], and HiSD [54]. Cycle-GAN [52] is a popular image-
to-image translation framework that transforms images of
different domains via a cycle-consistency loss. More re-
cently, contrastive learning [53] has been introduced for
unsupervised domain translation. HiSD [54] is the state-of-
the-art image-to-image translation method that unifies both
multi-style and multi-modal image translation. To adapt
these methods for teeth alignment, we manually classify
all teeth images in datatset T into two domains: images of
low malpositioned level (i.e., the malpostioned score from
1 to 5) and images of high malpositioned level (i.e., the
malpostioned score from 6 to 10), and retrain these methods
with their public codes with the default training settings.

We also compare our latent editing strategy with alter-
native latent editing methods [30], [55], which also built
upon StyleGAN. There are extensive editing schemes [14],
[15], [30], [55] along this line. We choose InterFaceGAN [55]
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(a) (b) (c)

Fig. 13. Comparison with Yang et al [5]. For each case, from left to right are the original image, the aligned result by our method and the aligned
result by Yang et al. [5].

Original Image CycleGAN Constrative
Learning HiSD InterFaceGAN Sefa Ours

Fig. 14. Several visual comparisons between different methods. For each case, from left to right are the original image, the results generated by
Cycle-GAN [52], Contrastive learning [53], HiSD [54], InterFaceGAN [47], Sefa [30], and our method.

and Sefa [30] for their generality since other methods [14],
[15] are tailored for face editing and require domain-specific
models (such as the 3D morphable face models (3DMM) [56]
and pretrained face recognition models [15]).

4.3.1 Comparison with iOrthoPredictor

Visual comparisons with iOrthoPredictor [5] are shown
in Fig. 13, from which we can observe that guided by
ground-truth 3D teeth models, iOrthoPredictor generates
high-quality teeth alignment results in inner mouth areas.
However, as claimed in their paper, their method has dif-
ficulties in synthesizing the areas between gums and lips
since these areas are not modeled by the 3D teeth models
(such as the areas highlighted by green bounding boxes in
Fig. 13). Moreover, due to the imperfect scanning of 3D teeth
models, their method also results in missing teeth in certain
cases (such as areas highlighted by red bounding box in
case (c)). In contrast, our method does not rely on additional
input and generates high quality details.

We also provide the quantitative comparisons with
iOrthoPredictor. For each method, we generate 1,000 exam-
ples and compute the Fréchet inception distance [57] (FID)
of generated images against the whole dataset (excluding
those synthetic results generated by iOrthoPredictor). As
shown in Tab. 1, we obtain lower FID score than iOrtho-
Predictor [5], indicating the superiority in the realism of our
results.

One possible weakness of our method compared with
iOrthoPredictor is that the shape of some teeth in the images
generated by our method might be changed slightly (see the
tooth highlighted by a blue bounding box in case (a) in Fig.
13.) Although we try to preserve the characteristics of the
original teeth as much as possible, such an artifact might
still happen since we cannot guarantee the transformation
for each individual tooth to be rigid in our formulation.
However, we argue that, for portrait image beautification,
this problem is less severe since it is more important to
build a method that can be used by average users. For more

discussion about the applications of our method, please
refer to Sec. 7.

4.3.2 Comparisons with Image Translation Methods
We provide several visual comparisons in Fig. 14. From this
figure, we can observe that 1) Cycle-GAN [52] and con-
trastive learning [53] have difficulties in capturing complex
geometric transformations, thus failing to transform images
from unaligned teeth to aligned ones; 2) HiSD [54], which
is designed for transferring images between different struc-
tures (such as adding bangs or glasses to portrait images),
is able to generate alignment effects to some extent. How-
ever, their method cannot disentangle high-level appearance
from low-level structures, thus still causing both structural
and color distortions (such as the case in the 2nd row).
Moreover, HiSD generates blurry textures at teeth bound-
aries, as highlighted in black bounding boxs in Fig. 14. On
the contrary, our method is capable of generating aligned
results of high quality and preserves the characteristics in
the original images better. Quantitative comparisons, as
shown in Tab. 1, also validate the superiority of our method.

4.3.3 Comparisons with Different Latent Manipulation
Strategies
Both InterFaceGAN [12] and Sefa [58] methods analyze the
latent space of an unsupervised GAN and aim to uncover
the semantic meaningful editing paths. Their difference lies
in that InterfaceGAN trains a linear support vector ma-
chine (SVM) to identify a desirable editing path while Sefa
achieves such a goal in a purely unsupervised manner by
decomposing the weights of a pretrained GAN. However,
one shared drawback of these two methods is that they only
identify the editing path while leaving the edit length (i.e.,
the extent of edit along the path) unresolved. Thus these
methods rely on a manual decision on the edit length. Our
method, in contrast, determines the edit length automat-
ically. In comparison, we manually set the edit length of
their methods to be a reasonable fixed value for simplicity
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TABLE 1
Quantitative Comparisons with Other Methods.

iOrth-
oPredi-
ctor [5]

Cycle
-GAN

Contr-
astive

Learning
HiSD

Inter-
Face-
GAN

Sefa Ours

FID 9.97 11.65 10.67 13.82 8.92 10.84 9.19

and for a fair comparison with these alternative editing
strategies, we reshape their methods to fit them tightly into
our pipeline.

To adapt InterfaceGAN for teeth alignment, we first
generate 2,000 images using our StyleGAN generator. Both
the generated images and their corresponding latent codes
in the W space are recorded. The generated images are
further classified into aligned images and unaligned images.
A linear SVM is trained to identify the ideal hyper-plane
that separates aligned and unaligned latent codes. Like our
method, we force their method to edit the teeth structure
latent codes while leaving the latent codes of other layers
intact. For Sefa, we decompose the weights of teeth struc-
ture layers and choose the direction that causes the most
significant variation as the editing path.

Visual comparisons between our method and InterFace-
GAN as well as Sefa are shown in Fig. 14. Generally,
InterFaceGAN is able to generate certain alignment effects
on images. However, it causes some undesirable artifacts.
For example, in the 1st row, the result of InterFaceGAN
exhibits distortion artifacts. For Sefa, we surprisingly find
that the editing path obtained in such an unsupervised way
can generate some aligned effects on images, but limited in
some cases (such as the case in the 2nd row). In general, our
method generates more convincingly aligned results and is
better at preserving the characteristics of the original teeth
images during transformation.

Quantitative comparisons between our method and In-
terFaceGAN as well as Sefa are shown in Tab. 1. It is worth
noticing that the FID score of our method is slightly higher
than that of InterFaceGAN. It is because that InterFaceGAN
only identifiesthe editing path, while our method carefully
sets the edit length to ensure the high-quality of edited
images for fair comparison. Although InterFaceGAN gener-
ates images of higher quality, their method produces limited
alignment effect as shown in Fig. 14.

5 PERCEPTIVE STUDY

We also evaluate the quality of the results by our method us-
ing a web-based perceptive study by two groups of human
viewers: participants with no knowledge in dentistry (group
1) and professional orthodontists (group 2). To do this, we
first randomly select a subset Ω of 15 real images from
the test set and generate a set of 15 portrait images from
Ω using our method and a set of 15 portrait images using
iOrthoPredictor [5]. We further collect a set of 15 real portrait
images with well-aligned teeth. All the images excluding
those in Ω (so that all teeth appear to be aligned) are used for
user evaluation. Here we only compare to iOrthoPredictor
since it is the SOTA method that can generate high-quality
results closest to ours.

We shuffle these images randomly and present them
to 38 invited volunteers (group 1). Most of the volunteers

TABLE 2
Statistics of our user study. Here we compute the average percentage
(AP) for both groups (i.e., group 1: participants with no knowledge in

dentistry; group 2: professional orthodontists).

Real images iOrthoPredictor [5] Ours
AP (group 1) 73.86% 68.07% 71.23%
AP (group 2) 75.09% 67.64% 74.30%

Average 74.47 % 67.85 % 72.76%

Fig. 15. A visual comparison between the edited results with (middle)
and without (right) the spherical constraint.

are university students with no knowledge in dentistry.
For each image presented, each volunteer was asked to
classify it into either “real” or “fake” category (they were
asked to focus more on the teeth area). For each image
set, we calculate the average percentage of its images being
classified to “real”. The detailed results are shown in Tab. 2.
It can be observed that 1) both the iOrthoPredictor and our
method achieve scores close to the real image set, indicating
that the two methods are capable of generating realistic
images; 2) in general, our method generates more realistic
results than iOrthoPredictor.

We also invite 11 professional orthodontists (group 2)
to do the same test. Tab. 2 shows that even professional
orthodontists find it hard to distinguish between our gen-
erated images with the real images, again proving the
effectiveness of our method. Moreover, compared to the
statistics in group 1, our method achieves a higher score
than iOrthoPredictor at a larger margin, indicting that the
professional orthodontists are more likely to perceive the
small unnaturalness produced by iOrthoPredictor (such as
the artifacts illustrated in Fig. 13) than inexperienced uni-
versity students.

5.1 Evaluation

In this section, we evaluate the effectiveness of the design of
our method.

5.1.1 The Design of Our Editing Method

Here we evaluate the influence of the spherical constraint
during the editing stage. We show several visual compar-
isons between the edited results of with and without the
spherical constraint in Fig. 15. It can be easily observed
that the editing method fails to generate high-quality re-
sults without the spherical constraint in some cases. This is
mainly due to that, without this constraint, the optimiza-
tion process in the editing stage purely seeks a solution
that minimizes the malpositioned score so that the solved
latent codes no longer guarantee the visual plausibility of
generated results. In contrast, the spherical constraint in our
method limits the size of the valid latent space and ensures
the high-quality of the generated images.
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Original Image Two-score OptimizationMulti-score Optimization

Fig. 16. A visual comparison between the multi-score optimization and
two-score optimization.

5.1.2 Effectiveness of Multi-score Optimization
We also show that our method benefits from using the multi-
score optimization strategy than a two-score optimization.
Specifically, we label the teeth images with malpositioned
scores of 1 to 5 as the ”align” data and 6-10 as “unalign”
data, and retrain the ScoreNet for two-class scoring. We
observe that a two-score optimization could sometimes get
stuck at local optima and fail to align the teeth, as shown in
Fig. 16. On the contrary, multi-score optimization can greatly
help the optimizer in generating more aligned effects.

6 LIMITATIONS

Here we discuss several limitations of our method. First,
our method assumes that the portrait images of patients are
taken in the frontal pose, it generalizes poorly to poses that
far from this setting (see Fig. 17 (a)) for an illustration).

Second, since both the inversion stage and the editing
stage are formulated as iterative optimization, our method
does not run instantly. Tested on an RTX 3090ti, our method
takes about 5 seconds to finish the editing of one image on
average.

Third, since our method relies on a ScoreNet to guide
the editing, the performance of our method degrades in
wrong classification situations. For example, in Fig. 17 (b),
the teeth image is mis-classified as “aligned” (i.e., with score
10) so that the ScoreNet does not provide useful signals
for optimization. We believe that this phenomenon can be
relieved if the ScoreNet is trained on a larger dataset with
higher diversity.

Fourth, our method may deviate from real orthodontic
treatment. In real orthodontics, many cases will need to pull
out patients’ teeth for a suitable alignment, however, our
method always tends to inpaint the missing teeth. Fig. 17 (c)
shows an example, whereas the actual orthodontic planning
will leaving a missing tooth for in-plant. On the contrary,
iOrthoPredictor [5] is capable of handling such cases since
they have the 3D aligned teeth as guidance.

Fifth, similar to iOrthoPredictor [5], our approach only
considers the synthesis of the mouth region while leaving
the other areas (such as the contour profile of face, the rela-
tive location of upper and lower jaw, and the changes of soft-
tissues muscles) untouched. In fact, orthodontic treatment in
one’s early age has a more profound influence on facial ap-
pearance (such as the growth of maxilla and mandible, and
the improvements on the occluding relationship between
the upper and lower jaws) than simply aligning the teeth.
More factors should be modeled in future works.

7 CONCLUSION AND DISCUSSION

In this paper, we introduced the first model-free method that
generates the visual outcome of orthodontic treatment for a
portrait image.

(a) (b) (c)

Fig. 17. Illustrations of several limitations of our method. (a) Top: the
original image, Bottom: the reconstructed image by inversion. (b) Left:
the image that needs to be edited; Right: the edited result. (c) From left
to the right are: the original image, the edited result by our method, and
the edited result by iOrthoPredictor [5].

Our key innovation is that we formulate the image
translation problem from malpositioned teeth to aligned
teeth as a latent space exploration problem, where we first
model the teeth image manifold with the state-of-the-art
unsupervised GAN (i.e., StyleGAN in our paper) and find
the geometrically meaningful editing path that corresponds
to “alignment” in its latent space. To achieve so, we first
disentangle the teeth structure from other image features
and guide the editing using a ScireNet.

Different from iOrthoPredictor [5], which requires a
corresponding 3D teeth model as input, our method does
not rely on any additional 3D input, making our method
accessible for commodity users. Here we discuss some real-
world applications of our method. First, our method can
be used as a built-in tool in portrait retouching software.
Smiling portraits widely exist in our daily life. However,
aligning one’s teeth in portrait images requires complex
local edits even for professional users with traditional image
retouching tools like Photoshop. Our method serves as a
strong and useful backbone in such a situation since our
method automatically generates high-quality teeth align-
ment results and does not need any human intervention. In
such scenarios, the real post-treatment effects are not impor-
tant. On the other hand, for orthodontic treatment, although
iOrthoPredictor can achieve more correct alignment results
under the strong guidance of a 3D teeth model, their results
are still not orthodontically accurate, as indicated in their
paper [5] due to the complex process of real orthodontic
treatment. Along this vain, we believe a lightweight tool
that releases the need for a 3D scanner and professional
preprocessing is more user-friendly and can quickly help
end users to perceive the effects and build their confidence
in taking real orthodontic treatment.
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