
Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Efficient non-incremental constructive solid geometry evaluation for
triangular meshes

Bin Sheng⁎,a, Ping Li⁎,b, Hongbo Fuc, Lizhuang Maa, Enhua Wud,e

a Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
b Faculty of Information Technology, Macau University of Science and Technology, Macau
c School of Creative Media, City University of Hong Kong, Hong Kong
d Faculty of Science and Technology, University of Macau, Macau
e State Key Laboratory of CS, ISCAS & University of CAS, China

A R T I C L E I N F O

Keywords:
Boolean operations
Plane-based geometry
CSG evaluation
Hybrid representation

A B S T R A C T

We propose an efficient non-incremental approach to evaluate the boundary of constructive solid geometry
(CSG) in this paper. In existing CSG evaluation methods, the face membership classification is a bottleneck in
executive efficiency. To increase the executive speed, we take advantages of local coherence of space labels to
accelerate the classification process. We designed a two-level grouping scheme to group faces that share specific
space labels to reduce redundant computation. To further enhance the performance of our approach in the non-
incremental evaluation, we optimize our model generation which can produce the results in one-shot without
performing a step-by-step evaluation of the Boolean operations. The robustness of our approach is strengthened
by the plane-based geometry embedded in the intersection computation. Various experiments in comparison
with state-of-the-art techniques have shown that our approach outperforms previous methods in boundary
evaluation of both trivial and complicated CSG with massive faces while maintaining high robustness.

1. Introduction

Constructive Solid Geometry (CSG) has long been a popular mod-
eling tool for Computer-Aided Design and Computer-Aided
Manufacturing (CAD/CAM). It constructs complex models by com-
bining primitives using a series of regularized Boolean operations [1]:
union, intersection, and difference. A CSG can be represented by a
binary tree, called the CSG tree. The leaves of the CSG tree represent the
primitives while the internal nodes represent the Boolean operations.
Another widely-used method for representing CSG is polygonal mesh
representation through boundary evaluation. Most boundary evalua-
tion methods mainly contain two phases: intersection computation and
face membership classification. For most of boundary evaluation
methods, robustness and efficiency are two major issues. During the last
few decades, many techniques have been developed to pursue robust
boundary evaluation. However, in terms of efficiency, there is much
space for improvement.

One of the keys in deciding the efficiency of the evaluation is the
face classification. It is based on space labels of faces. The number of
space label of a face equals to the number of primitives. For large CSG
with massive faces and primitives, computing these space labels is ex-
tremely time-consuming. A common idea for acceleration is to take

advantages of the local coherence of space labels. If a face is inside (or
outside) a specific primitive, its neighboring faces are likely to be inside
(or outside) the primitive. Determining whether two adjacent faces
share the same space labels is relatively simple. Through grouping the
faces that share the same labels and reusing these labels, unnecessary
repetitive computation can be largely reduced.

Taking advantages of the local coherence of space labels, previous
studies have developed localized schemes [2–4] based on different
grouping units such as voxels and octree cells. These grouping units are
essentially cubes. With these cubes, the space division data structures
constructed during the intersection computation is able to be recycled.
However, using the cube as a basic grouping unit has disadvantages in
handling arbitrary shapes. Under localized schemes, connected faces
that shared the same space label are grouped together. The face group,
which is essentially a union of connected faces, can have arbitrary
shapes. The cube-based grouping scheme can only provide a rough
approximation for the most shape of the face groups. Fig. 1(a) and (b)
presents a 2D illustration. The red cubes (represented in red grids in
Fig. 1(a)) contain the intersection of two primitives. Faces (represented
as edges in the figure) in these two cubes are left ungrouped since they
have different space label. To compensate for the inaccuracy, extra
time-consuming computation is introduced to classify these ungrouped

https://doi.org/10.1016/j.gmod.2018.03.001
Received 30 January 2018; Accepted 5 March 2018

⁎ Corresponding authors.
E-mail addresses: shengbin@sjtu.edu.cn (B. Sheng), pli@must.edu.mo (P. Li).

Graphical Models 97 (2018) 1–16

Available online 08 March 2018
1524-0703/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/15240703
https://www.elsevier.com/locate/gmod
https://doi.org/10.1016/j.gmod.2018.03.001
https://doi.org/10.1016/j.gmod.2018.03.001
mailto:shengbin@sjtu.edu.cn
mailto:pli@must.edu.mo
https://doi.org/10.1016/j.gmod.2018.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2018.03.001&domain=pdf

faces. To avoid additional computation, we proposed a face-based lo-
calized scheme which is able to handle arbitrary shape (Fig. 1(c)).

Another barrier for pursuing high efficiency is the incremental al-
gorithm adopted in previous methods [2,5,6]. Previous methods are
designed to evaluate one Boolean operation at a time. For a large CSG
tree with more than two primitives, it has to be decomposed into a
series of Boolean operations which are evaluated separately. These in-
cremental algorithms are highly inefficient and inevitably generate
unneeded massive intermediate results. Incremental algorithms have
been used in design application for a considerable long period. In
practical design, constructing CSG models by progressively adding
primitives is very common. The intermediate results can be used for fast
preview. However, with the appearance of GPU-based approximate
evaluation algorithms [3,4] and CSG visualization algorithms [7,8], the
intermediate results generated by the incremental methods are no more
suitable for preview computation. Thus, the non-incremental algorithm
is a better choice for final mesh generation.

In this paper, we propose a robust approach to perform CSG
boundary evaluation with triangular mesh primitives. To overcome the
drawbacks of the cube-based localized scheme, our approach uses a
special two-level face-based localized scheme and applies a flood-filling
algorithm to group faces. To avoid unnecessary computation and
pursue high efficiency, an optimized non-incremental evaluation of CSG
is applied instead of traditional incremental algorithms. The robustness
and exactness of our approach are strengthened by applying plane-
based representation in the intersection computation. In general, our
approach has the following contributions:

1.1. Face classification using two-level grouping

A two-level grouping scheme is designed to reuse space labels. The
input faces are firstly grouped according to the primitive they belong to
in the first level. Then, groups in the first level are further divided ac-
cording to the intersection as shown in Fig. 2(d). A flood-filling algo-
rithm is applied to enable efficient grouping and label propagation
among adjacent faces. This scheme makes a balance between the ben-
efit of face label sharing and the cost of grouping faces for the best
performance in the face classification.

1.2. Efficient non-incremental evaluation

The non-incremental evaluation we used in our approach contains a
set of techniques, including face-nested Binary Space Partitioning (BSP)
and multi-level CSG tree trimming. These techniques are able to process
the complex conditions of the intersection and face classification effi-
ciently.

1.3. Plane-based triangle intersection test

To avoid the introduction of errors during intersection computation,
we combine a triangle-triangle intersection method with a plane-based
representation. With P-reps, our triangle intersection test is free from
constructing new points.

Multiple experiments have confirmed that our approach has ad-
vantages in efficiency and robustness when compared to the state-of-
the-art techniques [2,5,9–11]. Our approach is able to quickly and ro-
bustly perform CSG evaluations not only for trivial CSG, e.g. single
Boolean operations, but also for large CSGs with hundreds of primitives.

The remaining parts of our paper are organized as follow. The next
section gives a literature review of the issues in CSG evaluation. In
Section 3, we give a brief introduction to the CSG evaluation including
terminology and definitions. Section 4 provide an overview of our ap-
proach. In Section 5 and Section 6, we provide detail descriptions of the
core of our approach: the plane-based intersection computation and the
face classification framework. Experimental results and comparison
with previous methods are presented in Section 7. Finally we conclude
our paper with a short summary and an outlook to future research in
Section 8.

2. Related work

As mentioned in [12], “nonrobustness refers to qualitative or cata-
strophic failures in geometric algorithms arising from numerical er-
rors.” In other words, geometric robustness does not equal to precise
numeric. Small numeric errors may be negligible in some scientific
computation, but may sometimes cause topological deficiency or other
catastrophic failures in geometry. Pursuing robustness of CSG evalua-
tion has been a challenging problem since its inception in 1980s
[13,14]. The non-robustness is inherited from the Boolean operations
on solids in the process of building blocks of CSG. Previous research
attempted to solve such issues using arbitrary precision arithmetic
[9,15–18] and exact interval computation [19–21]. These methods
achieve robustness at the cost of massive memory and have no limita-
tion in computational time. Thus, they may be impractical for evalua-
tion of CSG with massive faces. For example, the state-of-the-art robust
Boolean operation [18] (implemented with arbitrary precision ar-
ithmetic in the Computational Geometry Algorithms Library (CGAL)
[22]) is 20 times slower than its non-robust version. To minimize the
cost of efficiency and guarantee robustness simultaneously, introduc-
tion of plane-based representation in the evaluation is a practical
choice. Sugihara and Iri [23] introduced a plane-based representation
of polyhedra. They pointed out that Boolean operations are funda-
mentally robust using plane equation as the primary geometry re-
presentation. According to their theory, the evaluation of Boolean op-
erations can be performed without the operation of “constructions”
[24], thereby avoiding the introduction of any numerical errors.
Bernstein and Fussell [6] further noticed that a Binary Space Parti-
tioning (BSP) merging for Boolean operations [25,26] is actually a
plane-based technique. Therefore, they combined the two conceptions,
plane-based geometry and BSP merging, to develop an unconditionally
robust method for Boolean operations of polyhedra. Equiped with
Shewchuk’s adaptive geometry predicate [27], the speed of Bernstein
and Fussell’s method increases dramatically and but still twice slower
than previous non-robust methods. Wang et al. [28] design an efficient
algorithm to extract the manifold surface that approximates the
boundary of a solid represented by a BSP tree.

Fig. 1. 2D illustration of different grouping schemes. Face grouping in 3D can be represented with edge grouping in 2D. Because the boundaries of the polygons are represented as edges
in 2D. Faces are grouped using (a) voxels, (b) octree cells, and (c) faces as the grouping units. Different groups in (c) are marked by different colors.

B. Sheng et al. Graphical Models 97 (2018) 1–16

2

The introduction of plane-based representation and BSP merging
does not solve all the problems. In fact, adopting these two techniques
causes high memory consumption in the evaluation and thus makes the
evaluation difficult when processing polyhedron with massive faces. To
handle this difficulty, localized schemes are widely used in different
methods of Boolean operations and CSG boundary evaluation [2–5].
These methods are usually based on intersection computation and face
membership classification. For instance, Campen and Kobbelt develop a
delicate approach [2], which solves the problem of exact and efficient
conversion of polyhedral between vertex-based and plane-based re-
presentations. Through leveraging adaptive octree, BSP structures are
nested into cells of the octree (called critical cells), where the inter-
section between primitives occurs. The face classification is performed
using these cells as the basic classification units. The success of these
localized schemes can be attributed into the following two facts. First of
all, the intersection between the polyhedra is locally distributed. This
fact suggests that intersection test is not necessary for every pair of
triangles. Secondly, a face and its neighboring faces are often consistent
in space labels. In other words, sharing space labels between adjacent
faces is possible.

Most of the previous methods build the localized schemes using
cubes (e.g. voxels, octree cells) as the unit of the face group, which is
often the natural result of reusing space-division data structures.
However, there are some situations that connected faces that share
same labels are separated in different cubes. Repetitive classifications
may be required for these cubes. Furthermore, when faces of different
classifications coexist within a small space, they forms a mixed area
(shown in the red areas in Fig. 1a and b). Grouping mixed area with
cubes is difficult because the size of cubes cannot diminish infinitely.
Common approach for handling mixed area is to construct a series of
special cubes to contain faces with different space labels. Processing
these special cubes is often complicated and highly time-consuming.
Some researchers try to overcome the drawbacks of the cube-based
scheme through maximizing the ability of hardware. With the devel-
opment of General-Purpose Graphics Processing Units (GPGPU), many

researchers [4,29–32] utilized the grand computing power of graphics
hardware for accelerating Boolean operations. These methods usually
have good performance and are suitable for interactive applications,
such as digital sculpting. However, owing to the paralleled features of
graphics hardware, these methods are usually voxel-based and support
only approximate evaluation that inevitably suffers from loss in geo-
metric details, especially at the intersection areas of primitives. Face-
based localized schemes may be a better choice compare to the cube-
based schemes. Feito et al. [5] developed a Boolean evaluation using a
face-based grouping scheme. To share classification results, only faces
that do not intersect with other primitives are grouped together ac-
cording to geometry connectivity. However, the similarity between
adjacent groups is omitted in [5].

3. Preliminary

To better illustrate our approach, we firstly introduce the back-
ground knowledge of CSG evaluation and a brief analysis of Boolean
operation. Some of notations in our paper are defined here and some of
the definitions will be recalled now.

3.1. Space label

Space label is one of the key concepts in the face membership
classification in CSG evaluation. The space label of a face F with respect
to a primitive M, denoted as LF(M), is the relative location of F with
respect to M. In the situation that does not cause confusion, we can
denote L(M) to be the space label with respect toM without specifying a
face. In general, there are four conditions between a face and a pri-
mitive: completely inside (=L M IN()F), completely outside
(=L M OUT()F), on the boundary (=L M ON()F), or not available
(=L M N A() /F). Specially, when =L M N A() / ,F it suggests that the face
F crosses the boundary of the primitive M. In other words, there does
not exist a uniform label for the face F. Additionally, when

=L M ON() ,F there are two derived conditions which are classified

Fig. 2. An overview of our approach for CSG evaluation. (a) The CSG tree represents a solid constructed by the Boolean expression: Cube ∪ Sphere - Cylinder; (b) octree construction
based on the bounding box that contains all input primitives; (c) intersections computation between primitives; and (d) faces are grouped with our two-level grouping schemes. Faces of
the same primitive are grouped into an inter-primitive group. (Each row in the figure represent an inter primitive group) Within the inter-primitive group, faces are further grouped into
different intra-primitive groups according to their intersection. (Faces of the same color are in the same intra-primitive group). After the grouping, faces are determined whether they
belong to the final mesh through evaluating the Boolean expression. This scheme enables propagation of the space labels of the faces within groups to reduce massive calculation; (e) is
the final results of the CSG solid.

B. Sheng et al. Graphical Models 97 (2018) 1–16

3

according to the normal direction of the face F. For a face that has
consistent normal vector with the primitive M, it is labeled with

=L M SAME()F . For a face that has opposite normal vectors with the
primitive M, its space label is =L M OPPO()F .

3.2. Evaluation of Boolean operation

The evaluation of Boolean operations between two primitives A and
B can be converted to the problem of surface selection according to the
labels:

∪ = ∪ =

∪ =

∩ = ∪ = ∪ =

− = ∪ ′ =

∪ =

A B F L B OUT F L A OUT

F L B SAME
A B F L B IN F L A IN F L B SAME

A B F L B OUT F L A IN

F L B OPPO

* : { () } { () }

{ () }
* : { () } { () } { () }

* : { () } { () }

{ () }

A F B F

A F

A F B F A F

A F B F

A F

A B

A

A B A

A B

A

(1)

where FA and FB are the faces that belongs to primitives A and B cor-
respondingly. The F′ denotes the face that has the inverted normal of
face F. The stars (*) after the operation notations (∪ ∩ −, ,) suggests that
the Boolean operations are regularized.

Now, consider computing LF(T), where T is a CSG solid with n pri-
mitives = …M i n{ 1, 2, 3, , }i . Then, there are totally n space labels for
the face F: = ⋯L M i n{ () 1, 2, 3, , }F i (or expressed in vector form

⎯ →⎯
LF). If

all elements in
⎯ →⎯
LF are known and none of them is N/A, LF(T) can be

easily computed by traversing the whole CSG tree from bottom to top,
and by progressively combining the space labels of the CSG nodes ac-
cording to the combination rules [13]. Given an arbitrary label value X,
X∈ {IN, OUT, SAME, OPPO, ON}, we have the following combination
rules:

∪ ⇒ ∩ ⇒

∪ ⇒ ∩ ⇒

∪ ⇒ ∩ ⇒

∪ ⇒ ∩ ⇒

X X X X X X
X OUT X X OUT OUT
X IN IN X IN X
SAME OPPO IN SAME OPPO OUT

,
,

,
, (2)

Note that the combination rules for difference operation can be
converted into the intersection operation using De Morgans transfor-
mations. Given two arbitrary label value X1 and X2, their complement
set are X c

1 and X c
2 respectively. According to De Morgan’s law we have:

− ⇒ ∩ ⇒

∩ ⇒ ∪ ∪ ⇒ ∩

X X X X X X
X X X X X X X X

, ()
() , ()

c c c

c c c c c c
1 2 1 2 1 1

1 2 1 2 1 2 1 2 (3)

In the situation that
⎯ →⎯
LF contains elements that have the value of N/

A, the LF(T) cannot be obtained through traversal of the CSG tree. In
this situation, we can estimate the LF(T) through trimming the CSG tree
into a form that contains fewer primitives. Assume a CSG with its
Boolean expression ∪ ∩ −M M M M(),1 2 3 4 where M1, M2, M3, M4 are
four primitives. Given the values of two labels =L M()1 OUT =L M IN, () ,2
the space label of a face can be evaluated through

∪ ∩ −Out In L M L M(() ())3 4 . Using the combination rules, we can sim-
plify the expression as −L M L M() ()3 4 . Thus, any face that shares the
same two labels, L(M1) and L(M2), can be classified based on the
trimmed CSG tree −M M ,3 4 which has only two primitives. The goal of
computing LF(T) is to determine whether the face F belongs to the final
mesh model. The face F lies on the boundary of final model and has the
correct normal if and only if =L T SAME()F .

4. Our proposed approach

Before giving descriptions of the technical details, we first provide
an overview of our approach. As it is shown in Fig. 2, our approach
computes the boundary of CSG solids in three phases: adaptive octree
construction, plane-based intersection computation and face classifi-
cation. Note that similar to previous methods [5,6], we proposed our

approach based on the assumptions that: 1) the input primitives of the
CSG tree is strictly Nef polyhedra with manifold surfaces; 2) there is no
hole or self-intersection. To allow us adopting a flood-filling strategy,
we further assume that the connectivity of adjacent faces is available.
Our current approach is dedicated to primitives of triangular meshes for
simplicity.

4.1. Adaptive octree construction

As a typical routine of localization, our approach uses the adaptive
octree to accelerate the used spatial query afterwards. Different from
the previous method [5], our approach is special designed for non-in-
cremental CSG evaluation. The octree in our approach is constructed on
the bounding box that contains all input primitives as shown in Fig. 2b.
Here we named the octree leaf as a cell to avoid presentation ambiguity
with a CSG leaf. We conduct intersection detection between triangle
faces and cells using the separating axis theorem [33]. All the cells are
classified into two types: if all triangles that intersect a cell belong to
the same primitive, we define the cell as a non-critical cell; otherwise, it
is defined as a critical cell. The classified result is prepared for the in-
tersection computation in the next step.

4.2. Intersection computation with plane-based representation

In this phrases, all the intersections between primitives are com-
puted and restored (shown as the red triangles in Fig. 2c). We conduct
the triangle-triangle intersection test in this stage. To avoid unexpected
failures caused by numeric errors, we integrate a plane-based re-
presentation of polyhedra into the triangle-triangle intersection test. To
increase the efficiency of the plane-based geometry computation, we
employ the adaptive precision predicates [27]. With the classified re-
sults provided from the previous steps, we can only carry out the in-
tersection test within the critical cells. Because intersection between
faces occurs within critical cells only. Intersection tests for faces in the
non-critical cell are unnecessary for our assumption suggests that pri-
mitives are not self-intersected. The restored information of the inter-
section will be used for the face classification in the next step. More
technical details are provided in Section 5.

4.3. Face classification using two-level grouping

We specially design a two-level grouping scheme for the face clas-
sification steps. For each primitive face, which intersects with other
faces, we need to determine whether it can completely (or partially)
enter the final model. We apply a breadth-first flood-filling strategy to
traverse faces of each primitive. We start from a random seed whose
spaced labels are already completely computed and allow these labels
to propagate to neighboring faces and vary according to intersection
conditions (see Fig. 2d). During these processes, we design a two-level
face grouping scheme to maximize information reusing.

5. Plane-based intersection computation

Intersections between faces are computed through the triangle-tri-
angle intersection test within each critical cell. One efficient and simple
detecting method is the Möller’s intersection detection [34] which is
based on collision detection algorithms. However, a conventional im-
plementation of the Möller’s intersection detection may cause un-
predictable results. Because the collision detection algorithms it used
are often accompanied by non-robustness. Instead of direct applying the
Möller’s method, we integrate the plane-based geometry representation
based on the original framework and develop a precise and robust in-
tersection detection approach.

B. Sheng et al. Graphical Models 97 (2018) 1–16

4

5.1. Intersection detection

Our plane-based intersection detection approach is developed based
on Möller’s triangle-triangle detection framework. To better illustrate
our approach, we first perform an introduction and a brief analysis of
Möller’s method. Then, we present a detail description of our detecting
approach.

5.1.1. Basic triangle-triangle intersection test
As illustrated in Fig. 3, the original Möller’s method [34] computes

the intersection between two triangular faces, F1 and F2, in three
phases. Let us denote S1 be the plane where F1 lies in and S2 be the
plane where F2 lie in. In the initial phase, the method first test whether
F1 intersects S2. F1 intersects with the S2 is a necessary condition for the
intersection between F1 and F2. An early rejection will be performed if
the first test failed. Similar test between F2 and S1 is also conducted in
this phase. Then in the second phase, the intersection segments between
the triangular faces and the planes are computed. Let us denote the
intersection between F1 and S2 as Seg1 and the intersection between F2
and S2 as Seg2. Seg1 and Seg2 are computed separately. In the final
phase, the intersection between F1 and F2 is determined by computing
the overlapping area of Seg1 and Seg2.

Conventional implementations of the triangle-triangle intersection
test use vertex-based representation and regular floating-point ar-
ithmetic. However direct computation in conventional way may easily
introduce numerical error. Fig. 4 present a difficult case in 2D. Given
two triangles A and B, computation of A ∪ B requires to calculate the
intersection of their edges. The left edges of A and B are easily in-
correctly treated as co-linear when computational errors appear. One
direct solution is to use arbitrary precision arithmetic. But its

computational cost is not affordable for a large CSG evaluation. The
non-robustness of the test originates from the operation called con-
struction, which computes new coordinates of geometry objects based
on the known coordinates of existing ones. To represent Seg1 and Seg2
explicitly, their endpoints are constructed based on known coordinates.
But the accuracy is not guaranteed. To solve the problem of robustness,
we utilized a plane-based representation of the geometric objects when
conducting triangle-triangle intersection test.

5.1.2. Intersection test with plane-based representation
The key for pursuing robustness in the intersection test is to elim-

inate the errors in the coordinate computation. To avoid computational
errors, we restrict the computation to predicates, which make a two- or
three-way decision based on known coordinates. This restriction is
practical because according to Sugihara and Iri [23], geometry com-
putation of Boolean operations can be restricted to predicates using
plane-based representation of polyhedra. Based on this important fea-
ture, we proposed an exact and efficient intersection test using plane-
based representation(P-reps).

In our intersection test, all the elements are expressed using plane-
based representation. By using plane-based representation, we mean
both the geometric substrates and numeric substrates are based on
planes. Let us use the F in Fig. 5 for illustration. A triangular face can be
represented as a convex area formed by the intersection of four planes:
one supporting plane surrounding by three bounding planes. As it is
shown in Fig. 5, the triangular face SF is bounding by three planes Sab,
Sac, and Sbc. The edge line of the triangular face F are intersections
between supporting planes and the bounding planes. Thus, the edge
lines can be represented using plane groups. For example. the edge ab of
the face F can be expressed as [SF, Sab]. Similarly, edge line ac and bc

Fig. 3. Intersection test between two triangles F1 and F2. S1 and S2 are the
planes where the two triangles lie in respectively. Seg1 is the intersection
between S2 and F1. Seg2 is the intersection between S1 and F2. The inter-
section between F1 and F2, which is the red line segment, is the overlap of
Seg1 and Seg2. The intersection test is, in fact, calculating the relative
position of the two endpoints g and h along the intersecting line Z. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. A difficult 2D case for intersection computation. (a) Two triangles A and B The left edges of A and B are approximately, but not exactly, collinear. (b) When computing A ∪ B using
in accurate methods, A and B are easily judged as collinear, causing discontinuous edges in final result.

B. Sheng et al. Graphical Models 97 (2018) 1–16

5

can be expressed as [SF, Sac], [SF, Sbc] respectively. Points can also be
represented using planes. The endpoints of the intersection segments
Seg1 and Seg2 are represented using plane triples. We use the plane-
based representation of the Seg1 for illustration. As it is shown in
Fig. 6a, the endpoints of Seg1, are the intersection of the edge lines and
the plane S2. Thus, the two endpoints can be expressed [S1, Sac, S2] and
[S1, Sbc, S2] respectively. In this way, we are free from construction of
new points.

Applying plane based representation not only means representing
geometric objects implicitly with planes, but also mean restoring plane
coefficients instead of vertex coordinates. For example, the P-reps of the
triangle in Fig. 5 is F: {SF, Sab, Sac, Sbc}. These planes can be expressed
with as

= + + + ∈S α x β y γ z δ i F ab ac bc, { , , , }i i i i i (4)

We restore the plane coefficients (αi, βi, γi, δi) for numerical computa-
tion, instead of the exact coordinates of the vertexes of F. We use
→

=S α β γ δ(, , ,)i i i i i to represent the coefficient vector of the planes and
⎯→⎯

=N α β γ(, ,)i i i i to represent the normal vector of the planes. The coef-
ficient of the planes are calculated according to the input coordinates.
We apply the conversion method by Camplen et al. [2], which is able to
handle inputs with IEEE 754 precision and generate plane coefficients
in double precision floaing-point numbers.

Given a point j with its P-reps j: S1 ∩ S2 ∩ S3. Its relative position

toward a planar surface S0 is determined by the following determinant
dj:

=

α β γ
α β γ
α β γ

α β γ δ
α β γ δ
α β γ δ
α β γ δ

d *j

1 1 1

2 2 2

3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 0 (5)

where (αi, βi, γi, δi), i∈ {0, 1, 2, 3} are coefficients of the plane equation.
When dj>0, point j is in front of the plane S0 (same direction as the
normal vector). When =d 0,j the point is on the plane. Through ob-
taining the relative position between vertexes and a plane, we can ea-
sily know whether the triangular face and the plane intersects or not. In
Fig. 6, all four intersection situations between a triangle and a plane are
shown. Again, we used the situation in Fig. 6(a) for illustration. Let us
denote the signed distance from the vertex of the triangular face F1 and
the plane S2 as =i a b cd , { , , }i . If the vertexes of face F1 satisfies
da · dc<0 and db · dc<0, we can conclude that F1 and S2 intersects as
shown in Fig. 6(a).

The intersection between F1 and F2 is the overlapping area of Seg1
and Seg2. It can be easily evaluated by comparing the endpoints of Seg1
and Seg2 along the intersecting line Z (see Fig. 3), where Z is the in-
tersection between S1 and S2. Unlike Möllers implementation [34], our
approach conducts the computation based on plane-based representa-
tion instead of using projection, which requires the exact point co-
ordinates. Thus, our approach can effectively avoid computational er-
rors. Let

⎯→⎯
N1 and

⎯→⎯
N2 be the normals of the plane S1 and S2 respectively.

We define the direction of the vector
⎯→⎯

×
⎯→⎯

N N1 2 as the positive direction.
Let g and h be two endpoints on Z. Point g is the endpoint of Seg1 while h
is the endpoint of Seg2. Let Sg be a chosen plane that contains the point
g. The plane Sg is required to have the same orientation with respect to
L. In other words, the dot product between the plane normal

⎯ →⎯⎯⎯
NSg and

the Z is positive. The plane Sg should also not to be parallel with Z. We
can also find a similar plane for point h and denote the plane as Sh,
which has a normal vector

⎯ →⎯⎯⎯
NSh. To estimate the relative position be-

tween g and h, we calculate the sign of the following multiplication of
determinants:

=

⎯→⎯

⎯→⎯

⎯→⎯

⎯→⎯

⎯→⎯

⎯→⎯

⎯ →⎯⎯⎯

⎯→⎯

⎯→⎯

⎯ →⎯⎯⎯

K g h

S

S

S

S

N

N

N

N

N

N

(,) · ·
g

h
S S

1

2
1

2

1

2

g h
(6)

If K(g, h)> 0, then the endpoint g lies in the positive direction of h.
Similarly, if K(g, h)< 0, then the endpoint g lies in the negative

Fig. 5. Plane-based representation of a triangle. A triangle F can be represented as the
intersection between a supporting plane SF (marked in yellow) and three bounding planes
(marked in green). The supporting plane is where the triangle lies in. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. We denote the signed distance from the vertex of the triangular face F1 and the plane S2 as di, i∈ {a, b, c}. All four conditions of intersection between F1 and S2 (denoted as Seg1)
are: (i) da · dc<0, db · dc<0; (ii) =d 0,a =d 0,b dc≠ 0; (iii) =d 0,a db · dc<0; (iv) =d 0,a db · dc>0.

B. Sheng et al. Graphical Models 97 (2018) 1–16

6

direction of h. If =K g h(,) 0, these two points are coincident. With the
relative positions with g and h, whether Seg1 and Seg2 have overlap is
known. If Seg1 and Seg2 overlap, face F1 intersects face F2. If F1 and F2
are coplanar, we need to confirm whether they overlap within the
common plane. In this situation, we only need to perform a two-di-
mensional triangle-triangle overlap test. The test is also performed
using plane-based representation.

5.2. Restoring intersection information

The intersection information is restored for the face classification in
the next phase. We record all the intersected faces when an intersection
is detected. Each intersected face is recorded accompany with three
lists: a cross list, a coplanar list, and a point list (Fig. 7). The cross list
stores the end points of intersections, the associated faces of the in-
tersections, and the primitives which these associated faces belong to.
The coplanar list stores coplanar faces and the primitives which these
coplanar faces belong to. Since an intersection is generated by two or
more faces, faces that intersect with each other partly share the same
information in their cross lists or coplanar lists.

The point list of an intersected face stores all the points that inside
the face or on the boundary. For two faces that are adjacent to each
other, the points on their common boundary are on both of their point
lists. The purpose of maintaining the point list is to reconstruct geo-
metry connectivity and avoid coincident vertexes in the final model.
With the point lists, coincident points detection can be merged into the
intersection computation. For example, when a face F is found to in-
tersect with other faces, in the restoring process, we need to insert a
record into the cross list of the face F. Meanwhile, the endpoints of the
intersection line on F are inserted into the point list of F. Before the
insertion, our approach will traverse the list to find if there exists a
coincident point on the list. If the coincident points are found, the re-
cords are merged. The introduction of point lists is also helpful for
handling some degenerate intersection situation. Assume that we have
two faces F1 and F2. If F1 and F2 only intersects on a single point, the
intersected point will be added to the point lists of both faces while the
cross lists remain the same. This situation is not considered as an in-
tersection in our approach. If F1 and F2 are coplanar and overlapped, F1
is added to the coplanar list of F2 and vice versa. The point lists and the
cross lists remain the same.

6. Face classification framework

Our face classification framework takes advantages of the local
coherence of the space label. Space labels of neighboring faces are often
the same. Given two neighboring faces F1 and F2, =L M L M() ()F F1 2 is
often the case. Base on this observation, we are able to group neigh-
boring faces and trim the CSG tree. With the trimmed CSG tree, we can
classify the faces and determine whether they are part of the final
model. Fig. 8 shows the complete framework of our face classification

process. Our face classification framework is a two-level architecture,
which can effectively trim the CSG tree and significantly reduce the
computational workload. Our special designed framework enables faces
to share labels and greatly accelerates the face membership classifica-
tion. Procedure 1 provides the pseudo code of our classification process.

6.1. Two-level grouping scheme

We design a two-level grouping scheme that enables the faces to
share labels. Before applying our scheme to a CSG tree, the original CSG
tree is firstly converted into a positive tree [35], which does not contain
difference operator. The conversion can be easily achieved by using De
Morgan’s transformations Eq. (3). The difference operations are all
expressed with complement notation. Then, the faces are grouped in
two levels: an inter-primitive level and an intra-primitive level.

6.1.1. Inter-primitive level
The first level of our scheme is called the inter-primitive level. In this

level, all the faces that belong to the same primitive are grouped to-
gether. Then a rough estimation of the label is conducted in each group.
The estimation is based on the bounding box test on each primitive.
Knowing the relationship of the bounding boxes between different
primitives, the value of part of the space labels can be easily de-
termined. Suppose we have a group that contains n faces F1, F2, ⋅⋅⋅Fn
that are of the primitiveM1. Since all the n faces belong to primitiveM1,
it is obvious that ⋯ =L M L M L M SAME(), (), ()F F F1 1 1n1 2 . Given that the
primitive M2 is completely out of the bounding box of the primitive M1,
we can conclude that the values of ⋯L M L M L M(), (), ()F F F2 2 2n1 2 are
OUT. Thus, in our approach, we conduct such a rough estimation of the
relative position between faces and primitive, and the space labels
determined in this rough estimation is called Common Labels, and de-
note the set of common labels in the inter-primitive level as CLinter. With
these common labels, the original CSG tree is trimmed to a simpler
form. We called the tree generated in this level the first trimmed CSG
tree.

Trimming a CSG tree that contains the IN or OUT label only is re-
latively simple. According to Eq. (3), given a primitive M and

=L M IN() , the space label of its parental node is either IN or, the same
as the value of its s. The situation is similar when =L M OUT() . In these
two situations, the node that represents M is deleted and no longer
exists in the trimmed tree. However, the trimming action becomes more
complicated when =L M SAME() . In this situation, the faces in the
groups is on the boundary of the primitive M. When a CSG tree contains
a node that has the space label of SAME, the node cannot be deleted
hastily unless we know the label of its sibling. However, in the inter-
primitive level, the label of the nodes in CSG tree is not completely
known. Thus, nodes that have label value SAME are leaved unprocessed
until adequate information is obtained. The delay processing of these
nodes incurs considerable computational burden and makes the trim-
ming inefficient. To solve this problem, we developed a new

Fig. 7. Restoring intersection information. Each triangle maintains three lists for recording the intersection information: a Cross List, a Coplanar List, and a Point List. For example, FA is
intersected with FB. The endpoints of the intersecting lines, the face FB and its primitive B are recorded in the Cross List. FC lies in the same plane of FA and is recorded in the Coplanar list
with its primitive C. All the points on or within FA is restored in the Point List.

B. Sheng et al. Graphical Models 97 (2018) 1–16

7

representation of CSG tree, called CSGlist, to minimize the side effect of
the delayed processing and enable early rejection of face groups that do
not belong to the final model of the CSG tree.

Given a group D that collect faces that belongs to primitive D, we
conduct a CSGlist through cutting the original CSGtree into a series sub
trees as it is shown in Fig. 9. The original CSGtree is divided into a set of
sub trees along a critical path, which is the shortest path from the root
nodes to the node that represents the primitive D. Each sub tree is
connected to a node on the critical path. Assume that the space label L
(A), L(B), L(C), L(E) and L(F) are assigned in this level, we can easily
calculate the Boolean value of each sub tree through traversing. For
example, the Boolean value of the = ∪ ∪L Subtree L A L B L C() (() ()) (),3
which is the trace of traversing the tree from the node that represents
primitive A. The critical path, subtrees, and their evaluated Boolean
value together form a CSGlist. We can easily decide whether this group
should be preserved or not by calculating the Boolean value along the
critical path. The node D in the CSG tree is preserved as long as

∩ ∪ ∩ =L D L Subtree L Subtree L Subtree SAME[(() ()) ()] () .1 2 3 (7)

Otherwise, the node D is trimmed from the tree and the group D

would not be further processing in the following computation. Even if
we only know part of the value of L(A), L(B), L(C), L(E) and L(F), we are
still able to determine whether to preserve the group D or not. To
ensure the Boolean expression along the critical paths equal to SAME,
each subtree has to be a specific value. For example, to satisfy Eq. (7),

∩ =L D L Subtree SAME() ()1 . According to the combination rule Eq. (2),
the possible value of L(Subtree1) should be IN or SAME. Similarly, we
can easily know that =L Subtree OUT SAME() /2 and

=L Subtree IN SAME() /3 . In the process of computing, once we find out
one of these subtrees does not satisfy the above condition, the node D
can be trimmed directly. The construction of the CSGlist is performed
before all the trimming operations. Once the necessary value is ob-
tained from the rough estimation, the values in the CSGlist are updated
for the trimming.

6.1.2. Intra-primitive level
After grouping the faces according to the primitive in the inter-

primitive level, we further group the faces in each inter-primitive
group. In other words, we are grouping them on an intra-primitive
level. Our intra-primitive grouping strategy is based on an important
concept: Intersection Primitive (IP). The IPs of a face F are defined as the
primitives that intersect with the face F but do not contain F. Primitives
that do not intersect F are called non-IPs. All IPs of the face F form an
IP-set of F. The IP-set of F can be obtained through enumerating all the
primitives in the cross list and coplanar list of the face F. In each inter-
primitive group, we group the connected faces that share the same IP-
set. This grouping criterion leads to beneficial properties which are

proved in Proposition 1

Proposition 1. Given any two connected faces that share the same IP-set,
they must share same labels with respect to all non-IPs. The labels are either
IN or ON.

Proof. We only prove the conclusion that stands for adjacent faces,
which is a special case of a group of connected faces. Promoting the
conclusion to the general situation is obvious. Let us suppose M is a
non-IP. Face FA and FB are adjacent faces that share the same IP-set. If
the face labels ≠L M L M() (),F FA B there must exist at least one face FS in
the inter-primitive group M that can separate FA and FB. Additionally,
since face FA and FB are adjacent, at least one of the two faces intersect
FS which contains the primitive M. In other words, FA or FB intersects
with the primitive M and it contradicts the condition that M is a non-IP.
Thus, =L M L M() ()F FA B . Because primitive M is a non-IP, the space
label L(M) is either IN or OUT. □

Since our target faces are all connected, the grouping can be effi-
ciently implemented with a flood-filling method as it is shown in
Fig. 10. The intra-primitive grouping is achieved through the following
two operations:

Seed generation. At the initial seeding phrase, a triangle face Fseed is
randomly chosen from an inter-primitive group as the first seed (e.g. the
red triangle in Fig. 10). The space labels of Fseed with respect to non-IPs
are determined through a ray-shooting method [36] using the
barycenter of F as the sample point. During this computation, we
apply our octree as a spatial search structure for acceleration [37]. In
the following seed generation phrases, the seeds are selected from a
candidate list which contains faces that are not assigned an intra-
primitive group. The candidate list is constructed in the process of label
propagation.

Label propagation:. Before propagating labels, a new intra-primitive
group is created. But at the beginning, the group only contain the seed
face Fseed only. Start from the seed face Fseed, we use a breadth-first flood
filling strategy to visit all the faces that are connected to Fseed. For each
visit, we check whether a visiting face has the same IP-set as the seed
face Fseed. If the visiting face shares the same IP-set as the seed, then it is
inserted into the intra-primitive group. Otherwise, it is pushed into a
candidate list.

The intra-primitive grouping is accomplished through iterative re-
peating the above two operations for each primitive. The iteration stops
until all the faces are grouped. After the grouping, the inter-primitive
groups generated in the previous level are now divided into a series of
intra-primitive groups. In addition, according to Proposition 2, the
space labels of the faces, which share the same IP-set, share same space

Fig. 8. Two-level grouping schemes. In the inter-primitive level, all the faces are first grouped according to the primitives they belong to. For example, faces belong to the primitive A(the
cube) are grouped into the inter-primitive Group A . Then, faces in each inter-primitive group are further grouped according to their intersection. For example, faces that intersect the
primitive B (the cylinder) is grouped together. Thus, the intra-primitive GroupA B∩ = ∩F F B{ }A . After the grouping, the space labels of the faces are calculated using the trimmed CSG
tree.

B. Sheng et al. Graphical Models 97 (2018) 1–16

8

In
pu

t:
P

ri
m

it
iv

eL
is

t,
C

SG
Tr

ee

1:
fo

r
ea

ch
M

i
in

P
ri

m
it

iv
eL

is
td

o
2:

G
et

co
m

m
on

la
be

ls
C

L
in

te
r

of
M

i;
3:

T
ri

m
C

SG
tr

ee
in

to
T

ri
m

T
re

e 1
by

C
L

in
te

r;
4:

Se
le

ct
th

e
fir

st
se

ed
F

0
fr

om
M

i;
5:

Pu
tF

0
in

to
C

an
di

da
te

L
is

t;
6:

w
hi

le
C

an
di

da
te

L
is

ti
s

no
te

m
pt

y
do

7:
Pi

ck
a

se
ed

F
se

ed
fr

om
th

e
C

an
di

da
te

L
is

t;
8:

O
bt

ai
n

th
e

in
tr

a-
pr

im
iti

ve
gr

ou
p

of
F

se
ed

,d
en

ot
ed

as
G
=
{F
|F

ha
s

th
e

sa
m

e
IP

-s
et

as
F

se
ed
};

9:
C

om
pu

te
th

e
co

m
m

on
la

be
ls

of
F

se
ed

,d
en

ot
ed

as
C

L
in

tr
a
;

10
:

T
ri

m
T

ri
m

T
re

e 1
in

to
T

ri
m

T
re

e 2
ac

co
rd

in
g

to
C

L
in

tr
a
;

11
:

Pu
tF

se
ed

in
to

F
lo

od
F

il
lQ

ue
ue

;
12

:
w

hi
le

F
lo

od
F

il
lQ

ue
ue

is
no

te
m

pt
y

do
13

:
G

et
th

e
ne

xt
fa

ce
F

i
fr

om
F

lo
od

F
il

lQ
ue

ue
;

14
:

D
o

se
tm

em
be

rs
hi

p
cl

as
si

fic
at

io
n

of
F

i
ba

se
d

on
T

ri
m

T
re

e 2
;

15
:

fo
r

ea
ch

ad
ja

ce
nt

fa
ce

F
N

ei
gh

bo
r

do
16

:
if

F
N

ei
gh

bo
r
∈G

th
en

17
:

Pu
tF

N
ei

gh
bo

r
in

to
F

lo
od

F
il

lQ
ue

ue
;

18
:

el
se

19
:

Pu
tF

N
ei

gh
bo

r
in

to
C

an
di

da
te

L
is

t;
20

:
en

d
if

21
:

en
d

fo
r

22
:

en
d

w
hi

le
23

:
en

d
w

hi
le

24
:

en
d

fo
r

Pr
oc

ed
ur

e
1.

Fa
ce

C
la
ss
ifi
ca
ti
on

.

B. Sheng et al. Graphical Models 97 (2018) 1–16

9

labels with respect to all non-IPs. We denote the set of space label de-
termined with this feature as CLintra. Thus, the first trimmed CSG tree
generated in the previous level can be further trimmed using CLintra.
We named the CSG generated at the intra-primitive level as the second
trimmed CSG tree.

The bottleneck of the intra-primitive grouping lies in the space label
evaluation of the seeds. Evaluation through the ray-shooting method is
time-consuming and not suitable for complex CSG evaluation. Thus, we
apply the ray-shooting method to space labels of the initial seed only.
For the space label evaluation of the following seeds, we provide a more
efficient solution taking advantages of the information of neighboring
faces.

When adding a face Fcan into a candidate list in the label propaga-
tion phrase, we associated the following data with Fcan: the current
visiting face Fasso and its space label with respects to its non-IPs. From
the Fig. 11, we can easily know that Fcan and Fasso are adjacent to each
other and have a common edge. Let us denote the non-IP sets of Fcan and
Fasso as Ican and Iasso respectively.

When Fcan is selected as the new seed from the candidate list, its
space label evaluation can be evaluated by dividing the non-IP setIcan.
For primitives I I∈ ∩M ,can ass the value of LF M()can can be directly in-
herited from the L M()Fasso . For primitives I I∈ −M ,can asso the value of

L M()Fcan can be obtained by calculating the space label of any point on
the common edge. To ensure robustness, the endpoints of the common
edge is selected for calculation in our implementation since we have
their exact plane based representation. The selection of sample point is
guaranteed by the Proposition 2.

Proposition 2. Given a primitive M and two adjacent faces, F1 and F2, if M
is in the IP-set of F2 but not in the IP-set of F1, the space label with respect to
primitive M for F1 is the same as the label of any point on their common
edge.

Proof. Since M is not in the IP-set of F1, all points on F1 have the same
space label with respect to M. For points on the common edge, they are
attributed to F1 and F2 simultaneously. Thus, for any point u on the
common edge, we have =L M L M() (),F u1 where Lu(M) is the space label
of the point u with respect to M. □

Fig. 9. Convert CSG tree into a CSGlist along the critical path (marked by the arrow) from
primitive D to the root. The CSGlist records the path and three subtrees. Each subtree has
its desired label value. Subtree1: IN or SAME. Subtree2: IN or SAME. Subtree3: OUT or
SAME. If one of the subtrees is found not equal the desired label value, the node D is
deleted.

Fig. 10. (left) A snapshot during flood filling; and (right) the final grouping result. Different intra-primitive groups are distinguished by different colors. From the final grouping result,
the whole mesh is divided into nine intra-primitive groups.

Fig. 11. Space label evaluation for seeds. Fcan is one of the secondary seeds in the can-
didate list, and Fasso is its associated face. We can evaluate the space label of Fcan with
respect to different primitives according to the known space label from Fasso. The yellow,
blue and red lines within the triangles represented the intersection between the faces and
the primitive. For the yellow intersection, the primitive intersects Fasso only. Thus, the
space label of the Fcan with respect to this primitive can be obtained through a BSP-based
point-in-polygon test using any point on the common edge. For the blue intersection, the
primitive intersects both Fcan and Fasso, thus the space label is the same for both faces and
allows direct inherit from Fasso. For the red intersection, the primitive intersects Fcan only.
Again, we use the point-in-polygon test to obtain the space label with respect to this
primitive. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

B. Sheng et al. Graphical Models 97 (2018) 1–16

10

6.2. Classification of the faces

The goal of face classification is to determine whether a face can be
accepted as a part of the final model or not. The classification can be
conducted by traversing the second trimmed CSG tree to obtain the final
Boolean value. For non-intersected faces, the classification is simple and
efficient for the CSG is trimmed through our two-level grouping
schemes and much of the unnecessary evaluations are omitted.

For faces that intersect with other faces, further processing is
needed to ensure robustness. Intersected faces usually cannot be clas-
sified as a whole. They have to be tessellated into smaller non-inter-
sected triangles which need to be classified separately. Extra classifi-
cation suggests an increase in computation. To pursue robustness and
efficiency simultaneously, we embed the exact BSP structure into the
intersected faces for tessellation and sub-triangles classification.

6.2.1. Tessellation of intersected faces
Before dividing the intersected faces into a series of smaller trian-

gles, we classify the IPs of the intersected faces. If the IP of an inter-
sected face is on the second trimmed CSG tree, it is called a valid inter-
section primitive (valid-IP). Otherwise, it is named as pseudo-
intersection primitive (pseudo-IP). Pseudo-IPs intersect the face, but the
space labels with respect to pseudo-IPs do not affect the final classifi-
cation of faces. In other words, the intersections of pseudo-IPs are not
edges of the final models, as shown in Fig. 12. Thus, we simply omit
these pseudo-intersections during classification. This filtering saves
computation time by avoiding unnecessary splitting of faces. An ex-
treme situation is that there is no valid-IP. In this situation, the face is
processed the same way as a non-intersected face.

Given an intersected face F, we divide it into a set of sub triangles
using the intersection information recorded in the detection phrase (See
Section 5.2). We convert the tessellation task into a problem of Con-
strained Delaunay Triangulation (CDT) [38], which has beneficial to-
pological characteristics. The zone of CDT is the face F, and the con-
straints are all the intersections marked by valid-IPs. The constraints
guarantee that no sub-triangles cross intersection lines. To conduct CDT
in 2D space, 3D coordinates in plane-based representation are projected
as points on a 2D space, which is the axis-aligned plane where the area
of F is maximized.

One critical issue that should be noted is that when the face F in-
tersects with different valid-IPs creating different intersections, these
intersections may also intersect each other as shown in Fig. 13c. The
intersections are reflected as cross points on F. Omitting these points
generated by the intersection of valid-IPs may cause incorrect results of
CDT. To obtain the correct constraints, these cross points are tested to
determine whether an intersection exists or not. We conduct the in-
tersection test based on plane-based geometry to ensure robustness.
According to our observation, the cross points are generated by the
intersection of three faces: the target intersected face F and two other
faces from the valid-IPs that also intersected with F as shown in
Fig. 13d. Thus, a cross point is able to be expressed with these three
faces using plane-based representation. Inspired by this idea, we can
identify cross point through testing whether a point is on all of these

faces. Once the cross points are detected, the constraints of CDT will be
updated accordingly. Moreover, because the cross points are shared by
the three faces we mentioned above, they are added to the point lists of
all these faces

6.2.2. Classification of sub-triangles
Through tessellation, the intersected face F is divided into a series of

sub-triangles. To enable efficient classification on these sub-triangles,
we employ the Binary Space Partitioning (BSP) tree [26] to describe
these triangles. A BSP tree can express a divided entity using a tree
structure. Partitions are represented as leaves nodes in the tree and
trunks represent binary partitioners. The child nodes in the tree are
formed by a binary partitioning of parents. Although our tessellation is
conducted on 2D space, we construct the BSP tree in 3D space. We
assume the intersected face F has tiny thickness and denote this ima-
ginary thin plate. Let M be a valid-IP of F, we can easily partition the
plate into a 3D BSP-tree through inquiring the cross list and coplanar
list of F. The plate PF is divided into a series of cells. Each cell represents
a sub-triangle and is restored in the leave nodes of the BSP tree. There
are advantages of utilizing a 3D BSP-tree instead of a 2D tree. On one
hand, constructing 2D BSP tree requires conversion of plane triples into
coordinates. The conversion inevitably introduced computational er-
rors. On the other, building 3D BSP tree allows us to use an exact plane-
based method [6]. The intersection information restored in advance
(see Section 5.2) using plane-based representation can be utilized di-
rectly.

After finishing construction of the BSP tree, the labels of a sub-tri-
angle are computed according to the space label of its vertexes. Given a
sub-triangle FSub, its label is determined by the results of the point-in-
polygon test on its three vertexes. If all the tree vertexes are labeled
with ON, then space label of FSub with respect to a valid-IP M is either
SAME of OPPO. If any vertex is not labeled with ON, we can conclude
that ≠L ONFSub . When the space labels of a sub-triangle respect to all
primitives are computed, we determine whether the sub-triangle be-
longs to the final model based on the second trimmed tree. The sub-tri-
angle is accepted if and only if the final evaluation result equals to
SAME.

In the cases that the coplanar list of the intersected face F is empty
or the faces in the coplanar list are all from pseudo-IPs, acceleration is
possible for evaluating the final Boolean value of the sub triangles. In
this situation, the space labels of the sub-triangles with respect to valid-
IPs are either IN or OUT and the CSG tree is, in fact, a binary tree. The
evaluation of the second trimmed CSG tree can be efficiently conducted
using the Blister [39]. For CSG models in which the coplanar cases are
rare, this acceleration saves considerable computation time.

7. Experimental results

We implemented our approach using C++ and tested a series of
examples with numerous primitives and faces on an Intel i5-4200D
1.5GHz processor with 8GB RAM. In our implementation, we employ
the OpenMesh [40] for storing triangle meshes and supporting the
query performed by Constrained Delaunay Triangulation using the
Fade2D [41]. To verify the performance of our approach, we compare
our approach with previous state-of-the-art techniques including
method by Campen and Kobbelt [2], the method by Feito et al. [5], the
algorithm in CGAL [22], the commercial solution in Autodesk
Maya [42]. We also include two non-incremental methods for com-
parison, QuickCSG [10] and method by Zhou et al. [11] distributed in
LibiGL. We analyze the performance of our approach and other
methods from four aspects: efficiency, time complexity, space com-
plexity and topology simplicity.

7.1. Efficiency

We conduct the Boolean evaluation with our approach and other

Fig. 12. 2D illustration of pseudo-intersection. The vertexes in red do not appear in the
final results. We called them pseudo-intersection vertexes. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version of this
article.)

B. Sheng et al. Graphical Models 97 (2018) 1–16

11

Fig. 13. Crossing between intersecting lines. When a
face intersects with different primitives, the gener-
ated intersecting lines may intersect each other and
generate new points. (a) face F intersects primitive
M1; (b) face F intersects primitive M2; (c) the inter-
secting line generated by F and M1 intersects the in-
tersecting line generated by F and M2. The crossing is
marked with asteroid in red; (d) the crossing points of
intersecting lines are in fact the intersection of faces
from different primitives. (For interpretation of the
references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. (a) Boolean operations between a Ring and a set of Spheres, ⟨1⟩ after 200 operations, ⟨2⟩ after 800 operations; (b) Armadillo ∪ six Spoons; (c) Head - Cuboid + LeftBrain +
RightBrain; (d) Difference between a BigCylinder and 28 SmallCylinders; (e) Man ∪ Horse; (f) Dragon - Bunny; and (g) Palate ∪ Mandible ∪ (20 Teeth).

B. Sheng et al. Graphical Models 97 (2018) 1–16

12

methods on numerous objects. Fig. 14 shows some challenging ex-
amples whose geometric characteristics are shown in Table 1. The total
number of faces in these examples are large. Even a single primitive
contains thousands of faces. Table 1 also presents the runtime perfor-
mance of our approach and other methods on these examples. As it is
shown in Table 1, our approach has advantages in efficiency when
compared to previous state-of-the-art techniques. Within the five in-
cremental techniques for comparison, methods by Feito et al. [5] per-
forms the best but still have room for improvement when compared to
our approach. The runtime performance of the method by Feito
et al. [5] in single Boolean evaluation has a relatively small dis-
advantage compared to our approach. It is because they also design a
face-based grouping scheme for accelerating face membership classifi-
cation. Thus both our approach and method by Feito et al. [5] have
similar pipelines for single Boolean operations. In the situation that
processing multi primitives, the efficiency of our non-incremental CSG
evaluation approach have obvious advantages over all four previous
techniques. Fig. 14(a) shows a difficult example which consists of 801
primitives. Methods by Feito et al. [5] fails to provide a proper eva-
luation. It takes more than 2000 seconds to finish the Boolean evalua-
tion when applying method by Campen and Kobbelt [2] and algorithm
in CGAL [22]. Even with the mature solution in Autodesk Maya [42],
the time consumption is 1400 seconds. However, our approach only
uses 12.8 seconds to produce the correct results and is approximately
100 times faster than evaluating using Autodesk Maya [42]. When
compares to the LibiGL [11], our approach still has advantages in ef-
ficiency. But when compared to the QuickCSG, it is up to 2 times faster
than our approach. The relatively small performance difference be-
tween our approach and an inexact method indicates that our approach
presents a reasonable performance.

7.2. Time complexity

We analyze the time complexity of each phase in our approach. As
we have described in Section 4, our approach contains three phases:
octree-construction, intersection computation, and face classification.
The octree-construction we applied is a typical O(nlog n) method,
where n is the number of faces in CSG. In phase 2, intersection com-
putation is conducted within the critical cells in octree only. The
number of critical cells is often linear to the number of intersected faces
k in CSG (k often approximately equals to n). Thus, the time com-
plexity of intersection computation is O(k).

The time complexity of the final phase varies according to the
conditions of the objects. For the grouping schemes in this phase, the
flood-filling method we applied has a complexity of O(n). For the
classification operation in this face, the time consumption for classifi-
cation intersected faces and non-intersected faces varies. Classifying
intersected faces may take much more time than classifying non-in-
tersected faces. The time for classifying non-intersected faces is negli-
gible. Thus, based on the assumption that classifying a non-intersected
face incurs no computational time, the time complexity of the third
phase is approximately +O n θk(), where θ is a parameter between 1
and 0. Specially, when k/n is constant, the time complexity of the third
phase reduces to O(n).

We monitor the time changes when the number of primitives grows
to provide further evidence of our time complexity analysis. Table 2,
shows the evaluation time for Fig. 14(a), which is a CSG consisting of a
ring and hundreds of identical spheres. We change the number of
spheres from 100 to 800 and record the evaluation times. In these ex-
periments, the k/n can be relatively regarded as a constant. Thus, phase
2 and 3 occupy a majority of the computing time. As it is shown in
Table 2, the computational time of our approach has an O(n) perfor-
mance, which is accord to our analysis. The computation time of other
incremental methods rapidly inflates when the number of primitives

Ta
bl
e
1

C
om

pu
ta
ti
on

ti
m
e
st
at
is
ti
cs

of
th
e
ev

al
ua

ti
on

s
of

la
rg
e
C
SG

s
(S
ec
on

ds
).

Ex
am

pl
e

Fi
gu

re
Fa

ce
N
um

.a
N
um

.o
fP

ri
m
it
iv
es

C
G
A
L
[2
2]

M
ay

a
[4
2]

C
am

pe
n
an

d
K
ob

be
lt
[2
]

Fe
it
o
et

al
.[

5]
Q
ui
ck
C
SG

[1
0]

Li
bi
G
L

[1
1]

O
ur

A
pp

ro
ac
h

To
ta
l

M
in

M
ax

To
ta
lb

Ph
as
e
1

Ph
as
e
2

Ph
as
e
3

R
in
g
∩
Sp

he
re
s
(2
00

tim
es
)

14
(a
)-
1

37
.6
K

18
0

1.
6K

20
1

13
50

49
.9

TL
Ed

15
.9

1.
7

57
.9

3.
13

0.
32

8
1.
69

0.
92

2
R
in
g
∩
Sp

he
re
s
(8
00

tim
es
)

14
(a
)-
2

14
6K

18
0

1.
6k

80
1

TL
E

14
00

TL
E

Fa
ilc

6.
42

23
6.
8

12
.8

1.
36

6.
41

4.
00

A
rm

ad
ill
o
∪
6
Sp

oo
ns

14
(b
)

37
7k

2.
56

K
34

6K
7

TL
E

22
4.
5

45
.7

11
.7

0.
69

26
.6
4

1.
44

0.
43

8
0.
06

2
0.
56

3
−

+
+

H
ea

d
Cu

bo
id

Le
ftB

ra
in

Ri
gh

tB
ra

in
14

(c
)

79
.2
K

12
38

.2
K

4
97

.6
Fa

il
3.
58

1.
69

0.
33

10
.4
1

0.
56

3
0.
18

7
0.
14

1
0.
17

2
−

Bi
gC

yl
in

de
r

Sm
al

lC
yl

in
de

r
28

14
(d
)

36
K

80
0

2.
4K

29
34

.1
7.
03

18
.7

4.
05

0.
16

5.
79

0.
31

3
0.
09

4
0.
09

4
0.
08

1
M
an

∪
H
or
se

14
(e
)

59
7k

96
.9
K

50
0K

2
TL

E
38

.3
26

.4
5.
63

1.
06

39
.4

2.
13

0.
56

3
0.
03

1
0.
98

4
−

D
ra

go
n

Bu
nn

y
14

(f
)

17
0K

69
.7
K

10
0K

2
21

8
7.
45

13
.8

2.
39

0.
45

16
.4
8

0.
89

1
0.
32

8
0.
12

5
0.
26

6
Pa

la
te

∪
M
an

di
bl
e
∪
20

Te
et
h

14
(g
)

36
2K

6.
91

K
27

6K
22

TL
E

34
4

25
6

19
.2

0.
8

33
.3

1.
80

0.
76

6
0.
17

2
0.
59

3
Bu

dd
ha

∩
Bu

dd
ha

15
2.
16

M
1.
08

M
1.
08

M
2

Fa
il

Fa
il

M
LE

e
Fa

il
5.
66

20
9.
05

11
.3

5.
55

1.
36

3.
01

Bu
dd

ha
∪
Li
on

15
2.
55

M
1.
06

M
1.
08

M
2

Fa
il

Fa
il

M
LE

Fa
il

7.
07

23
5.
5

13
.6
5

5.
65

1.
56

6.
44

a
M
in

(M
ax

)
m
ea
ns

th
e
m
in
im

um
(m

ax
im

um
)
nu

m
be

r
of

fa
ce
s
of

a
si
ng

le
pr
im

it
iv
e.

b
Th

e
to
ta
l
co

m
pu

ta
ti
on

ti
m
e
of

ou
r
m
et
ho

d
in
cl
ud

es
th
e
co

ns
tr
uc

ti
on

of
ha

lf
-e
dg

e
st
ru
ct
ur
e
an

d
th
e
th
re
e
st
ep

s
in

Se
ct
io
n
4;

c
Fa

il
m
ea
ns

no
th
in
g
w
as

re
tu
rn
ed

,
or

w
e
re
ce
iv
ed

th
e
w
ro
ng

ev
al
ua

ti
on

re
su
lt
s
fr
om

th
e
pr
og

ra
m
s;

d
TL

E
m
ea
ns

th
e
pr
oc

es
si
ng

ti
m
e
w
as

m
or
e
th
an

2,
00

0
s;

e
M
LE

de
no

te
s
th
at

th
e
pr
og

ra
m

w
as

ou
t
of

m
em

or
y.

B. Sheng et al. Graphical Models 97 (2018) 1–16

13

increases, sometimes showing O(n2) behavior. When spheres are added
to or subtracted from the ring, the mesh of the ring becomes more and
more complex with the incremental methods. Thus, subsequent Boolean
operations are difficult to perform in the later periods of these methods.
When compared to the non-incremental LibiGL [11], our approach still
has advantages in computation time. When compared to fastest the
method QuickCSG, our approach has a relatively small disadvantage
and is still competitive.

7.3. Space complexity

One possible problem of conducting a non-incremental CSG eva-
luation is memory consumption. Unlike incremental methods, non-in-
cremental approaches often require loading all the primitives into the
memory before the evaluation. Fortunately, our approach does not
significantly suffer from memory limitation. In our approach, the
memory loading operation mainly conducted in the phase of octree
construction. In this phase, the size of our constructed octree is typically
an O(nlog n). The auxiliary information of intersected faces, which
usually has a size of O(k), is also loaded into the memory in this phase.
Experimental results show that our approach is able to perform full
evaluation in Table 1 with less than 600MB memory. On contrary, some
incremental approaches suffer from the mass memory occupation. For
instance, in the evaluation of Fig. 14e, CGAL [22] consumed more than
6GB memory. Furthermore, in the evaluation of Example 2 in Fig. 14a,

which contained only 146K faces, at least 5GB memory is used by Maya
[42].

7.4. Topological simplicity

Topological simplicity refers to the number of triangles used in the
final models. It is also an important aspect for evaluating the quality of
CSG. A simpler topology is preferred for it provides convenient for
further process. As shown in Fig. 16, our method used fewer triangles to
represent final model than [2] without extra surface merging. Table 3
shows the triangles used in the final mesh model by our approach and
other methods. We suggest that the topology simplicity is related to the
efficiency of the methods. Improper tessellation method may cause
inefficiency when the model is smashed into numerous pieces. Through
a closer study on the evaluation process of Fig. 14a, we notice that after
hundreds of Boolean operations, the surface of the models are frage-
mented into massive sub faces in the method by Campen and Kob-
belt [2]. Thus, it takes more than ten seconds to perform a Boolean
operation. Through the above observation, we notice that the topology
simplicity is closely related to the tessellation of faces.

The tessellation of the faces also influences the robustness of the
evaluation. Our two-level grouping schemes provide a sound founda-
tion for the tessellation and avoid unnecessary operations. In our ex-
periments, our approach can correctly evaluate all the models in
Table 1. However, our compared methods suffered from different kinds

Table 2
Number of primitives and computation time (Seconds).

Number of Spheres Computation time

CGAL [22] Maya [42] Feito et al. [5] QuickCSG [10] LibiGL [11] Our approach

100 439 17.4 5.20 0.69 25.53 1.38
200 1350 53.4 15.9 1.44 53.47 2.89
300 – 124 30.4 2.2 81.21 4.39
400 – 241 – 2.98 110.4 5.97
500 – 407 – 3.95 146.1 7.90
600 – 628 – 4.74 175.6 9.49
700 – 966 – 5.5 203.5 11.0
800 – 1400 – 6.24 236.8 12.8

Table 3
Comparison of topology simplicity.

Methods CGAL [22] Maya [42] Campen and Kobbelt
[2]

Feito et al.
[5]

QuickCSG [10] LibiGL [11] Our approach

Number of Triangles (Under 1283 resolution) Cube ∪ Sphere 1
∩ Sphere 2 (Fig. 16)

19.21K 12.85K 19.9K 15K 4.77K 6.93K 3.9K

Fig. 15. Boolean operations on model Buddha. (a) two Buddhas; (b) our result of Buddha ∩ Buddha; (c) incorrect result of Buddha ∩ Buddha generated by method [5]; (e) lion; (f)
Buddha ∪ Lion by our approach; (g) Results by QuickCSG [10]. There are numerous cavities on the model.

B. Sheng et al. Graphical Models 97 (2018) 1–16

14

of problems. Maya [42] failed to evaluate Fig. 14c, which contained
only 79.2K faces and four primitives. CGAL [22] showed warnings
when evaluating Fig. 15a and finally terminated without returning a
result. The method by Feito et al. [5] returned an incorrect result for the
evaluation of Fig. 15a. The returned result is shown in Fig. 15c which
contains incorrect cavities. Although our approach have a slight dis-
advantage in efficiency when compared with QuickCSG [10], it is worth
to notice that QuickCSG is easy to generate deficit result when the
general position assumption is violated. Although our approach per-
forms robustly in our experiments, we have to admit that our face
tessellation is not unconditionally robust. Because the tessellation of
intersected faces is performed using vertex-based representation, the
coordinates of the vertexes may shift from their real location, which
may lead to incorrect tessellation. A potential solution is to integrate
plane-based geometry computation into the intersected face tessellation
process.

8. Conclusion

In this paper, we proposed an efficient non-incremental approach to
evaluate the constructive solid geometry (CSG) with triangular mesh
primitives. Our approach performs very efficiently for non-incremental
evaluation of large CSG with massive faces. The key contribution of our
approach is to apply the local coherence of face space labels to accel-
erate the face membership classification process. A two-level grouping
framework is developed to group the neighboring faces together. Space
labels are then propagated within each group. Our scheme saves con-
siderable time for space label evaluation, which is an important time-
consuming operation for the conventional Boolean evaluations. In ad-
dition, to strengthen robustness, plane-based geometry computation is
introduced into the intersection computing process of our approach.
Multiple experiments have shown that our approach has high efficiency
while retaining high robustness and stability.

Acknowledgments

The work is supported by the National Natural Science Foundation
of China (No. 61572316, 61632003, 61672502), Macao Foundation,
National High-tech R&D Program of China (863 Program) (No.
2015AA015904), the Key Program for International S&T Cooperation
Project of China (No. 2016YFE0129500), the Science and Technology
Commission of Shanghai Municipality (No. 16DZ0501100,
17411952600), the Interdisciplinary Program of Shanghai Jiao Tong
University (No. 14JCY10), the Research Grants Council of the Hong
Kong Special Administrative Region, China (No. CityU 11237116), City
University of Hong Kong (No. 7004915), and ACIM-SCM.

References

[1] A.A.G. Requicha, Mathematical Models of Rigid solid objects, University of
Rochester, 1977.

[2] M. Campen, L. Kobbelt, Exact and robust (self-)intersections for polygonal meshes,
Comput. Graph. Forum 29 (2) (2010) 397–406.

[3] D. Pavić, M. Campen, L. Kobbelt, Hybrid booleans, Comput. Graph. Forum 29 (1)
(2010) 75–87.

[4] C.C.L. Wang, Approximate boolean operations on large polyhedral solids with
partial mesh reconstruction, IEEE Trans. Vis. Comput. Graph. 17 (6) (2010)
836–849.

[5] F.R. Feito, C.J. Ogayar, R.J. Segura, M.L. Rivero, Fast and accurate evaluation of
regularized boolean operations on triangulated solids, Cad Comput. Aided Design
45 (3) (2013) 705–716.

[6] G. Bernstein, D. Fussell, Fast, exact, linear booleans, Comput. Graphics Forum 28
(5) (2009) 1269–1278.

[7] J. Hable, J. Rossignac, CST: Constructive solid trimming for rendering BReps and
CSG, IEEE Trans. Vis. Comput. Graph. 13 (5) (2007) 1004.

[8] J. Rossignac, Ordered Boolean list (OBL): reducing the footprint for evaluating
Boolean expressions, IEEE Trans. Vis. Comput. Graph. 17 (9) (2011) 1337–1351.

[9] M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, M. Seel, Boolean
operations on 3D selective nef complexes: Data structure, algorithms, and im-
plementation, European Symposium on Algorithms, (2003), pp. 654–666.

[10] M. Douze, J.-S. Franco, B. Raffin, QuickCSG: Arbitrary and Faster Boolean
Combinations of n Solids. Ph.D. thesis, Inria-Research Centre Grenoble–Rhône-
Alpes; INRIA, 2015.

[11] Q. Zhou, E. Grinspun, D. Zorin, A. Jacobson, Mesh arrangements for solid geometry,
ACM Trans. Graph. (TOG) 35 (4) (2016) 39.

[12] C.K. Yap, Robust geometric computation, Handbook of discrete and computational
geometry, CRC Press, Inc., 1997, pp. 653–668.

[13] A.A.G. Requicha, H.B. Voelcker, Boolean operations in solid modeling: boundary
evaluation and merging algorithms, Proc. IEEE 73 (1) (1985) 30–44.

[14] D.H. Laidlaw, W.B. Trumbore, J.F. Hughes, Constructive solid geometry for poly-
hedral objects, international conference on computer graphics and interactive
techniques 20 (4) (1986) 161–170.

[15] R.P.K. Banerjee, J. Rossignac, Topologically exact evaluation of polyhedra defined
in CSG with loose primitives, Comput. Graph. Forum 15 (4) (1996) 205–217.

[16] S. Fortune, Polyhedral modelling with exact arithmetic, ACM Symposium on Solid
Modeling and Applications, (1995), pp. 225–234.

[17] J. Keyser, T. Culver, M. Foskey, S. Krishnan, D. Manocha, Esolid–a system for exact
boundary evaluation, Comput.-Aided Des. 36 (2) (2004) 175–193.

[18] P. Hachenberger, L. Kettner, Boolean operations on 3D selective nef complexes:
optimized implementation and experiments, Solid Phys. Model. (2005) 163–174.

[19] S. Fang, B.D. Bruderlin, X. Zhu, Robustness in solid modelling: a tolerance-based
intuitionistic approach, Comput.-Aided Des. 25 (9) (1993) 567–576.

[20] C. Hu, N.M. Patrikalakis, X. Ye, Robust interval solid modelling part i: re-
presentations, Comput.-Aided Des. 28 (10) (1996) 807–817.

[21] M. Segal, Using tolerances to guarantee valid polyhedral modeling results,
International Conference on Computer Graphics and Interactive Techniques, 24
(1990), pp. 105–114.

[22] P. Hachenberger, L. Kettner, 3D Boolean operations on Nef polyhedra, CGAL User
and Reference Manual, 3.9, CGAL Editorial Board, 2011.

[23] K. Sugihara, M. Iri, A solid modelling system free from topological inconsistency, J.
Inf. Process. 12 (4) (1990) 380–393.

[24] J.R. Shewchuk, Lecture notes on geometric robustness, Interpola-tion,
Conditioning, & Quality Measures in Eleventh International Meshing Roundtable,
(1999), pp. 115–126.

[25] W.C. Thibault, B.F. Naylor, Set operations on polyhedra using binary space parti-
tioning trees, International Conference on Computer Graphics and Interactive
Techniques, 21 (1987), pp. 153–162.

[26] B. Naylor, J. Amanatides, W.C. Thibault, Merging bsp trees yields polyhedral set
operations, Comput. Graph. (1991).

Fig. 16. Cube ∪ Sphere 1 ∩ Sphere 2. The result of our approach has a simpler topology than that of other methods.

B. Sheng et al. Graphical Models 97 (2018) 1–16

15

http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0001
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0001
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0002
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0002
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0003
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0003
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0004
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0004
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0004
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0005
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0005
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0005
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0006
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0006
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0007
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0007
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0008
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0008
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0009
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0009
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0009
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0010
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0010
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0010
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0011
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0011
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0012
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0012
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0013
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0013
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0014
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0014
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0014
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0015
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0015
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0016
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0016
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0017
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0017
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0018
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0018
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0019
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0019
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0020
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0020
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0021
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0021
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0021
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0022
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0022
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0023
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0023
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0024
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0024
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0024
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0025
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0025
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0025
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0026
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0026

[27] J.R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates, Discrete Comput. Geom. 18 (3) (1997) 305–363.

[28] C.C. Wang, D. Manocha, Efficient boundary extraction of bsp solids based on clip-
ping operations, IEEE Trans. Vis. Comput. Graph. 19 (1) (2013) 16–29.

[29] H. Zhao, C.C.L. Wang, Y. Chen, X. Jin, Parallel and efficient boolean on polygonal
solids, Vis. Comput. 27 (2011) 507–517.

[30] K. Museth, D.E. Breen, R.T. Whitaker, A.H. Barr, Level set surface editing operators,
International Conference on Computer Graphics and Interactive Techniques, 21
(2002), pp. 330–338.

[31] H. Chen, S. Fang, A volumetic approach to interactive CSG modeling and rendering,
ACM Symposium on Solid Modeling and Applications, (1999), pp. 318–319.

[32] E. Eisemann, X. Décoret, Single-pass GPU solid voxelization for real-time applica-
tions, Graphics Interface, (2008), pp. 73–80.

[33] S. Gottschalk, M.C. Lin, D. Manocha, Obbtree: a hierarchical structure for rapid
interference detection, International Conference on Computer Graphics and
Interactive Techniques, (1996), pp. 171–180.

[34] T. Moller, A fast triangle-triangle intersection test, J. Graph. Tools 2 (2) (1997)

25–30.
[35] J.R. Rossignac, H.B. Voelcker, Active zones in CSG for accelerating boundary eva-

luation, redundancy elimination, interference detection, and shading algorithms,
ACM Trans. Graph. (TOG) 8 (1) (1988) 51–87.

[36] V. Havran, A summary of octree ray traversal algorithms, Ray Tracing News 12 (2)
(1999) 11–23.

[37] S.F. Frisken, R.N. Perry, Simple and efficient traversal methods for quadtrees and
octrees, J. Graph. Tools 7 (3) (2002) 1–11.

[38] L.P. Chew, Constrained delaunay triangulations, Algorithmica 4 (1–4) (1989)
97–108.

[39] J. Hable, J. Rossignac, Blister: GPU-based rendering of Boolean combinations of
free-form triangulated shapes, ACM Trans. Graph. 24 (3) (2005) 1024–1031.

[40] M. Botsch, S. Steinberg, S. Bischoff, L. Kobbelt, OpenMesh: a generic and efficient
polygon mesh data structure, OpenSG Symposium, (2002), pp. 1–5.

[41] Geom, Fade2D, 2017, (http://www.geom.at/fade2d/html).
[42] Autodesk, Autodesk maya, 2017, (https://www.autodesk.com.hk/products/maya/

overview).

B. Sheng et al. Graphical Models 97 (2018) 1–16

16

http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0027
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0027
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0028
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0028
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0029
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0029
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0030
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0030
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0030
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0031
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0031
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0032
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0032
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0033
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0033
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0033
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0034
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0034
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0035
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0035
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0035
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0036
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0036
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0037
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0037
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0038
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0038
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0039
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0039
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0040
http://refhub.elsevier.com/S1524-0703(18)30006-7/sbref0040
http://www.geom.at/fade2d/html
https://www.autodesk.com.hk/products/maya/overview
https://www.autodesk.com.hk/products/maya/overview

	Efficient non-incremental constructive solid geometry evaluation for triangular meshes
	Introduction
	Face classification using two-level grouping
	Efficient non-incremental evaluation
	Plane-based triangle intersection test

	Related work
	Preliminary
	Space label
	Evaluation of Boolean operation

	Our proposed approach
	Adaptive octree construction
	Intersection computation with plane-based representation
	Face classification using two-level grouping

	Plane-based intersection computation
	Intersection detection
	Basic triangle-triangle intersection test
	Intersection test with plane-based representation

	Restoring intersection information

	Face classification framework
	Two-level grouping scheme
	Inter-primitive level
	Intra-primitive level
	Seed generation
	Label propagation:

	Classification of the faces
	Tessellation of intersected faces
	Classification of sub-triangles

	Experimental results
	Efficiency
	Time complexity
	Space complexity
	Topological simplicity

	Conclusion
	Acknowledgments
	References

