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Fig. 1. Our NeRFFaceLighting method achieves disentangled and 3D-aware lighting control with realistic shading and

real-time rendering speed. We construct two separated latent spaces: one for geometry and appearance as shown in the

letmost diagram and the other for lighting as shown in the rightmost diagram. Samples are generated by sampling from

the geometry and appearance latent space, whose lighting conditions are solely controlled by sampling from the lighting

latent space. We demonstrate an example for generated samples in the first row and an example for real portraits in the

second row. (a) and (d) show the extracted geometry and the pseudo-albedo. (b) and (e) show the portraits under their own

lighting condition with diferent poses. (c) and (f) show the portraits whose lighting conditions and camera poses are changed

simultaneously. The lighting condition in (e) is the same as the input target image. All the lighting conditions are visualized

as a sphere placed at the botom-right corner of the portraits through out the paper. Original image courtesy of Aminatk.

3D-aware portrait lighting control is an emerging and promising domain thanks to the recent advance of generative adversarial

networks and neural radiance ields. Existing solutions typically try to decouple the lighting from the geometry and appearance

for disentangled control with an explicit lighting representation (e.g., Lambertian or Phong). However, they either are limited

to a constrained lighting condition (e.g., directional light) or demand a tricky-to-fetch dataset as supervision for the intrinsic

compositions (e.g., the albedo). We propose NeRFFaceLighting to explore an implicit representation for portrait lighting based

on the pretrained tri-plane representation to address the above limitations. We approach this disentangled lighting-control

problem by distilling the shading from the original fused representation of both appearance and lighting (i.e., one tri-plane) to
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their disentangled representations (i.e., two tri-planes) with the conditional discriminator to supervise the lighting efects.

We further carefully design the regularization to reduce the ambiguity of such decomposition and enhance the ability of

generalization to unseen lighting conditions. Moreover, our method can be extended to enable 3D-aware real portrait relighting.

Through extensive quantitative and qualitative evaluations, we demonstrate the superior 3D-aware lighting control ability of

our model compared to alternative and existing solutions.

CCS Concepts: · Human-centered computing→ Graphical user interfaces; · Computer systems organization→

Neural networks; · Computing methodologies→ Rendering; Volumetric models.

Additional Key Words and Phrases: Face editing, volume disentangling, lighting manipulation, neural radiance ields, neural

rendering

1 INTRODUCTION

Recent advances in the ield of Neural Radiance Fields (NeRF) [Mildenhall et al. 2021] combined with Generative

Adversarial Networks (GAN) [Goodfellow et al. 2014], known as 3D GAN, have achieved remarkable 3D-aware

generation for human faces with great details (e.g., [Chan et al. 2022; Deng et al. 2022b; OrEl et al. 2022]).Such

high-quality 3D generation is promising for designing amateur-level 3D realistic characters as virtual avatars.

However, how to enable eicient and disentangled semantic manipulation (e.g., for separately modifying the

geometry, appearance, or lighting) remains an open question, especially for lighting. With the manipulation of

lighting, artists can create various efects to convey hints and moods in an evocative manner. Make-up artists

may also use the lighting to beautify the appearance.

Several methods have been proposed to tackle the problem of manipulating the face lighting in a disentangled

manner. For example, ShadeGAN [Pan et al. 2021] uses the Lambertian shading model and explicitly exerts

calculated lighting efects from a speciic light direction to the predicted color before volume rendering for

the manipulation of lighting. GAN2X [Pan et al. 2022] utilizes a 2D GAN prior to obtaining paired images of

various viewpoint and lighting conditions and then uses the Phong shading model to solve an inverse rendering

problem for the decomposition of albedo, difuse, and specular all together needed for relighting. These methods

achieve reasonable results but are limited to a speciic light direction. VoLux-GAN [Tan et al. 2022] also uses

the Phong shading model but accepts an environment map as the lighting condition enabled by an augmented

dataset obtained from [Pandey et al. 2021] with predicted albedo, difuse and specular components as adversarial

supervision. However, all the above explicit shading modelling methods cannot handle some challenging lighting

cases in an eicient way, such as the shadow cast by a pair of glasses, as shown in the top-light case of Fig. 6.

Besides, ground-truth albedo, difuse, and specular for as many as hundreds of thousands of subjects are hard to

obtain, and using previous methods to predict may also inherit their limitations. There is no denying that an

explicit lighting model can achieve highly realistic results under any desired lighting conditions but comes at a

great cost of computation, memory and time consumption, such as the secondary relected light. It is still an

open question about how to explicitly model the lighting in the context of NeRF in an efective and eicient way.

Analogous to relighting, synthesizing face images with realistic appearance and lighting in an eicient way

was also a tricky problem before. However, with the introduction of implicit representation as generative neural

networks, several methods (e.g., [Karras et al. 2021a,b, 2020b]) are able to achieve this goal in a nearly perfect

way. Accordingly, some works (e.g., [Abdal et al. 2021; Deng et al. 2020; Shoshan et al. 2021; Tewari et al. 2020])

have also tried to model the lighting in an implicit way. Speciically, they try to disentangle the lighting in the

latent space of 2D GAN from the identity, expression, pose, and other factors. However, since the latent space for

2D GAN is entangled for illumination, shape, and appearance, the modiication of lighting condition often leads

to the disturbance of geometry and appearance, especially when the camera pose is also changed simultaneously.

In this work, we introduce NeRFFaceLighting to explore the implicit lighting representation in the generative

NeRF to address all the above limitations. We use spherical harmonics (SH) [Ramamoorthi and Hanrahan 2001;
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Fig. 2. Demonstration of the lighting control achieved by our method. For each portrait, we place its corresponding shading

(upper one) and pseudo-albedo (lower one) components next to it. Notice the specular lights at the top of the head in (a), the

shadow cast by a pair of glasses in (b), realistic lighting efects on the hair in (c), and the shadow cast by the head on the

neck in (d). Besides these, our method also preserves the geometry and appearance well when comparing the pseudo-albedo

components and the final portraits with shading.

Sloan et al. 2003] to describe the white light and enable the control of the lighting efects without afecting the

geometry and appearance. We can achieve realistic and eicient lighting results in certain challenging cases

(e.g., the shadow cast by a pair of glasses or lighting efects on the hair) and obtain reasonable pseudo-albedo

with a general dataset of single-view face images only, as shown in Fig. 1. Our work is built upon a recently

proposed pretrained 3D GAN, EG3D [Chan et al. 2022] and formulates the decomposition of appearance and

lighting as a distillation problem. Speciically, the appearance and lighting are fused together at the start, and we

aim at distilling the appearance and lighting into their separated and disentangled representations with eicient

ine-tuning. Our approach is based on the following three key insights.

Our irst key insight is that the high-level latent codes roughly control the illumination while afecting the

geometry and appearance at the same time, though. Thus, to build a disentangled representation for lighting, we

construct a separated latent space solely for lighting and append several synthesis blocks which are conditioned

on lighting latent codes to construct a shading tri-plane along with the original tri-plane (Fig. 3). A shading

decoder is designed to predict shading from features sampled from the shading tri-plane and apply the predicted

shading to the color predicted by the original decoder from features sampled from the original tri-plane. Thus, the

images rendered from colors before applying shading are assumed to be pseudo-albedo and the images rendered

from colors after adding shading are assumed to be portraits with shading, while the images rendered from

shading directly are assumed to be the shading component. Besides the original discriminator, we use another

discriminator conditioned both on the camera poses and spherical harmonics coeicients to supervise the lighting

efect.

However, the major challenge in our implicit representation is the ambiguity caused by the lack of ground

truth for the decomposed components (e.g., albedo). In fact, for a speciic portrait with shading, there could

exist many possible combinations of albedo and shading components. Trivially ignoring such an issue results

in degraded lighting accuracy (Table 4) and more shading remaining in the pseudo-albedo components as the

residual shading compared to ours (Fig. 9 (a)). To reduce the ambiguity, our second key insight is that the shading

should generalize well to diferent pseudo-albedos when the geometry is held. We observe that EG3D is capable

of generating diverse facial images covering wide ranges of lighting and appearance conditions while keeping

the geometry roughly unchanged through style-mixing, as shown in Fig. 4. This generative prior unleashes the

potential of using samples generated by style-mixing to provide supervision for each other so that the relectance

on the surface of the pseudo-albedo generally transforms to a desired averaged state, i.e., the residual shadings are

removed. The optimization of this disambiguity regularization leads to the removal of many challenging lighting

phenomena (e.g., specular lights, over-exposure, directional light, shadows, etc.) in the pseudo-albedo, as shown
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in Fig. 12. Moreover, we discover that our lighting results are faithful relections of the underlying geometry, as

shown in Fig. 16. However, without an explicit lighting model, we do not rule out the possibility of modelling

the appearance in the shading component, which causes the drop of color in the pseudo-albedo components, as

shown in Fig. 9 (b). To alleviate this problem, we introduce similarity regularization, explicitly requiring that the

pseudo-albedo should be visually similar to the portraits with shading based on the ratio image-based rendering

algorithm [Shashua and Riklin-Raviv 2001].

Another challenge for the implicit representation is due to the distribution of the training data. For those

unseen lighting conditions or those seen ones but at the margin of the distribution, the implicit representation

struggles to perform well on them, as shown in the irst row of Fig. 10. To improve the ability of generalization,

our third key insight is that the model should be robust to small disturbance of lighting conditions. We thus

integrate some disturbance to the above similarity regularization. Our method also can be used for 3D-aware real

portrait relighting by projecting real portraits into the latent space of our generator, as shown in the bottom row

of Fig. 1.

The main contributions are summarized as follows:

• We propose a disentangled implicit representation for portrait lighting described as spherical harmonics (SH)

in the tri-plane-based generative NeRF, and further extend it to enable 3D-aware real portrait relighting.

• We propose the regularization leveraging generative prior to reduce the ambiguity and enhance the ability

of generalization for lighting control.

• We conduct extensive experiments and comparisons to show our method achieves state-of-the-art 3D-aware

lighting manipulation results.

2 RELATED WORK

Our work is closely related to several topics, including relightable neural implicit representations, 3D-aware

neural face image synthesis, and portrait relighting.

2.1 Relightable Neural Implicit Representations

Neural radiance ield (NeRF) [Mildenhall et al. 2021] is an emerging technique and used in various applications

such as static or dynamic 3D scene reconstruction (e.g., [Li et al. 2021; Müller et al. 2022; Park et al. 2021; Wang

et al. 2021]) because of its highly-realistic and 3D-consistent rendering results.

However, despite its successful usage for reconstruction, how to manipulate reconstructed scenes is crucial for

actual deployment in industries. Lighting is one of the core factors that deserve to be controlled. Several methods

(e.g., [Boss et al. 2021; Li et al. 2022; Rudnev et al. 2022; Srinivasan et al. 2021; Wang et al. 2022b; Zhang et al. 2021;

Zhao et al. 2022b]) have been proposed to enable relighting in a reconstructed object or scene. However, they are

speciic to one scene or one object and require retraining whenever the scene or object is changed. EyeNeRF [Li

et al. 2022] focuses on modeling human eyes with complex relectance and ine-scale geometry and achieves

reasonable results but is limited to eyes. NeLF [Sun et al. 2021] takes in several face images at diferent poses

and under the same but unknown lighting conditions. It is able to conduct relighting and novel view synthesis.

However, it cannot deal with complex structures (e.g., long hair) and needs more than one input face image.

Another group of methods [Pan et al. 2022, 2021; Tan et al. 2022] accomplish the relighting task based on 3D

GANs. However, they are either limited to a speciic directional light or require an augmented dataset with albedo,

difuse and specular components, which are not error-free by predicting using previous methods [Pandey et al.

2021] for decomposition. Our work is also based on the 3D GAN for general 3D-aware relighting dealing with

full faces (including long hair and neck), and needs only one face image for reconstruction and relighting. We are

able to deal with some challenging lighting efects (e.g., shadows cast by the head on the neck, specular lights on
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the forehead), as shown in Fig. 2, and only require a single-view 2D face image dataset [Karras et al. 2021b] with

estimated lighting conditions described as SH by an of-the-shelf lighting predictor [Zhou et al. 2019].

2.2 3D-aware Neural Face Image Synthesis

The recent incorporation of Generative Adversarial Networks (GAN) [Goodfellow et al. 2014] into NeRF [Milden-

hall et al. 2021] allows for 3D-aware face image synthesis.

One group of methods (e.g., [Chan et al. 2021; Schwarz et al. 2020]) for enabling generation in NeRF are to use

conditional coordinate-based NeRF but they sufer from low-resolution outputs. To generate high-resolution

images, a group of methods [Gu et al. 2022; Niemeyer and Geiger 2021; Zhou et al. 2021] proposed to output

low-resolution features and then pass them into 2D convolution for up-sampling. They further optimize the

up-sampling technique to improve the 3D consistency but still, have a low-quality geometry representation.

Recently, alternative models and representations (e.g., [Chan et al. 2022; Deng et al. 2022b; OrEl et al. 2022;

Rebain et al. 2022; Schwarz et al. 2022; Sun et al. 2022a; Xiang et al. 2022; Xu et al. 2022; Zhao et al. 2022a]) have

been explored to feature better geometry, image quality, and faster inference speed. They provide foundations

for future works, such as editing attributes (e.g., lighting, geometry, appearance) in a semantic way (e.g., [Jiang

et al. 2022; Sun et al. 2022a,b]). Our method enables the disentangled control of lighting with the tri-plane

representation [Chan et al. 2022].

2.3 Portrait Relighting

2D portrait relighting based on deep learning is a well-studied domain. Existing methods (e.g., [Hou et al. 2022,

2021; Nestmeyer et al. 2020; Pandey et al. 2021; Sengupta et al. 2018; Sun et al. 2019; Zhou et al. 2019]) typically

require explicit supervision in the image level, such as the normal or multiple images for a single identity under

diferent known lighting conditions generated by synthetic methods or using a professional capture setup. This

strict requirement is partly due to the fact that some of these methods (e.g., [Pandey et al. 2021]) recover the 3D

information from 2D images for better estimation of lighting and the supervision from multiple images for a

single identity under diferent lighting conditions facilitates the relighting efects in an implicit way (e.g., [Sun

et al. 2019; Zhou et al. 2019]) or the decomposition of albedo, geometry, and relectance components in an explicit

way (e.g., [Nestmeyer et al. 2020; Pandey et al. 2021]). The main problem with the above methods is that they

either capture a limited number of subjects to provide portraits under diferent lighting conditions, thus limiting

their ability of generalization, or synthesize fake ground-truth images as supervision, which limits their relighting

accuracy and realism. Recently, Yeh et al. [2022] proposed to use a virtual light-stage based on advanced computer

graphics to mitigate such an issue and ill in the gap between synthetic and real data, achieving reasonable results.

However, the recent advent of 3D GANs opens a new yet promising direction. Its innate 3D representation

greatly eliminates the need of estimating the 3D information from 2D images for relighting. However, how to use

this 3D representation for relighting remains an open problem. HeadNeRF [Hong et al. 2022] presents a parametric

headmodel conditioned on the lighting latent code. Its disentanglement is achieved by strong supervision provided

by its multi-lighting-condition dataset. However, it only allows for limited lighting adjustment because of the

insuicient coverage of lighting in its dataset. 3DFaceShop [Tang et al. 2022] tries to incorporate the guidance of

parametric head models into a neural face representation and achieves highly-consistent disentangled control

over expression, lighting, etc. through volume blending. However, its generation is limited to the expressive

power of parametric head models, possessing sub-optimal Frechet Inception Distance (FID) [Heusel et al. 2017]

values compared to ours. Besides, its disentangled control is only guaranteed for the face region, excluding hair,

glasses, etc. SURF-GAN [Kwak et al. 2022] decouples semantic attributes (including lighting) in the latent space

through unsupervised training but its disentangled control is relatively rough and it is hard to adjust the lighting

condition into a speciied state.
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To achieve arbitrary lighting manipulation, a common practice is to decompose the image into the albedo and

shading components. However, the major challenge for faithful lighting control based on such decomposition is

the lack of appropriate datasets for supervision. ShadeGAN [Pan et al. 2021] tackles this problem by explicitly

modelling the lighting efects and then applying the calculated shading to the predicted pre-cosine albedo to

render the inal portraits passed into the discriminator. However, ShadeGAN is limited to a speciic light direction

and a simpliied Lambertian shading model. GAN2X [Pan et al. 2022] approaches this problem by leveraging a

2D GAN [Karras et al. 2020b] prior. It uses a 2D GAN to generate multi-view and multi-lighting-condition face

images for a single identity and then solves an inverse rendering problem with the Phong shading model. This

method achieves reasonable results and is able to lift a 2D GAN to the 3D GAN with disentangled control of

lighting but still limited to a speciic lighting direction. VoLux-GAN [Tan et al. 2022] uses a 2D relighting model

[Pandey et al. 2021] to generate predicted albedo, difuse, and specular components for a general single-view

dataset [Karras et al. 2021b] as augmentation. It uses this supervision in its adversarial losses to achieve plausible

decomposition. Nonetheless, all the above methods still fail to deal with some challenging lighting problems,

such as the shadow cast by a pair of glasses.

In contrast, our method is able to generate faithful 3D-aware face images along with plausible pseudo-albedo

and shading components with the disentangled control of the lighting condition speciied by the SH. Diferent

from their explicit modelling, such as the Lambertian shading model or Phong shading model, we adopt an implicit

representation for lighting, which is directly optimized using real images with a careful design of regularization to

reduce ambiguity and enhance the ability of generalization. Thus, we are able to deal with those challenging cases

in an implicit yet eicient and efective way. Besides, we only need a general single-view dataset, which is also a

great advantage, considering the diiculty of obtaining truly ground-truth albedo, geometry, and relectance

components. One application of our work is to project real portraits into our latent space and change their

lighting conditions for relighting. We train an encoder to facilitate this process and explore some regularization

for better projection and relighting performance. Our method further supports rotating the relit faces since our

model is 3D-aware.

3 METHODOLOGY

In this section, we irst introduce the preliminaries of our backbone, EG3D [Chan et al. 2022] in Sec. 3.1. Then,

we formalize the structure of our proposed framework in detail to disentangle the lighting with an implicit

representation in Sec. 3.2. The entire pipeline is trained end-to-end by ine-tuning with two dual-discriminators,

using the non-saturating GAN loss function [Goodfellow et al. 2014] with R1 regularization [Mescheder et al.

2018], following the training scheme in EG3D. To reduce the ambiguity and enhance the generalization ability, we

introduce the regularization in Sec. 3.3. Furthermore, we introduce how to use our pipeline to conduct 3D-aware

portrait relighting in Sec. 3.4.

3.1 Preliminaries

Since our framework is built on the pretrained EG3D, we irst briely summarize its pipeline here. It uses

StyleGAN2 [Karras et al. 2020b] as a backbone to generate multi-channel (96 channels) 2D features from latent

codes� translated from random Gaussian noises and reshape it into three planes (a tri-plane for short) � as an

eicient and powerful representation of 3D volume.

Given a speciic set of camera parameters, EG3D casts rays into this 3D volume formed by a tri-plane. For

each queried position, it retrieves three features (32 channels for each) by projecting the queried position onto

each of the three planes via bilinear interpolation and reduces them into a single feature vector (32 channels) by

summation. A lightweight decoder, implemented as a small MLP Φ, interprets the reduced feature vectors into

densities and color features. These quantities are rendered into feature images �F ∈ R
��×��×32 in low resolution

ACM Trans. Graph.



NeRFFaceLighting: Implicit and Disentangled Face Lighting Representation Leveraging Generative Prior in Neural Radiance Fields • 7

S
ty

le
G

A
N

2

G
en

er
at

o
r

A
p

p
en

d
ed

 B
lo

ck
s

Spherical 

Harmonics (SH)
Mapping

Network

Lighting 

Mapping Network

Decoder

Φ

Shading Decoder

shadingΨ

σ

a

c

Albedo32

Density1

s
Shading1

Color32

V
o
lu

m
e 

R
en

d
er

in
g

Neural Renderer

S
ig

m
o

id
S

o
ft

ex
p

Shading S

Raw Portrait I

Raw
Pseudo-Albedo A

S
u

p
er

re
s.

M
o

d
u

le

Final Portrait I

Final
Pseudo-Albedo

co
n

d
.

co
n

d
.

D
is

cr
im

in
at

o
r

L
ig

h
ti

n
g

D
is

cr
im

in
at

o
r

A
+

C
o

n
ca

t

Real

or

Fake

Real

or

Fake

m
o

d
.

m
o

d
.

co
n

d
.

Gaussian

Noise

Shading Tri-plane

Geometry & Appearance

Tri-plane Camera Params

m
o

d
.

+
RGB

RGB

Face Volume

Fig. 3. An overview of our framework. Our pipeline is built on the original pretrained tri-plane representation. We append

several synthesis blocks, which are conditioned on the lighting latent codes translated from SH by the lighting mapping

network to a generator for constructing shading tri-plane, while the original tri-plane are assumed to be geometry and

appearance tri-plane. Features sampled from the original tri-plane are passed through the original decoder Φ to predict

density � and albedo features � ∈ R32. Features sampled from the shading tri-plane are passed through the shading

decoder Ψshading to predict shading � ∈ R
1. The final color features are composited as � = � ⊙ �. By volume rendering, the

neural renderer produces the shading image, raw portrait with shading, and raw pseudo-albedo. The raw portraits and

pseudo-albedo are passed into a super-resolution module for fetching high-resolution portraits and pseudo-albedo. The

original dual-discriminator, along with another dual-discriminator which is conditioned on both the camera parameters and

lighting conditions discriminates over the portraits with shading.

Sample Left-top Right-top Strong Soft

Fig. 4. Demonstration of various residual shadings initially achieved through style-mixing while keeping the geometry

roughly unchanged. For a specific portrait, its correlated generated portraits can cover a wide range of residual shadings

(e.g., let-top light (Let-top), right-top light (Right-top), strong light (Strong), and sot light (Sot)), but their appearances

vary significantly.

through volume rendering. Its irst three channels are taken as low-resolution RGB images �RGB ∈ R��×��×3.

Furthermore, a super-resolution module takes in the feature images �F and outputs the upsampled high resolution

images �+RGB ∈ R�ℎ×�ℎ×3.

The rendering camera parameters are omitted in all following discussions for simplicity. Its dual-discriminator

discriminates both �RGB and �+RGB to enhance the view-consistency.
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fine-level latent codes). We then combine the geometry and appearance tri-plane (a) and the shading tri-plane (b) to generate

the portrait (ab) and calculate the L1 metric between it and the portrait (a) to enhance the generalization of the shading

component. Besides, we add a small disturbance to the original lighting condition to generate portrait (a’). We apply the

ratio image-based rendering algorithm to approximately remove the lighting efects from the portrait (a’) with the shading

(a) (� denotes the element-wise division) and calculate the LPIPS metric between it and the pseudo-albedo (a). The small

disturbance here enhances the generalization ability of our model since the implicit model could be unstable even for a small

deviation from the seen lighting conditions (e.g., the deviated shading on the neck shown in the red rectangle in the portrait

(a’)).

3.2 Disentangled and Implicit Lighting Representation

It has been known that the ine-level latent codes of StyleGAN2 roughly control the appearance. We observed

that the lighting is embedded in it as well, as shown in Fig. 4, which indicates the potential for synthesizing highly

realistic lighting efects (e.g., shadows from occlusion) in an implicit way, i.e., learning from the dataset. However,

the control of lighting is highly entangled with other attributes, especially for the appearance through mixing the

ine-level latent codes. Thus, previous techniques such as StyleFlow [Abdal et al. 2021] proposed to manipulate

the latent codes in a way such that the lighting is changed as desired but the geometry and appearance are

well-preserved. However, such solutions are not very efective at changing the lighting and might disturb the

geometry and appearance, as shown in Fig. 6. Another group of ideas (e.g., [Deng et al. 2020; Jiang et al. 2022; Shi

et al. 2022; Sun et al. 2022a]) are to form separated latent spaces, each of which controls a speciic set of attributes.

We adopt a generally similar idea and adapt it in the tri-plane representation for lighting control.

Speciically, we construct a separated mapping network which translates SH �ℎ into lighting latent codes

�sh, to form a latent space that is only responsible for lighting. We then append several synthesis blocks of

[Karras et al. 2020b] conditioned on�sh to the end of the original generation pipeline of the tri-plane generator

to generate a shading tri-plane �shading along with the original tri-plane � , as shown in Fig. 3. Furthermore, we

devise a shading decoder Ψshading to interpret the features sampled from the shading tri-plane into a shading value

� ∈ [0, +∞). The original color features predicted by decoder Φ from features sampled from the original tri-plane

are viewed as albedo features � ∈ [0, 1]32. Thus, the original latent space is expected to be mainly responsible for

geometry and appearance. The inal color features � are formed as � = � ⊙ �. Note that the shading tri-plane is

dependent on both geometry and appearance because certain geometric details (e.g., beards, hair details) are
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missing in the underlying genuine shape (i.e., densities) and modelled in the appearance (i.e., color features)

instead. Such efects are shown in Fig. 16. More discussion can be found in the supplementary.

The densities � predicted by Φ along with these modiied color features are rendered into feature images

�F ∈ R��×��×32 through volume rendering, which are later passed into a super-resolution module to generate

corresponding high-resolution images �+RGB ∈ R�ℎ×�ℎ×3. Besides this, the same densities along with the predicted

shadings � or albedo features � can be rendered into 2D shading images � ∈ R��×��×3 and pseudo-albedo images

� ∈ R��×��×3, which can be fed into the super-resolution module as �+ ∈ R�ℎ×�ℎ×3 separately. Note that our

training process is based on ine-tuning. Thus, we expect our design can gradually distill the shading information

from the original tri-plane into the shading tri-plane. However, since we do not have explicit albedo supervision,

the rendered pseudo-albedo from albedo features might be diferent from traditional concepts.

To ensure the implicitly generated portraits with desired lighting conditions, we utilize the power of conditional

GAN. The conditional GAN (e.g., [Karras et al. 2020a; Mirza and Osindero 2014]) can be used to generate samples

with speciied attributes, such as species (e.g., cats or dogs), in a uniied latent space. EG3D uses camera parameters

as a condition to alleviate the bias of dataset (e.g., people tend to smile when they face the camera). Similarly,

besides the original dual-discriminator � , which is conditioned on camera parameters, we further utilize another

dual-discriminator �light [Karras et al. 2020a], which is conditioned on both camera parameters and lighting

conditions (namely, SH) to supervise lighting efects since making the discriminator aware of the camera

parameters is crucial to the 3D GAN, as proven in [Zhao et al. 2022a] and [Chan et al. 2022]. Following [Karras

et al. 2020a], we do not use any additional pretrained regressor to supervise the conditions, i.e., SH in our case.

During training, these two discriminators are optimized simultaneously. Note that even though in our pipeline,

the predicted shading values of the shading decoder are independent of the viewing direction, we empirically

ind that the shading tri-plane encodes the view-dependent efects, as shown in the video, by possibly adding a

heterogeneous layer in terms of the lightness behind the surface (see the supplementary for more details).

3.3 Reduce the Ambiguity and Enhance the Generalization

However, without explicit supervision of the albedo and with only optimizing on the portraits with lighting,

the decomposition as the albedo and shading is highly ambiguous. Formally, we optimize on the � only, but

how � and � compose into it is indeinite. This problem is thus ill-posed, and colorful lights even worsen it. We

choose the light to be white light only to alleviate this issue but the ambiguity problem still exists, especially for

shadows. This uncertainty makes the optimization harder, giving rise to worsened lighting accuracy and stability.

To address this issue, our major idea is to use specially generated samples to provide supervision for each other.

Fig. 5 illustrates the whole regularization introduced in this subsection.

Formally, we are seeking to distill the shading information from our pseudo-albedo components into shading

components to reduce uncertainty. We observe that even though, from the perspective of a speciic sample, its

pseudo-albedo component could sufer from various lighting phenomena (e.g., over-exposure, specular lights,

etc.) initially, its correlated generated samples, which share roughly the same geometry, cover a wide range of

textures, including diferent appearances and residual shadings, as shown in Fig. 4. If the correlated generated

distribution of residual shadings is roughly complete or symmetric for a certain geometry (e.g., if there exists

a strong lighting case, there exists a soft lighting case), the averaged residual shading on the pseudo-albedo

component should be canceled out. However, the challenge is that we cannot hold the appearance and change

the residual shading only for these correlated generated samples if we want to take the average of them. Such

a challenge leads us to an indirect but compact and eicient solution, i.e., averaging the shading components

explicitly and averaging the residual shading on the pseudo-albedo components implicitly as consequent.

Initially, under some lighting conditions, the shading component of a certain sample may overit to the residual

shading on the pseudo-albedo component since we optimize on the portrait to match the lighting condition by
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the discriminator, as seen in the portrait (a) and pseudo-albedo (a) of Fig. 5. If we apply a shading component of

one of the correlated generated samples to the pseudo-albedo component of such sample, it fails to generate the

similar portrait as the original shading component since the residual shading on the pseudo-albedo components

of correlated generated samples could be diferent from that of the original sample, as seen when comparing the

pseudo-albedo (a) and pseudo-albedo (b) and portrait (a) and portrait (ab) in Fig. 5. Thus, the shading component

of a certain sample cannot generalize to other correlated samples. However,we require that the shading component

of a speciic sample generalizes well to other correlated generated samples to make the shading component match

the averaged pseudo-albedo component implicitly. Along with optimizing the generator to produce accurate

lighting efects on the portraits with the discriminator, the shading information remaining in the pseudo-albedo

components will gradually be distilled to suit the generalized shading component simultaneously. Please ind

more details in the supplementary materials.

In our implementation, we use style-mixing to approximate the generation of diferent samples with roughly

the same geometry but diverse textures, as utilized in [Wang et al. 2022a]. For a batch of samples� and sampled

lighting conditions �ℎ, their generated images �+RGB are conditioned on both tri-planes �� and shading tri-planes

�
shading

(�,�sh )
. Assume samples �̂ are style-mixed with� , the loss is deined as:

LCross = | |�+RGB (��, �
shading

(�,�sh )
) − �+RGB (��, �

shading

(�̂,�sh )
) | |1, (1)

which refers to the calculated L1 metric in Fig. 5. Note that the variability of the appearance does not matter in

this strategy.

However, without an explicit lighting model, we do not rule out the possibility that the appearance information

is distilled from the pseudo-albedo components into the shading components. This could result in a drop of color

on the pseudo-albedo components, as shown in Fig. 9 (b). To alleviate this issue, we expect the pseudo-albedo

to be visually similar to the portraits with shading. Because of the discrepancy between these two domains,

i.e., the pseudo-albedo and the portraits with shading, we adopt a soft constraint here and use the generated

shading component to bridge the connection based on the ratio image-based rendering algorithm [Shashua and

Riklin-Raviv 2001]. Formally, for samples� and sampled lighting conditions �ℎ, we deine the loss as follows:

LSim = LLPIPS (�(�), �RGB (�,��ℎ) � � (�,��ℎ)), (2)

in which LLPIPS denotes the perceptual loss [Zhang et al. 2018]. Moreover, the implicit representation struggles

to generalize well to those unseen lighting conditions and seen lighting conditions but lying in the margin of the

distribution of the training dataset, as shown in the irst row of Fig. 10. To enhance the generalization, we take

the merits of the idea that similar lighting conditions can be used to supervise each other. Speciically, instead of

using �RGB with the same lighting conditions as � in the LSim, we introduce small disturbance to the lighting

conditions of the portraits, i.e., �RGB, as shown as portrait (a’) in Fig. 5. Namely, the loss LSim is adjusted to:

LSim = LLPIPS (�(�), �RGB (�,��ℎ+��� ) � � (�,��ℎ)), (3)

where � denotes the standard deviation of the lighting conditions in the training dataset and �� ∼ N(0, �2� ). This

loss refers to the calculated LPIPS metrics in Fig. 5. Such disturbance expands the raw distribution, as shown in

Fig. 11 (b) compared to (a), resulting in better generalization performance, as shown in the second row of Fig. 10.

Note that there could be alternative ways (e.g., applying another loss to directly promote the visual similarity

between portraits of similar lighting conditions) of using similar lighting conditions to supervise each other and

we choose to incorporate the disturbance into the previous loss since it is eicient and efective.

In summary, the inal regularization loss LReg is deined as the weighted summation of the above three losses.

Namely,

LReg = LCross + �LSim, (4)
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where we empirically set � = 1. Besides the main GAN loss function, this regularization loss is implemented as

lazy regularization following StyleGAN2 [Karras et al. 2020b] to reduce the computational cost and memory

usage.

3.4 3D-aware Portrait Relighting

Our model can manipulate the lighting in a disentangled manner such that the geometry and appearance are

well-preserved for each generated sample. It can be further extended to perform 3D-aware portrait relighting on

single-view real-face images. To achieve this, the general idea is to project a real face image into our latent space

and manipulate the latent codes for lighting to control the lighting condition. The oicial EG3D utilizes pivotal

tuning inversion (PTI for short) [Roich et al. 2022] for projection, which can be roughly summarized as two steps:

1) Find an appropriate latent code whose generated sample is similar to the input real image but not necessarily

accurate; 2) Tune the weights of the generator to it the details of the real image. Our projection generally follows

this idea but makes some adjustments at each step for itting our purpose (i.e., relighting) and pipeline.

3.4.1 Finding Appropriate Latent Codes. Aiming at speeding up and starting a latent code whose generated

sample is close to the input real image, we choose the encoder proposed in the encoder-for-editing [Tov et al.

2021] as our backbone. Speciically, we train an encoder � to predict the geometry and appearance latent codes

for the real image �Real, namely � (�Real) = � ∈ W. Note that the encoder proposed in [Tov et al. 2021] originally

predicts latent codes in W+ space, but we modify its architecture to predict latent codes in W space, following

the design of PTI. The camera parameters are extracted via [Deng et al. 2019] and assumed to be known and used

for the corresponding volume rendering.

However, decomposing a real image into our pseudo-albedo and shading components is an ambiguous task.

We prefer to model the appearance information as much as possible in the pseudo-albedo component, and thus

conduct the loss directly on the pseudo-albedo component. This loss is formally deined as:

LSim = �LPIPS · LLPIPS (�
+ (�), �Real) + �ID · LID (�

+ (�), �Real),

where LID (·, ·) = 1− < �id (·), �id (·) > and �id (·) is the deep identity feature from a face recognition network

[Deng et al. 2022a], and < ·, · > denotes cosine similarity.

Besides, since the pseudo-albedo component is directly required to be similar to the real image, which is not

deprived of shading, the encoder is prone to predict the sample whose pseudo-albedo component contains some

residual shading, as analyzed in Sec. 4.5. To alleviate this issue, we take the merits of the idea introduced in the

[Zhang et al. 2020] that human faces tend to be bilaterally symmetric and the asymmetry is mainly caused by the

facial shadows, which should not be present on the pseudo-albedo �+. Thus, we require the pseudo-albedo �+ to

be perceptually similar to the lipped pseudo-albedo �+. We utilize the same practice to lip the face as in the

[Zhang et al. 2020], leading to the following loss.

LFlip = LLPIPS (�
+ (�), �+ (�)),

Despite the lipping being speciic to the face region, we also ind it helpful for the encoder to predict latent

codes whose pseudo-albedo components contain less residual shadows on the region out of the face (e.g., neck),

as shown in Fig. 8 since shadows on the face are usually correlated with shadows on other regions.

In summary, the inal objective function is deined as:

L = LSim + �Flip · LFlip,

We set the �LPIPS = 0.8, �ID = 0.5, �Flip = 0.8. The optimization of this objective function leads to the optimization

of the encoder � only. Note that the generator is ixed in this procedure.

To reconstruct the real image faithfully, it is necessary to estimate the lighting condition. We use the same

practice to fetch the lighting condition �ℎ for the real image as in labelling the images of the training set. To it
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the estimated lighting condition with the predicted pseudo-albedo component by �, we perform optimization

only on �ℎ for 100 steps. The optimization loss is formally deined as:

LSH = LLPIPS (�
+
RGB (�,�sh), �Real),

Thus, the execution of this procedure leads to the estimated� and�sh for the input real image �Real.

3.4.2 Fine-tuning the Weights of the Generator. Given the predicted latent codes� and�sh, the reconstructed

face image �+RGB is usually not accurate enough compared to the real image �Real, thus motivating us to ine-tune

the weights of the generator� . Our generator can be viewed as generation with two steps: the irst is to generate a

tri-plane for geometry and appearance and the second is to generate a shading tri-plane for lighting. Considering

the missing or inaccurate details both in the geometry and appearance and the lighting, these two steps are all

required to be ine-tuned, leading to another highly ambiguous task. The appearance details, especially for those

with darkened colors (e.g., beards, black hairs) are prone to overit in the shading. Besides, the shading details

(e.g., shadows) are also possible to be modelled in the appearance.

As in the original PTI process, we use the L1 metrics LL1 and LPIPS LLPIPS metrics to measure and optimize

on the distance between the reconstructed face image and the real one. Besides these loss functions, we adopt

several regularization terms to constrain the reconstructed face image to not only be accurate but also possess

reasonable decomposed components (i.e., the pseudo-albedo �+).

First of all, we apply the LPIPS loss directly on the pseudo-albedo �+ and the real face image �Real to make

the pseudo-albedo perceptually similar to the real one. However, this loss function is prone to leak the shading

information into the pseudo-albedo. To alleviate this issue, we again take the merits of the lipping idea introduced

in [Zhang et al. 2020], requiring the pseudo-albedo �+ to be perceptually similar to the lipped pseudo-albedo �+

as LFlip. Formally, these losses are deined as:

LSim = LLPIPS (�
+, �Real),LFlip = LLPIPS (�

+, �+),

To reine the important face details (e.g., eyes), we further apply the facial feature loss to precisely optimize

important face components as in [He et al. 2021]. We use an of-the-shelf facial image segmentation module [Yu

et al. 2018] to parse the real image �Real into its semantic mask� and extract those important components. The

reinement is formally deined as:

LReine =

︁

�∈�

��L����� (�Real ⊙ �� , �
+
RGB ⊙ �� ),

where � = {eye} and�� denotes the mask for the corresponding facial component.

The inal objective is deined as:

L = LL1 (�
+
RGB, �Real) + �1LLPIPS (�

+
RGB, �Real) + �2LSim + �3LFlip

+ �4LReine .

We set �1 = 1, �2 = 0.5, �3 = 0.25, �4 = 0.1. The optimization of this objective leads to ine-tuning the weights of

the whole generator, excluding the super-resolution module. Note that the latent codes� and�sh are ixed in

this procedure. As shown in Fig. 7, our method achieves reasonable 3D-aware portrait relighting results.

4 EXPERIMENTS

In this section, we provide implementation details, quantitative evaluation, qualitative evaluation, and ablation

study. We explore the generalization of our pipeline to unseen lighting conditions, the efectiveness of distilling

the shading information from the pseudo-albedo components, and the degree of leakage of appearance into the

shading component. We also provide additional results about the interpolation of latent codes, lighting control

by an environment map, and user interface for interactive lighting control.

ACM Trans. Graph.



NeRFFaceLighting: Implicit and Disentangled Face Lighting Representation Leveraging Generative Prior in Neural Radiance Fields • 13

Method Relit Image Identity Similarity↑ Albedo Image Identity Similarity↑

−0.5 rad −0.25 rad 0 rad 0.25 rad 0.5 rad −0.5 rad −0.25 rad 0 rad 0.25 rad 0.5 rad

ShadeGAN 0.4814 0.7513 - 0.7628 0.4997 0.4818 0.7582 - 0.7702 0.5091

VoLux-GAN 0.6064 0.7736 - 0.7997 0.5985 0.6389 0.7919 - 0.7863 0.6162

EG3D 0.6728 0.8502 - 0.8487 0.6810 - - - - -

Ours 0.6354 0.8253 - 0.8323 0.6464 0.6868 0.8697 - 0.8723 0.6973

Table 1. uantitative comparison with ShadeGAN, VoLux-GAN, and EG3D based on geometry consistency.

FID↓ FIDCLIP ↓

IDE-3D 5122 4.9 3.3

EG3D 5122 4.3 3.0

3DFaceShop 5122 59.0 19.0

Ours 5122 4.0 2.8

Table 2. uantitative comparison with EG3D, IDE-3D, and 3DFaceShop on the FFHQ dataset based on Frechet Inception

Distance.

4.0.1 Implementation Details. We use DPR [Zhou et al. 2019] as in StyleFlow [Abdal et al. 2021] to predict the

SH for real images. The shading decoder is implemented as a lightweight MLP with one hidden layer of 64 units.

We ine-tune on the oicial checkpoint trained on the FFHQ [Karras et al. 2021b] of EG3D. The optimizer setup

[Kingma and Ba 2015] is the same as EG3D, and we train at the resolution of 642 for 5M images with 4 Tesla V100

GPUs. We again use FFHQ [Karras et al. 2021b] as in EG3D for our training dataset. Our method is implemented

with both Pytorch [Paszke et al. 2019] and Jittor[Hu et al. 2020]. More details can be found in the supplementary.

4.1 uantitative Evaluation

Our method achieves nearly real-time rendering performance at at 5122 resolution, since the rendering is achieved

based on pure inference. Speciically, on a single Tesla V100 GPU, the frame per second is 23.4 without tri-plane

caching and 41.8 with tri-plane caching. This allows interactive changes of camera parameters and lighting

conditions, as shown in the accompanying video. As to the projecting of a real portrait into the latent space of

our generator for relighting, it takes about 3∼4 minutes on a single Tesla V100 GPU, and this only needs to be

done once for a speciic sample.

To evaluate the generation ability of our method with quantitative metrics, we adopt the Frechet Inception

Distance (FID) [Heusel et al. 2017]. We evaluate the FID on both InceptionNet-v3 [Szegedy et al. 2016] denoted as

FID and CLIP [Radford et al. 2021] denoted as FIDCLIP as suggested by [Kynkäänniemi et al. 2022]. We compare

our method with our backbone EG3D [Chan et al. 2022], IDE-3D [Sun et al. 2022a], and 3DFaceShop [Tang et al.

2022] as state-of-the-art 3D-aware generative models. Speciically, we sample 50k images as in [Karras et al.

2020b]. From Table 2, it is clear that our method has the best generation quality and diversity, showing that our

design does not harm the generation ability of our backbone and even improves it.

Besides, we also adopt the geometry consistency proposed in VoLux-GAN [Tan et al. 2022] to measure the 3D

consistency of the results by our method. We compare it with ShadeGAN [Pan et al. 2021], VoLux-GAN, and

our backbone EG3D as alternative 3D-aware relightable and generative models (except for our backbone). From

Table 1, it is clear that our method has the best geometry consistency in terms of both relit images and albedo

images compared to the alternative 3D-aware lighting control methods, i.e., ShadeGAN and VoLux-GAN . Our

backbone, EG3D, has better geometry consistency in terms of the images with shading than our method. It is

possibly because the face recognition network we used is sensitive to the lighting condition. Since we explicitly

pass the lighting conditions for sampling in our method, the generated samples cover some marginal lighting

ACM Trans. Graph.



14 • Kaiwen Jiang, Shu-Yu Chen, Hongbo Fu, and Lin Gao
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Fig. 6. ualitative comparisons with StyleFlow (SF), DisCoFaceGAN (DCFG), and GAN-Control (GC) as 2D methods and

LitedStyleGAN (Lited), EG3D+Deep Portrait Relighting (EG3D+DPR), EG3D+Style Flow (EG3D+SF), and 3DFaceShop as

3D-aware alternative methods. The results are viewed from a right position (RP), let position (LP), top position (TP), and

botom position (BP) and rendered under right light (RL), let light (LL), top light (TL), and botom light (BL). Note that

EG3D+SF fails at the case of botom light and we put the input lighting condition rendered by Deep3DRecon [Deng et al.

2019] at the botom-let corner in the case of botom light for 3DFaceShop.

conditions, e.g., dark lights. However, the generated samples of our backbone do not necessarily contain these

lighting conditions. This speculation also explains why the geometry consistency of our method in terms of the

albedo images is better than that of our backbone, EG3D, in terms of the images with shading.

However, it is notoriously tricky to evaluate the decomposition as the albedo and shading and the relighting

performance due to the diiculty of obtaining suitable ground truth. Considering this challenge, we decide to

adopt two metrics to measure the relighting performance directly based on an of-the-shelf lighting estimator
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Method Lighting Error↓ Lighting Stability↓

StyleFlow 0.7523 0.1530

DisCoFaceGAN 0.5860 0.1335

GAN-Control 0.6647 0.1485

ShadeGAN 1.0714 0.2149

3DFaceShop 0.5950 0.1208

EG3D+DPR 0.7424 0.1594

EG3D+StyleFlow 0.9935 0.2191

Ours 0.6377 0.1455

Table 3. uantitative comparison with StyleFlow, DisCoFaceGAN, and GAN-Control as 2D relightable methods, ShadeGAN,

EG3D+Deep Portrait Relighting (EG3D+DPR), EG3D+StyleFlow, and 3DFaceShop as 3D-aware relightable methods based

on the lighting error and lighting stability. We highlight the best score as boldface, underline the second best, and double-

underline the third best.

Fig. 7. Demonstration of projecting real portraits (let) and the comparison of 3D-aware portrait relighting with EG3D+DPR

[Zhou et al. 2019] and 3DFaceShop [Tang et al. 2022] (right). On the right-hand side, the "Reference" denotes the reference

lighting conditions on portraits. For 3DFaceShop, we put relit images with volume blending at the botom-let corners of

the relit images without using volume blending at the original poses. Original images courtesy of Flávio Augusto, Stefano

Lubiana, Rene Alsleben, and Darius Dunlap.

[Feng et al. 2021; Li et al. 2017], which is not used in training for any involved methods and is diferent from the

one [Zhou et al. 2019] we use for labeling the dataset. It predicts the SH as lighting conditions.

Our proposed metrics are based on a lighting transfer task. Speciically, in this task, the model is required to

generate images with the same lighting condition as a given real image. After that, the of-the-shelf lighting

estimator estimates the lighting conditions of both real images and generated images. The beneit of this task

is that it measures the lighting performance directly and does not require any ground truth, thus excluding

the inluence of how ground truth is obtained (e.g., from a professional capture setup or of-the-shelf albedo

estimator) and whether direct albedo supervision exists. Besides, it also excludes the manners of how diferent

models describe the lighting (e.g., SH, spherical gaussian (SG), etc.). However, this task requires the lighting

conditions to be pre-extracted as a condition to the model, thus excluding one baseline method (i.e., VoLux-GAN).

Additionally, the lighting estimator we used does not take non-face regions into account, e.g., hair.

4.1.1 Lighting Error. Based on the lighting transfer task, we sample 1, 000 real images from the dataset and

generate corresponding fake images with the same lighting condition for each method. We use the of-the-shelf

lighting estimator to estimate the lighting conditions for each pair (i.e., a real image and a generated image) and

measure the distance between them. After calculating for each pair, we take the average as the inal metrics value.
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Target ReconstructionEnc. w/o LFlip Encoder w/o SF w/o LFlip w/o LSim w/o LDetail Ours

Portrait Pseudo-Albedo

Fig. 8. Ablation study for the design choices used in the projection of real portraits introduced in Sec. 3.4. "w/o SF" denotes

the projection without fine-tuning the shading component. The red rectangle emphasizes on the inaccurate eye details,

which lean let compared to the target image. Original images courtesy of Ba Tik and Niall Whitehead.

4.1.2 Lighting Stability. Based on the lighting transfer task, we sample 1, 000 real images from the dataset and

generate 100 corresponding fake images for each real image with the same lighting condition. For each lighting

condition, we use the of-the-shelf lighting estimator to estimate the lighting conditions of every generated fake

image and measure the standard deviation of the spherical harmonics coeicients. After calculating for each real

image, we take the average as the inal metrics value.

We compare our method with alternative methods, including StyleFlow [Abdal et al. 2021], DisCoFaceGAN

[Deng et al. 2020], and GAN-Control [Shoshan et al. 2021] as 2D relightable and generative models, and ShadeGAN,

EG3D+Deep Portrait Relighting, EG3D+StyleFlow, and 3DFaceShop as 3D-aware relightable and generative

models. From Table 3, it is clear that compared to the baselines and 2D methods except for the DisCoFaceGAN

and 3DFaceShop, our method has the lowest lighting error and the best lighting stability. DisCoFaceGAN and

3DFaceShop use 3DMM as supervision, which enhances their accuracy and stability. However, DisCoFaceGAN

sufers from the 3D inconsistency as shown in the next qualitative comparison and 3DFaceShop has worsened

generation ability as shown in Table 2. Both of them also disturb the geometric details (e.g., glasses and hair

textures) when changing the lighting conditions, as shown in the succeeding qualitative comparison. Besides, as

mentioned before, our lighting estimator, which does not consider non-facial regions, may also account for their

higher accuracy and stability.

4.2 ualitative Evaluation

To evaluate the ability of manipulating the lighting conditions in the generative model, we show qualitative

comparisons with other relightable 3D-aware or 2D generative methods in Fig. 6. Speciically, we choose four

simple lighting conditions (i.e., top lights, bottom lights, left lights, and right lights). We compare our method

with ShadeGAN [Pan et al. 2021], LiftedStyleGAN [Shi et al. 2021], EG3D+Deep Portrait Relighting [Zhou et al.

2019], EG3D+StyleFlow [Abdal et al. 2021], and 3DFaceShop [Tang et al. 2022] as alternative 3D-aware methods.

Our method is compared to StyleFlow [Abdal et al. 2021], DisCoFaceGAN [Deng et al. 2020], and GAN-Control

[Shoshan et al. 2021] as alternative 2D methods which are also capable of changing the camera positions.

For each method, we show one subject randomly sampled from each latent space trained on the FFHQ dataset.

In each row (from left to right), we show the reference images under one speciic uniform lighting from four

camera viewpoints, color images rendered under four diferent lighting directions from the frontal viewpoint, and

color images rendered under four diferent lighting directions from four camera viewpoints. Specially, we do not

adopt the volume blending for keeping the hair and background consistent when comparing with 3DFaceShop

since we want to emphasize on the lighting efects beyond the scope of face regions. For those methods (including
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Method LE↓ LEUnseen ↓ LS↓

Ours 0.6377 0.6673 0.1455

-LCross 0.6947 0.6989 0.1621

-LSim 0.6558 0.6779 0.1517

-Disturbance (�2� = 0) 0.6467 0.6818 0.1472

Table 4. uantitative evaluation with ablation models based on the lighting error for seen lighting conditions (denoted as

"LE") and unseen lighting conditions (denoted as "LEUnseen") and the lighting stability (denoted as "LS"). We highlight the

best score as boldface, underline the second best, and double-underline the third best.

ShadeGAN, LiftedStyleGAN, and Ours) which can generate albedo images, the reference images are replaced with

albedo images. It is clear that the 2D implicit methods are prone to change the identities (e.g., glasses appear and

disappear) when changing the camera parameters but achieve reasonable relighting results except for the bottom

light. In contrast, the 3D-aware methods are good at preserving 3D consistency when changing the camera

parameters. However, the generated samples of ShadeGAN and LiftedStyleGAN are of lower quality compared to

those by ours and 2D methods. Their lighting efects are also unnatural, letting alone high-frequency lighting

details such as the shadows cast by the glasses under the top light. The baseline "EG3D+DPR" has efective

lighting efects, but still cannot handle high-frequency lighting details and causes weird lights near the glasses

in the case of "RP & RL". The baseline "EG3D+SF" is less efective at changing the lighting conditions and even

fails at the bottom light. 3DFaceShop is able to handle the lighting efects beyond the scope of face regions and

high-frequency lighting details. However, it comes at the cost of disturbing the geometry such as the shape of

glasses and the mouth. Besides, all the methods except EG3D+DPR cannot handle the lighting condition of bottom

lights, which are quite rare in the training dataset. On the contrary, our method not only generates high-quality

3D-consistent samples thanks to our backbone, EG3D, but also enjoys realistic and detailed lighting efects due to

our design. Our method is able to handle high-frequency lighting details (e.g., shadows cast by the glasses in the

case of top light ("TL")) and the bottom light.

To evaluate the ability of portrait relighting, we show qualitative comparisons between our method and other

representative methods which claim the ability of relighting real images, namely DPR [Zhou et al. 2019] and

3DFaceShop [Tang et al. 2022]. To lift the 2D method (i.e., DPR) into a 3D-aware method, we irst use EG3D

to generate original portraits under diferent poses and then apply these image-based methods. Specially, we

do not use volume blending when evaluating 3DFaceShop for the previously stated reason. However, we show

relit images with volume blending at the bottom-left corner of the relit images without volume blending at the

original pose for reference. It is clear that from Fig. 7 (right side), our method can handle the lit area on the hair

from top-left lights in the irst row and shading on the face in the second row. In comparison, DPR fails to handle

lights on the hair in the irst row and retains some residual shading from the input target face in the second row.

3DFaceShop disturbs the geometry such as the hair in the irst row and the texture on the face in the second row

while changing the lighting conditions. It fails to handle the lit area on the hair in the irst row and has lower

reconstruction quality especially at other poses.

4.3 Ablation Study

To verify the necessity of our design choices, we perform an ablation study on the regularization introduced in

Sec. 3.3 and the loss functions when conducting 3D-aware portrait relighting in Sec. 3.4.

From Table. 4, the ablation model without LCross has the highest lighting error for seen and unseen lighting

conditions and the worst lighting stability. The ablation model without LSim and without disturbance have

worsened lighting accuracy and stability. In Fig. 9, we sample two latent codes and render them under the

same lighting condition for each method. In the irst row, there remains obvious shading in its pseudo-albedo
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Fig. 9. Demonstration of ablation study for regularization introduced in the Sec. 3.3. We show two generated samples with

random lighting conditions from the training dataset and the latent codes� are kept the same for each method. "LE" denotes

the lighting error (the lower the beter) introduced in Sec. 4.1.1.

components generated by the model without LCross in this case, impeding the lighting accuracy. Note that the

lighting error of the ablation model without LSim is a bit lower than that of ours for these two cases, but the

lighting estimator is not deprived of error and the visual diferences are subtle. Besides, it is obvious that in

the second row, the color on the hair of the Pseudo-Albedo2 generated by the ablation model without LSim

drops, i.e., dark-yellow hairs turn to lightened blue, compared to the corresponding portraits. From Fig. 10, the

ablation model without disturbance has noticeable black zones in the portraits under unseen lighting conditions

or marginal lighting conditions in the seen distribution.

From Fig. 8, it is clear that for the encoder, without LFlip (denoted as "Enc. w/o LFlip"), the encoded pseudo-

albedo components could retain some residual shading especially on the neck in the second row. Furthermore,

the directly encoded pseudo-albedo components (denoted as "Encoder") are not accurate to the target images.

Without ine-tuning the generation of shading tri-planes (denoted as "w/o SF"), there remain specular lights

on the forehead in the irst row. Without LFlip (denoted as "w/o LFlip"), the tuning introduces obvious lighting

efects in the pseudo-albedo. Without LSim (denoted as "w/o LSim"), the ine-tuned pseudo-albedo is less similar

to the input target images compared to ours at the last column (from left to right) (e.g., vague beards on the right
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Pseudo-Albedo

(red)

Unseen Closest Seen Unseen Closest Seen

(blue)

w/o

Disturbance

w/

Disturbance

Fig. 10. Illustration of the ability to generalize to unseen lighting conditions w/ or w/o disturbance introduced in Sec. 3.3.

(red) and (blue) correspond to the red and blue points in Fig. 11. For each unseen lighting condition, we pick the closest seen

lighting condition from the training dataset and demonstrate how these two models behave in the unseen lighting condition

and its closest seen match, which is deviated severely from the central region of the distribution. Due to the rareness of such

lighting conditions in the training dataset, the implicit representation tends to perform badly compared to those usual cases

especially for creating noisy black backgrounds. It is clear that w/o disturbance, the portraits possess unnatural black zones

on the faces, while w/ disturbance, the portraits are free of such a problem and look much more natural.

(a) (b)

Fig. 11. Illustration of the distribution for lighting conditions in the training dataset. (a) denotes the raw distribution (each

orange point stands for a sample) visualized through PCA. (b) denotes the visualized distribution (orange points) with

disturbed data (light orange area). Red and blue points denote two unseen lighting conditions used in Fig. 10. It can be seen

that through disturbance, the model is trained on a more complete distribution (b), enhancing generalization ability.

face in the irst row). Without LDetail (denoted as "w/o LDetail"), the gaze in the left eye of the pseudo-albedo in

the irst row deviates slightly to the left (emphasized in the red rectangle). In contrast, our complete optimization

strategy (denoted as "Ours") achieves the best visual similarity to the target images with slight residual shading

on the pseudo-albedo.
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4.4 Generalization to Unseen Lighting Conditions

Compared to those methods (e.g., [Pan et al. 2022, 2021; Shi et al. 2021]) which explicitly model the lighting efects

through lighting models, our method can be categorized as the implicit representation learned from the dataset.

Thus, it is necessary to evaluate how our model can generalize to the lighting conditions which are unseen in our

training dataset.

We irst explore and visualize the raw distribution of the lighting conditions in the dataset in Fig. 11 (a) through

PCA [F.R.S. 1901] by keeping the two most important components. We then add disturbance to each sampled

lighting condition and visualize the expanded distribution in Fig. 11 (b). It is clear that the coverage of the

expanded distribution is more continuous and complete. Furthermore, we evaluate the models trained on the raw

distribution and the expanded distribution both quantitatively and qualitatively.

To ensure meaningful lighting conditions and intuitive comparisons, we irst compute the averaged lighting

condition in our training dataset, FFHQ. We then measure the lighting conditions for samples of another widely-

used facial dataset, CelebA-HQ [Karras et al. 2021b; Liu et al. 2015] with the same of-the-shelf lighting estimator

[Zhou et al. 2019] and pick those whose lighting conditions deviate the most from the average lighting conditions

of FFHQ. For quantitative comparison, we compute the lighting error for the top 1, 000 lighting conditions from

CelebA-HQ which deviates the most from the training distribution in Table 4. It is clear that with the introduced

disturbance, the lighting error for these top unseen lighting conditions is the lowest compared to that without

the disturbance. Note that the sense of "unseen" lighting conditions does not always hold for other comparison

methods.

For qualitative comparison, we select two unseen lighting conditions from CelebA-HQ marked as red and blue

points in Fig. 11 and retrieve their closest seen lighting conditions from the training dataset. For each model (w/

or w/o disturbance), we demonstrate the behaviors of a generated sample on these lighting conditions. As shown

in Fig. 10, the model trained on the raw distribution ("w/o disturbance") fails to perform well with unnatural

black zones on the faces under both the unseen lighting conditions and their closest seen matches, since these

matches unavoidably lie in the margin of the training distribution. In contrast, the model trained on the expanded

distribution ("w/ disturbance") generates natural portraits under these lighting conditions.

4.5 Distillation of Shading Information

Our method is capable of gradually distilling the shading information from the pseudo-albedo components into

the shading components. To demonstrate the efectiveness of the distillation, we show several examples before

and after distillation in Fig. 12. We keep the latent codes unchanged for each example. It can be seen that our

distillation method can reduce the shading signiicantly (e.g., self-occlusion shadows, left and right lights, strong

light and specular light) in the pseudo-albedo components, without dramatically changing the appearance.

Despite our eforts to distill the shading information from the pseudo-albedo components into the shading

components, the performance achieved by our method largely depends on how well the sampling strategy of

style-mixing covers diferent lighting conditions. Since we use random ine-level style-mixing to approximate

the generation of diverse residual shadings, there is no guarantee that the shading can be distilled completely

from the pseudo-albedo components, though we still achieve reasonable results especially with the truncation

trick as shown in Fig. 13 (a). It can be seen from this igure that there are still some shading in the pseudo-albedo

components of samples when the truncation� is high, but as the truncation� goes lower, the residual shading

gradually disappears. Moreover, we quantify the efects of truncation on the lighting error proposed in Sec. 4.1.1,

as shown in Fig. 14. The lighting error (the lower the better) improves as the truncation� changes from 1 to 0.5.

Please see more detailed illustration in the supplementary. Note that we do not use the truncation trick in the

quantitative evaluation.
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Fig. 12. Illustration of distillation. We keep the latent code unchanged and demonstrate the changes for the pseudo-albedo

components before and ater the distillation (adversarial training involved so that the identity is deviated as well). It is

clear that our framework and training strategy can alleviate various challenging lighting phenomena in the pseudo-albedo

components (e.g., self-occlusion shadow, let light, right light, strong light, specular light, etc.).
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Fig. 13. Illustration of residual shading in the pseudo-albedo components. We show the pseudo-albedo components for four

samples and the efect of truncation (denoted as� ) in (a). For the first and third (from let to right) samples, which contain

obvious residual shadings in the pseudo-albedo components, we further show four style-mixed pseudo-albedo images for

each case in (b) and the residual shading on these style-mixed pseudo-albedo images is emphasized by red rectangles.

We speculate that some lighting information is baked into the shallow layers of the original EG3D for some

samples, making these samples contain residual shading efects. From Fig. 13 (b), the style-mixed pseudo-albedo

components in the irst row tend to contain the same right-to-left light efects (most visible for the shadow on
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Fig. 14. Illustration of the efect on the lighting error for diferent truncation values of � . It is as expected that as the

truncation� decreases, the generation quality improves and the pseudo-albedo components are less likely to contain the

residual shading, causing the reduced lighting error.

Fig. 15. Demonstration for interpolation of geometry and appearance latent codes in the first and second rows and interpo-

lation of lighting latent codes in the third row. The camera is fixed at frontal for easier comparison.

the neck) and those in the second row tend to contain the same left lights (most visible for the specular lights on

the left face). In these cases, the coverage of residual shadings through random ine-level style-mixing does not

enjoy the averaged state as being deprived of shading. To alleviate this problem, a more intelligent sampling
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Pseudo-Albedo Shape LC 1 LC 2 LC 3

Fig. 16. Illustration of connection between geometry and lighting. "LC 1", "LC 2", and "LC 3" denote diferent lighting

conditions. Red rectangles on the shape emphasize the flaws on the shape (e.g., incomplete beards or deep creases near the

corners of mouths). Red rectangles on the portrait under "LC 1" in the second row emphasize disconnected lips and lights.

Fig. 17. Demonstration of lighting control by an environment map.

strategy for changing the lighting conditions while keeping the geometry unchanged of generated samples might

be helpful.

4.6 Leaky Appearance Information

Because of the lack of ground-truth for the pseudo-albedo and shading components during training, it is unavoid-

able that some appearance information is still leaked into the shading component despite our regularization

described in Sec. 3.3. Speciically, we ind that the leaked appearance is in close relationship with the laws of

underlying genuine shape, as shown in Fig. 16. In the irst row, the high-frequency geometric details, i.e., beards,

are not modelled well in the underlying genuine shape, resulting in growth or disappearance under certain

lighting conditions ("LC 1" and "LC 3"). In these cases, the beards as the appearance are partly afected by the

shading. Besides, in the second row, the generated portraits are afected by the creases near the corners of the
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Fig. 18. A screenshot of our interface for users to manipulate the lighting conditions on a generated or real face in a

3D-aware manner. (a) and (c) are the utility control panel and lighting control panel, respectively. (b) includes an input real

image (denoted as "Input") and projected synthesized image (denoted as "Output"), whose camera parameters and lighting

conditions have been manipulated in this case. Original images courtesy of Andi Hamzah Lazuardy and cotonbro studio.

mouth in the underlying genuine shape, resulting in weird lights and disconnected lip under a certain lighting

condition ("LC 1"). In this case, the shading changes the appearance near the mouth. However, these problems

are not visible under another lighting condition ("LC 2"). An even more obvious problem is with the background.

Since the textures on the background are too diverse, the generator fails to capture its underlying shape. It is much

more harder to distinguish, for example, a piece of gray region belonging to a curtain or results from the shadow,

causing noisy backgrounds under diferent lighting conditions (e.g., the relatively clean background under "LC

1" and "LC 2" compared to the discontinuous texture on the background under the "LC 3" in the irst row). We

believe that a more accurate modelling of shape especially for beards will improve upon these limitations.

4.7 Additional Results

4.7.1 Interpolation of Latent Codes. In the irst and second rows of Fig. 15, we show the results of interpolating

geometry and appearance latent codes while keeping the lighting conditions unchanged. As the hair gradually

"grows" on the forehead, our method correspondingly changes the lighting efects in a smooth and natural way.

In the third row of Fig. 15, we show the results of interpolating lighting latent codes while keeping the geometry

and appearance unchanged. Our method achieves smooth changes of the shadow cast by the sun-glasses.

4.7.2 Lighting Control from Environment Map. In Fig. 17, we show the result of lighting control by an environment

map. We irst extract SH from the environment map by [Driscoll and Healy 1994; Holmes and Featherstone 2002]

and then plug these coeicients into our pipeline to generate corresponding portraits. The background is replaced

by matting.

4.7.3 User Interface. We design a real-time face lighting-control user interface shown in Fig. 18, allowing users

to interactively manipulating the lighting conditions on a generated or real face in a 3D-aware manner. The

menu (Fig. 18 (a)) consists of utility buttons such as "Random Generation" for users to test on generated samples,

"Upload" for users to upload their own facial images, etc. and necessary tools to manipulate the orientation of the
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Pseudo-Albedo Side-View Geometry Portrait

(a)

(b)

Target Reconstruction Pseudo-Albedo Relit

Fig. 19. Less successful cases for relighting a generated sample and a real portrait. (a) An example of how our model deals

with other occlusions (e.g., hat) for a generated sample. Even though our model produces some shadow cast by the hat, the

shadow only expands to the region above the eyebrows instead of around the nose since the brim of the hat is too short, as

shown in the side-view geometry. (b) For darkened colors, the lighting estimator predicts very dim lights. Note that even

though the relighting condition in (b) is the same as that in (a), the portrait in (b) is less accurate compared to that in (a). For

example, the face area in the red rectangle should be lighter. Original image courtesy of cotonbro studio.

face, i.e., pitch, yaw, roll. The lighting control panel (Fig. 18 (c)) ofers two types of intuitive lighting controls. The

lighting condition is irst visualized as a sphere. Users can click on the sphere to add any number of light sources

(visualized as little squares with black borders) and manipulate their locations by dragging or intensities by

sliding the wheel. Another option is to upload a reference portrait for the system to extract its lighting condition.

These two types are compatible, namely the user can irst upload a reference portrait and then manually add

several light sources, which is exactly the case shown in Fig. 18. Our system generates synthesized results in

real-time, in terms of the camera manipulation and lighting condition manipulation.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

Disentangled lighting control is tricky in the context of NeRF due to its innate ambiguity of decomposition as

the albedo and the shading, which are necessary for faithful and disentangled relighting. A common solution

may be to provide strong supervision from capture of real people, which is quite onerous for as many as tens

of thousands of subjects, or by synthesis, which inevitably sufers from the gap with real images. In this work,

leveraging generative prior, we explore how to decouple the lighting without direct external supervision and how

to handle complex lighting phenomena (e.g., specular lights, shadows, occlusions, etc.) in an implicit but eicient

and realistic way. Relighting is a usually data-hungry task, and we believe that by leveraging the generative prior

of 3D GAN, our method is a step forward in the direction of alleviating such a harsh requirement.
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One limitation of this work is that the performance of lighting control is in close relationship with the

underlying shape, which is not error-free, causing problems such as inaccurate shading on beards or shadows

from hats, as shown in Fig. 16 and Fig. 19 (a). Besides, since we use an of-the-shelf lighting estimator to label

the lighting condition of real portraits in the dataset, our method inevitably inherits its bias, as shown in Fig. 19

(b), where the darkened colors are correlated with very dim lights, causing it much harder to generate plausible

pseudo-albedo and relit portraits. For reconstructing and relighting real portraits, the speed of projection is

relatively slow, as shown in Sec. 4.1 due to the ine-tuning of the generator’s weights. As future work, it would

be interesting to explore how to speed up the projection and explore how to eiciently incorporate the explicit

supervision (e.g., [Blanz and Vetter 1999; Li et al. 2017; Paysan et al. 2009]) used in previous methods into our

implicit representation and regularization to enhance the performance of our model.
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