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Figure 1: OurNeRFFaceEditingmethod allows users to intuitively edit a facial volume tomanipulate its geometry and appearance
guided by rendered semantic masks. Given an input sample (a), our method disentangles its geometry and appearance, and
allows for one- or multi-label editing. We show a range of flexible face editing tasks that can be achieved with our unified
framework: (b) changing the appearance according to a given reference sample while retaining the geometry and 3D consistency;
(c) changing the appearance for different views with different reference samples while retaining the geometry; (d) editing
multiple labels of the semantic mask for a certain view while keeping the appearance and 3D consistency; (e) editing both the
geometry and appearance. The inputs used to control the appearance and geometry are highlighted in green and orange boxes,
respectively.

ABSTRACT
Recentmethods for synthesizing 3D-aware face images have achieved
rapid development thanks to neural radiance fields, allowing for
high quality and fast inference speed. However, existing solutions
for editing facial geometry and appearance independently usually
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require retraining and are not optimized for the recent work of
generation, thus tending to lag behind the generation process. To
address these issues, we introduce NeRFFaceEditing, which enables
editing and decoupling geometry and appearance in the pretrained
tri-plane-based neural radiance field while retaining its high quality
and fast inference speed. Our key idea for disentanglement is to
use the statistics of the tri-plane to represent the high-level appear-
ance of its corresponding facial volume. Moreover, we leverage a
generated 3D-continuous semantic mask as an intermediary for
geometry editing. We devise a geometry decoder (whose output
is unchanged when the appearance changes) and an appearance
decoder. The geometry decoder aligns the original facial volume
with the semantic mask volume. We also enhance the disentan-
glement by explicitly regularizing rendered images with the same
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appearance but different geometry to be similar in terms of color
distribution for each facial component separately. Our method al-
lows users to edit via semantic masks with decoupled control of
geometry and appearance. Both qualitative and quantitative evalu-
ations show the superior geometry and appearance control abilities
of our method compared to existing and alternative solutions.

CCS CONCEPTS
• Human-centered computing → Graphical user interfaces; •
Computer systems organization → Neural networks; • Com-
puting methodologies → Rendering; Volumetric models.

KEYWORDS
Face editing, volume disentangling, semantic-mask-based inter-
faces, neural radiance fields, neural rendering
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1 INTRODUCTION
Efficiently generating consistent and high-quality 3D-aware face
images is an active research topic. Many recent techniques (e.g.,
[Chan et al. 2021a; Deng et al. 2022; Gu et al. 2021; Or-El et al. 2021;
Zhou et al. 2021]) choose to build upon Generative Adversarial
[Goodfellow et al. 2014] Neural Radiance Fields (NeRF) [Mildenhall
et al. 2020] and form facial volumes to generate 3D-aware high-
resolution face images with 2D convolution. However, their meth-
ods lack direct control of facial geometry and some of them (e.g.,
[Chan et al. 2021a]) cannot control the appearance independently
of the geometry, while such controls are important for applications
like 3D character design, educational training, etc.

To directly control the geometry, one approach is to introduce an
editing intermediary that is alignedwith the facial volume. Semantic
masks are suitable for 3D GANs because of their intuitiveness, ease
of use, and continuity while moving the camera. FENeRF [Sun et al.
2021] has been proposed based on 𝜋-GAN to generate a volume
where facial semantics and texture are spatially aligned. However,
FENeRF requires time-consuming and resource-hungry retraining
for enabling local editing.

On the other hand, in NeRF, to control the appearance indepen-
dently of the geometry, one approach is to directly incorporate the
latent code of appearance into a separated branch of color [Jang and
Agapito 2021; Liu et al. 2021; Niemeyer and Geiger 2021; Schwarz
et al. 2020; Sun et al. 2021]. This idea is proven to be effective
and mostly applied in the coordinate-based MLP representation.
Recently, many new representations have been proposed and par-
ticularly, tri-plane-based radiance fields proposed in [2021a] feature
finer details, better quality, and faster inference than the coordinate-
based MLP representation. However, despite the advantages of the
tri-plane representation, how to decouple geometry and appear-
ance in it while preserving its characteristics remains unexplored.
Trivially extending methods working on the coordinate-based MLP

representation to it might abandon its efficient tri-plane represen-
tation. Actually, there are abundant 2D style control methods (e.g.,
[Chen et al. 2022c; Huang and Belongie 2017]) , but their extension
to 3D generation tasks remains an open problem.

In this work, we introduce NeRFFaceEditing, which relies on the
pretrained tri-plane representation [Chan et al. 2021a] to address
the above-mentioned limitations and aims to achieve better frontal-
and side-view editing and disentanglement of geometry and ap-
pearance. In order to disentangle geometry and appearance in the
tri-plane representation and inspired by adaptive instance normal-
ization (AdaIN) [Huang and Belongie 2017], we use the mean and
variance of tri-planes to represent the high-level spatially-invariant
appearance of its corresponding spatially-variant facial volume.
Moreover, we take the merits of the idea that colors are predicted
through an additional separated branch and thus split the original
decoder in EG3D into a geometry decoder to handle the geometry
and an appearance decoder to handle the appearance. The geometry
decoder takes in features sampled from the normalized tri-plane,
while the appearance decoder takes in features sampled from the
denormalized tri-plane, so that the geometry of the facial volume
will not be affected when the tri-plane is stylized differently for
different appearance. We choose a generated 3D-continuous se-
mantic mask as an intermediary to enable geometry editing. The
key enabler of effective editing is to make the geometry decoder
directly predict both the semantic labels and densities to align the
facial volume with the semantic mask volume.

To enhance disentanglement, we design a training strategy. We
utilize a histogram color loss [Afifi et al. 2021] to constrain rendered
images with the same appearance but different geometry to be
similar in terms of color distribution for each facial component.

As shown in Fig. 1, NeRFFaceEditing allows disentangled con-
trol of geometry and appearance for better frontal- and side-view
editing, enabled by the shared geometry space between the facial
volume and the semantic mask volumes. Qualitative and quantita-
tive experiments show that our approach outperforms state-of-the-
art methods for various applications. To facilitate further research
studies, we will release our code.

The main contributions are summarized as follows:

• Wepropose anAdaIN-basedmethod and a design of decoders
to decouple geometry and appearance embedded in the tri-
plane and enable intuitive geometry editing by semantic
masks.

• We propose a fine-tuning method to facilitate disentangle-
ment by promoting similarities in terms of color distribution
for each facial component separately in rendered images
with the same appearance but different geometry.

• Our method achieves state-of-the-art 3D-aware frontal- and
side-view editing based on semantic masks as well as the
disentanglement of geometry and appearance proven by
extensive experiments and comparisons.

2 RELATEDWORK
Our work is closely related to several topics, including disentan-
gled neural implicit representations, 3D-aware neural face image
synthesis, and neural face image editing.
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Figure 2: An overview of our framework. Our pipeline leverages the pretrained tri-plane generator to synthesize feature
images. The generated feature images are then decomposed into normalized tri-planes and appearance features (a) 𝐹 (𝑎)

app through
reshaping and normalization. The geometry features sampled from the normalized tri-planes are passed into a geometry
decoder to output densities 𝜎 and semantic labels s, which together generate a semantic mask volume that 2D semantic masks
are projected from. The normalized tri-planes, together with appearance features (a) 𝐹 (𝑎)

app and appearance features (b) 𝐹 (𝑏)
app, are

passed into the Controllable Appearance Module (CAM) to composite the denormalized tri-planes (a) (not shown in the figure
for brevity) and (b), respectively. Features sampled from the denormalized tri-planes (a) and (b) are then passed into the same
appearance decoder to output color features c in the CAM. These color features together with the same densities 𝜎 are then
processed independently by a neural volume renderer to project their corresponding face volumes (a) and (b) into 2D feature
images.

2.1 Disentangled Neural Implicit
Representations

Neural implicit scene representation is an emerging area of study,
and is originally modelled as an MLP mapping from positional-
encoded coordinates to densities and colors for volume rendering.
Recent developments propose to use alternative representations,
including hashing tables [Müller et al. 2022], octrees [Yu et al. 2021],
voxels [Sara Fridovich-Keil and Alex Yu et al. 2022], tri-planes
[Chan et al. 2021a], etc. These methods feature faster inference and
improved expressive power.

Given a dataset of single-view 2D facial images, to have a disen-
tangled control of geometry and appearance, one option is to embed
separated latent codes for geometry and appearance into genera-
tion (e.g., [Chan et al. 2021b; Niemeyer and Geiger 2021; Schwarz
et al. 2020; Xu et al. 2021]), which, however, does not directly pro-
vide intuitive geometry manipulation. Our solution is to utilize
the tri-plane representation, whose geometry and appearance are
decoupled through an AdaIN-based method and the original de-
coder in EG3D is split into an appearance decoder and a geometry
decoder. The geometry decoder models both the facial volume and
the semantic mask volume, with the latter providing an editing in-
terface. Our solution further enhances the disentanglement through
a training strategy.

2.2 3D-aware Neural Face Image Synthesis
In recent years, generative models like Generative Adversarial Net-
works (GANs) [Goodfellow et al. 2014] combined with implicit
radiance fields [Mildenhall et al. 2020] have been explored to gen-
erate 3D-consistent faces from 2D images only. To generate high-
resolution images, a group of methods [Gu et al. 2021; Niemeyer and

Geiger 2021; Zhou et al. 2021] first output low-resolution features
and then pass them into 2D convolution. However, they suffer from
the low-quality geometry representations. Thus, alternative models
and representations (e.g., [Chan et al. 2021a; Deng et al. 2022; Or-El
et al. 2021]) have also been explored. These models can synthesize
highly realistic images with geometrically-consistent fine details.

However, all the above methods cannot control geometry in
an intuitive manner. In order to address this issue, many works
have employed the method of embedding explicit control into the
generation process. For example, CG-NeRF [Jo et al. 2021] intro-
duces various soft conditions, including sketches as input. FENeRF
[Sun et al. 2021] involves semantic masks in the generation pro-
cess as output. However, the quality of their editing results still
has room for improvement and a retraining is unavoidable. By
comparison, Sem2NeRF [Chen et al. 2022b] encodes single-view
semantic masks into the latent space of pretrained 3D GANs. Lin
et al. [2022] introduce the work [Abdal et al. 2021] on pretrained
2D GANs into 3D GANs to edit the attributes of generated results
semantically. IDE-3D [Sun et al. 2022], which is concurrent with
our work, achieves interactive high-quality geometry editing and
disentangled appearance control. It designs an encoder to facilitate
the editing and splits the original tri-planes into semantic tri-planes
and texture tri-planes for disentanglement. In contrast, our method
extends the pretrained tri-plane-based generative model with our
unique design of decoders and operations on tri-planes for enabling
intuitive editing and decoupling of geometry and appearance. Our
method achieves better results with another training strategy.
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2.3 Neural Face Image Editing
With the introduction of GANs, various 2D-based methods and
3D-based methods have been proposed to realize face image editing
under different conditions. Here, we mainly review the approaches
based on 3D generative adversarial neural radiance fields.

In 3D GANs, some methods (e.g., [Athar et al. 2021; Gafni et al.
2021; Hong et al. 2021; Zheng et al. 2022; Zhuang et al. 2021]) bor-
row latent codes for identity, expression, etc. from 3DMM (e.g. [Li
et al. 2017a; Tran and Liu 2018]). Some other methods (e.g., [Guo
et al. 2021; Kania et al. 2022; Park et al. 2020, 2021; Wang et al. 2021])
use learned embeddings to capture dynamic facial actions, which,
however, are hard to interpret except for the correspondence with
extra information, such as audio or using an attribute regressor.
FENeRF [Sun et al. 2021] incorporates semantic masks into condi-
tional NeRF [Chan et al. 2021b; Schwarz et al. 2020] to generate
editing interfaces. Similarly, our work also utilizes semantic mask
for intuitive editing with a 3D GAN as the backbone. However, our
method carefully preserves its original generation power and speed
without requiring retraining, and enhances the disentanglement of
geometry and appearance through an additional training strategy.

3 METHODOLOGY
In this section, we formalize the structure of our proposed disen-
tanglement framework in detail, which operates on the tri-plane
representation [Chan et al. 2021a]. To decouple geometry and ap-
pearance, inspired by AdaIN [Huang and Belongie 2017], we de-
compose the tri-plane of each sample into the spatially-invariant
abstract appearance features, namely the mean and variance of
the tri-plane, and the normalized tri-plane where spatially-variant
specific geometry features are sampled from (as shown in Fig. 2).
Furthermore, we split the original decoder in EG3D into an appear-
ance decoder for predicting color features and a geometry decoder
for predicting densities and semantic labels to enable semantic-
mask guided editing (Sec. 3.2). To further ensure disentanglement,
we explicitly regularize rendered images with the same appearance
but different geometry to be similar in terms of color distribution
for each facial component guided by the generated semantic masks
(Sec. 3.3). The editing during inference will be explained in Sec. 3.4.

3.1 Preliminaries
Since our approach is built on the tri-plane representation proposed
in EG3D, it is necessary to briefly summarize EG3D’s pipeline of
generation here. Three planes (tri-plane for short) (𝑝𝑥𝑦 , 𝑝𝑥𝑧 , 𝑝𝑦𝑧 )
are generated by StyleGAN2 [Karras et al. 2020] 𝑓 from an interme-
diate latent code𝑤 ∈𝑊 . For each queried 3D position x = (𝑥,𝑦, 𝑧),
its corresponding feature vector (F𝑥𝑦, F𝑥𝑧 , F𝑦𝑧) is retrieved by pro-
jecting x onto each of the three planes via bilinear interpolation,
and is further aggregated by summation to form final features. An
additional light-weight decoder network, implemented as a small
MLP Φ, interprets the aggregated 3D features F(x) as color features
c(x) and densities 𝜎 (x). These quantities are rendered into feature
images 𝐼𝐹 , whose first three channels are extracted as rendered
images 𝐼𝑅𝐺𝐵 in a low resolution using volume rendering [Max
1995; Mildenhall et al. 2020]. The feature images 𝐼𝐹 are later passed
into a super-resolution module, which generates high-resolution
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Figure 3: Illustration of promoting similarities in terms of
color distribution for face images with the same appearance
but different geometry. For generated face images (a) and
(b) at a certain pose, their similarity is measured by the dis-
tance between histogram features for each facial component,
including hair, eye, lip, skin, etc., separately, each of which
is selected through the corresponding generated semantic
masks. In this diagram, we take the hair as an example.

images 𝐼+
𝑅𝐺𝐵

. The details of the super-resolution module and the
discriminator are omitted for simplicity since they are not our focus.

3.2 Disentanglement and Mask-guided Editing
Aiming at decoupling the geometry and appearance, one possible
way is to use the cyclic swapping loss in [Chen et al. 2021]. Even
though it works well in 2D frontal images, it cannot be trivially
utilized in the 3D-aware facial image generation since there does
not exist a consistent mapping from rendered images at any pose
back to their unique appearance features.

It has been known that convolutional feature statistics can cap-
ture the style of 2D images [Gatys et al. 2016; Huang and Belongie
2017; Li and Wand 2016; Li et al. 2017b]. However, how to apply
this idea to 3D-aware image generation is challenging, especially in
the context of neural radiance fields where convolutional features
usually do not exist. But in the case of the tri-plane representation,
we are able to extend the conclusion of AdaIN [Huang and Belongie
2017] (i.e., the mean and variance can reflect the style of a 2D feature
map) to tri-planes, which are practically multi-channel convolu-
tional features. Thus, we assume that the mean and variance of
the tri-plane F𝑎𝑝𝑝 reflect its style, which represents the high-level
appearance of the corresponding facial volume. The obvious benefit
is that for a specific latent code𝑤 , its representation of appearance
is the same for any pose 𝑃 .

As in AdaIN, the style of the tri-plane is specifically controlled
by the normalization and denormalization operations. We define
the normalization process of the tri-plane and the denormalization
process with any F̂𝑎𝑝𝑝 respectively as:

𝑝𝑖 =
𝑝𝑖 − 𝜇𝑖

𝜎𝑖
, 𝑝 ′𝑖 = 𝜎𝑖𝑝𝑖 + 𝜇̂𝑖 , (1)

where 𝑖 ∈ {𝑥𝑦, 𝑥𝑧,𝑦𝑧}, 𝜇, 𝜎 denote the mean and the variance.
Based on the assumption that the same geometry can have var-

ious different appearances and taking the merits of the idea that
colors are predicted through a separated branch, we split the orig-
inal decoder Φ into a geometry decoder Ψgeo and an appearance
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Figure 4: Style transfer. The geometry inputs (first column)
are the same as the appearance inputs (first row). Each face
image is generated with the the geometry reference sample
in the same row and the appearance reference sample in the
same column.

decoder Ψapp. The former takes in the geometry features sampled
from the normalized tri-plane as F(x) and the latter takes in fea-
tures sampled from the denormalized tri-plane as F′(x). We name
the process of denormalizing normalized tri-planes with appear-
ance features and decoding features sampled from denormalized
tri-planes into color features as Controllable Appearance Module
(CAM), as shown in Fig. 2. Thus, when the CAM is fed with the
same normalized tri-planes but different appearance features, the
appearance of facial volumes is changed while the geometry is
unaffected.

Moreover, inspired by EditGAN [Ling et al. 2021], we enable
mask-guided editing in the pretrained uneditable tri-plane repre-
sentation based on the following key insight: information is con-
centrated in the sampled features F(x) from the tri-plane, and such
information concentration is similar to the bottleneck in an encoder-
decoder architecture. A lightweight decoder is responsible for trans-
forming features in an abstract domain to various specific domains,
such as densities and colors, as well as other domains like semantic
labels s. Thus, we explicitly require the geometry decoder Ψgeo to
predict both densities 𝜎 and semantic labels. The above pipeline
can be summarized as:

(𝜎 (x), s(x)) = Ψgeo (F(x)), (c(x)) = Ψapp (F′(x)), (2)

However, training another separated decoder which outputs
semantic labels s only fails to edit precisely through GAN inversion
(see the "Baseline3" of part (a) in Fig. 6). We speculate that in the
case of separated branches for densities 𝜎 and semantic labels s,
the spaces between facial volumes and semantic masks are not
shared or aligned and the changes in the space of semantic masks
fail to propagate to the space of facial volume well. The connection
between the space of facial volumes and the space of semanticmasks
is established through this unified decoder. Besides, empirically, we
find that disentanglement is beneficial for effective editing of the
hair, nose, etc. (see the "Baseline1" of part (a) of Fig. 6).

3.3 Training Process
To further improve the disentanglement, we design a specific train-
ing strategy. For simplicity, we exemplify the training with the case

Source Mask Modified Free-viewed Editing

+G
la
ss

+N
os
e

Figure 5: One- and multi-label editing. Our method enables
effective and intuitive editing guided by semantic masks at
frontal- and side-views. We manipulate facial attributes on
the semantic map and use the optimization process described
in Sec. 3.4 to obtain the modified free-view portraits.

of low-resolution image generation. The case of high-resolution
image generation only needs an additional reconstruction loss (see
the supplement materials for details). At each step, we first sample
a latent code𝑤 . Then, we carefully design the following losses to
train our decoders Ψgeo and Ψapp and fine-tune the original tri-
plane generator 𝑓 as 𝑓 . We denote the original generation process
as 𝐺 (𝑤) and our new 3D-aware and disentangled generation pro-
cess as 𝐺 (𝑤, Fapp) . The rendering pose is sampled from the pose
distribution of face images in the dataset and omitted in all the
following equations for brevity.

Reconstruction Loss. To ensure high quality and diverse generation,
we need to match the original generated distribution. Specifically,
the training procedure is defined as:

(𝐼𝑅𝐺𝐵, 𝑑) = 𝐺 (𝑤), (𝐼 ′𝑅𝐺𝐵, 𝑑
′, 𝑆 ′) = 𝐺 (𝑤, F𝑎𝑝𝑝 (𝑤)),

L𝑅𝑒𝑐𝑜𝑛 = 𝜆1 | |𝐼𝑅𝐺𝐵 − 𝐼 ′𝑅𝐺𝐵 | | + 𝜆2L𝑉𝐺𝐺 (𝐼𝑅𝐺𝐵, 𝐼
′
𝑅𝐺𝐵)

+ 𝜆3𝐸 (Θ(𝐼𝑅𝐺𝐵), 𝑆 ′) + 𝜆4 | |𝑑 − 𝑑 ′ | |,
(3)

where L𝑉𝐺𝐺 is the perceptual loss introduced in [Zhang et al.
2018], which measures the visual similarity between the generated
images and the input images by a pretrained VGG-19 model, 𝑑 and
𝑑 ′ respectively represent the ground-truth depth image and the
reconstructed depth image extracted when performing the volume
rendering following [Mildenhall et al. 2020], and 𝐸 denotes the pixel-
wise cross-entropy loss.Θ(·) stands for an off-the-shelf facial image
segmentation module [Yu et al. 2018] and 𝑆 ′ represents predicted
semantic masks by the geometry decoder Ψgeo. In our experiments,
we empirically set 𝜆1 = 15, 𝜆2 = 15, 𝜆3 = 1, 𝜆4 = 5.

Part-based Histogram Loss. To enhance disentanglement explicitly,
we require rendered images to be similar in terms of color distri-
bution including the background when the CAM is fed with the
same appearance features F̂app but different normalized tri-planes.
For this purpose, we utilize the histogram loss introduced in [Afifi
et al. 2021], which measures the similarity among histograms repre-
senting color distributions. However, we observe that its generated
results generally transfer the style but fail to capture the style in
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detail, especially for hairs (see the "Baseline3" of part (b) in Fig. 6).
Thus, we enhance this histogram loss by performing it for each
label separately guided by semantic masks (as illustrated in Fig. 3).

Specifically, we sample a batch of latent codes𝑤 (𝑤 (1) ,𝑤 (2) , ...,𝑤 (𝐵) )
and apply the appearance feature F̂app of one of the latent codes
𝑤 (𝑘) to the normalized tri-planes generated by other latent codes
for the purpose of same appearance but different geometry. As-
suming that there are 𝑁 classes, we define the training procedure
as:

(𝐼̂𝑅𝐺𝐵, 𝑑, 𝑆) = 𝐺 (𝑤, F̂app)

L𝑆𝑖𝑚 = 𝜆5

𝑁∑︁
𝑖=1

𝑤𝑖

𝐵∑︁
𝑗=1

Lℎ (H(𝐼 ( 𝑗)
𝑅𝐺𝐵

⊙ 𝑀
( 𝑗)
𝑖

),H(𝐼 (𝑘)
𝑅𝐺𝐵

⊙ 𝑀
(𝑘)
𝑖

)),

(4)

where
∑𝑁
𝑖=1𝑤𝑖 = 1, H(·) denotes the extraction of histogram fea-

tures from images, Lℎ stands for the distance among histogram
features, 𝐼𝑅𝐺𝐵 represents rendered images from 𝐹app,𝑀𝑖 denotes
the mask for label 𝑖 in the semantic masks 𝑆 corresponding to 𝐼𝑅𝐺𝐵 ,
and 𝐵 represents the batch size. In our experiments, we empirically
set 𝜆5 = 15, 𝐵 = 3, 𝑘 = 1.

Our final objective L is simply the sum of the above two losses
(as we have already weighted each term in these losses): L =

L𝑅𝑒𝑐𝑜𝑛 +L𝑆𝑖𝑚 . Minimizing L will lead to the optimization of three
networks: Ψgeo,Ψapp, 𝑓 .

3.4 Editing during Inference
We can edit samples I at a certain pose generated by a latent code
𝑤 ∈𝑊 space or real images. To edit given real face images I′, we
first invert the images into theW space as𝑤 with pivotal tuning
inversion [Roich et al. 2021] following EG3D, denoted as I. In all
the editing cases, a user-edited semantic mask 𝑆 is assumed to be
available given an original semantic mask 𝑆 .

Formally, we are seeking an editing vector 𝛿𝑤+ ∈ W+ such
that (Iedited, Sedited) = 𝐺 ′(𝑤 + 𝛿𝑤+, Fapp (𝑤)), in which Iedited is
generated by the optimized latent code and Sedited approximates Ŝ.
Note that the appearance feature is kept fixed during optimization
to keep the appearance unchanged. As in EditGAN [Ling et al. 2021],
we first define a region of interest 𝑟 within which we expect the
image to change due to a certain edit. A sequence of such edits can
be achieved step by step and is illustrated in the supplementary.

To optimize 𝛿𝑤+ so that Sedited approximates 𝑆 while preserving
regions outside of 𝑟 untouched, we use the following losses as the
minimization targets:

Lediting (𝛿𝑤+) = LVGG (Iedited ⊙ (1 − 𝑟 ), I ⊙ (1 − 𝑟 ))
+ LMSE (Iedited ⊙ (1 − 𝑟 ), I ⊙ (1 − 𝑟 )) + 𝐸 (Sedited, Ŝ), (5)

where LMSE denotes the mean square error.
The only "learnable" variable is the editing vector 𝛿𝑤+ and all the

neural networks are kept fixed. Note that as in EditGAN, there is a
certain amount of ambiguity in how the segmentation modification
is realized in the RGB output.
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Figure 6: The results of the ablation study. (a) shows the
ablation study for editing effects, while (b) shows the ablation
study for style transfer.

4 EXPERIMENTS
In this section, we show our experimental setup and discuss the re-
sults of our experiments. Results from comparison with alternative
methods, ablation study, and user study all show the effectiveness
of our method and its superiority to the alternative approaches.

Implementation Details. Our decoder is implemented as a light-
weight MLP with one hidden layer of 64 units. We use the Adam
[Kingma and Ba 2015] optimizer with 𝛽1 = 0, 𝛽2 = 0.99 and the
learning rate is fixed to 0.002 during fine-tuning. The fine-tuning
takes 96 hours on 1 Tesla V100 GPU. NeRFFaceEditing is imple-
mented in PyTorch [Paszke et al. 2019] and Jittor [Hu et al. 2020].

4.1 Results and Evaluations
In terms of rendering speed at inference time, our method achieves
nearly real-time framerates at 5122 resolution. On a single Tesla
V100 GPU, we could render 20 images per second without tri-plane
caching or 32 with tri-plane caching. Besides, we make comparisons
by inverting real images in the wild with SofGAN [Chen et al.
2022a], which is also a view-consistent method.

Qualitative results. Our framework can generate semantic masks as
well as realistic images from a certain pose. Thus, it can be used to
edit the original facial volume through GAN inversion (described
in Sec. 3.4), as shown in Fig. 5 (please see the supplementary ma-
terials for more results). For comparison, we perform editing on
the real images as shown in Fig. 7(a). SofGAN achieves reasonable
results at original poses, but disturbs the identity at other poses
and fails to produce facial details (e.g., in the mouth and eyes) natu-
rally. In contrast, our method outperforms SofGAN in both identity
preservation and editing fidelity.

As for style transfer, our framework can disentangle the geom-
etry and appearance of a facial volume and generate a new facial
volume by swapping geometry and/or appearance. Thus, it can be
used for 3D-aware style transfer, as shown in Fig. 4 (please refer to
the supplementary materials for more results). For comparison, we
perform style transfer between two real images. From Fig. 7(b), it
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Figure 7: Comparisons with SofGAN [Chen et al. 2022a] in
terms of editing (a) and style transfer (b). Original images
courtesy of Thomas Rodenbücher, Brett Morrison, United
Way of Central Ohio, Colin Brown, Krists Luhaers and Mck-
innon de Kuyper.

is clear that during style transfer, SofGAN has obvious artifacts, es-
pecially for poses different from the original poses. In contrast, our
method not only successfully transfers the style but also preserves
the geometry accurately.

Quantitative evaluations. We measure image quality with Frechet
Inception Distance (FID) [Heusel et al. 2017] on the FFHQ dataset
[Karras et al. 2019]. Before fine-tuning, the FID of our implemented
EG3D is 9.7, while after fine-tuning the FID increases to 16.0. Note
that our fine-tuning needs less strict hardware requirements and
shortened training time, at the cost of slightly degraded quality.

4.2 Ablation Study
We conduct ablation studies to justify the necessity of each compo-
nent in our framework.

For the ablation study of editing, we show the edited results
of "Baseline1", which uses a decoder to predict densities and se-
mantic labels from the original tri-planes. The color features are
reused from the original fixed decoder Φ. Thus, the geometry and
appearance are not disentangled in this case. We also test "Base-
line2", in which we use an off-the-shelf 2D segmentation module
[Yu et al. 2018] to parse generated images into semantic masks for
performing edits. Thus, the editing by optimization is performed
on the fixed EG3D directly. Besides, we also show the results of
"Baseline3", for which we train a decoder to predict semantic labels
from the original tri-planes, while reusing densities and color fea-
tures from the fixed original decoder Φ. Thus the semantic mask
volume is not aligned with the facial volume. From Fig. 6(a), it
is clear that without the disentanglement ("Baseline1"), with the
off-the-shelf segmentation module ("Baseline2"), or without the
alignment between geometry and semantic masks ("Baseline3"),
the editing effects fail to be consistent with the modified semantic
masks, such as the inaccurate hair length and incomplete glasses
in the first and second rows.

For the ablation study of style transfer, we show the results by ap-
plying style-mixing (denoted as "Baseline1"), since the latent codes

SofGAN
Ours

（a） （b）

Single View

Mutiple
Views

FaithfulnessRetention

Overall

Single View

Mutiple
Views

ContentStyle

Overall

Figure 8: Radar plots of the average quality and faithful-
ness perception scores in terms of the similarity between
the generated faces and the reference faces in appearance
and geometry respectively, as well as the visual realism of
the generated faces, in the single and multiple views. (a) The
comparison of editing with two methods: SofGAN [Chen
et al. 2022a] and ours. (b). the evaluation of style transfer
with SofGAN and our method.

of high-resolution blocks roughly control the appearance (details
can be found in the supplementary). Additionally, we show the
results of the generator decoupled by our method but without LSim
(denoted as "Baseline2"). We also give results with the histogram
loss for a whole image instead of each label (denoted as "Baseline3").
From the part (b) of Fig. 6, it is clear that with the style-mixing
("Baseline1") or without LSim ("Baseline2"), the transferred style
is inconsistent with the appearance reference. Furthermore, when
the histogram color loss is calculated for the whole image, Base-
line3 generally captures the style but is not accurate at details. For
example, the color of background diffuses to the region of hair.

4.3 Perception Study
To evaluate the visual quality and the faithfulness of synthesized
faces (i.e., the similarity to the geometry and appearance images),
we conducted perception studies.

Specifically, we evaluate the performance of SofGAN and our
method for editing and style transfer using two respective online
questionnaires, in which each question is rated in a five-point Lik-
ert scale (1=strongly negative to 5=strongly positive). In the first
questionnaire, we showed the original image and semantic mask,
the modified semantic mask and results in the original view and
multiple other views by the two methods, placed side by side in
a random order to avoid bias. Each participant was asked to eval-
uate 15 examples according to five criteria: the visual quality of
generated face images in the original view, the visual quality of
generated face images in other views, faithfulness to the changed
regions, retention to the unchanged regions, and overall effects. In
total, 25 participants (7 female, 18 male, aged from 18 to 32, with
normal vision) without any special experience participated in this
study and we got 25 (participants) × 75 (questions) = 1875 subjec-
tive evaluations for each method. We draw a radar plot (see Fig. 8
(a)) in aspects of “Single View”, “Multiple Views”, “Faithfulness”,
“Retention”, and “Overall” corresponding to the above-mentioned
five criteria respectively. We found significant effects of our method
for all five criteria based on scores in order: 4.32, 4.23, 4.23, 4.26
and 4.31 over 3.44, 2.60, 3.04, 2.92, 2.75 of SofGAN.

In the second questionnaire, we presented users with the ge-
ometry and the appearance reference images, and the results by
SofGAN and ours in the original view and multiple other views.
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Geo. App. Recon. Result Free-viewed Results

Figure 9: A failure case. The red rectangles show the artifacts
such as shadows or on-the-background neck textures. The
green rectangles show the lost details such as the hair fringe
through PTI. Original images courtesy of pedronchi and Jane
Gross.

Each participant was asked to evaluate 15 examples according to
five criteria: the visual quality of synthesized face images in the
original view, the visual quality of synthesized face images in other
views, the maintenance of the geometry reference, the similarity
to the appearance reference, and overall effects. In total, we got
25 (participants same to the first questionnaire) × 75 (questions) =
1875 subjective evaluations for each method. Fig. 8 (b) shows the
statistics of these two methods, in which “Single View”, “Multiple
Views”, “Content”, “Style”, and “Overall” correspond to the above-
mentioned five criteria respectively. We get the values 4.45, 4.52,
4.48, 4.30 and 4.44 compared to 2.33, 2.07, 2.16, 2.40, 2.09 of SofGAN.
It is clear that our method achieved a significant improvement over
SofGAN.

We have done the analysis of one-way ANOVA tests and paired
t-tests for the two questionnaires with 𝑝 < 0.001 for all the tests,
which confirmed our method significantly outperforms SofGAN.
For more detail, please refer to the supplementary materials.

5 CONCLUSION, LIMITATIONS AND FUTURE
WORK

As the training for high-quality 3D-aware GANs is more and more
time-consuming and resource-hungry, approaches for intuitive con-
trolling of geometry and appearance based on pretrained 3D GANs
should receive more attention. We believe that our method, a struc-
tured disentanglement framework based on the tri-plane represen-
tation, is a step forward in this direction, as we demonstrated our
method can effectively edit the geometry through semantic masks
and perform style transfer with fine-tuning while preserving the
high speed and visual quality of the backbone. In the future, we
are interested in implementing our framework based on the official
EG3D and evaluating the impact of such a change.

One limitation of this work is that due to the generation quality
and inversion approach of our model, our method has artifacts such
as shadows and some “billboards” effects at relatively large angles
and fails to reach faithful and stereoscopic reconstruction (see Fig.
9). We speculate that they may come from our specific training pro-
cess. Besides, in Fig. 9, rendered images are sometimes not realistic
enough when performing style transfer. We attribute it to light and
shadow, which our method cannot handle well. As future work, it
would be useful to explore disentanglement of other attributes such
as lighting to make our method more general. Besides, semantic
masks have inevitable ambiguities while performing optimization
on the single view, such as failing to control the gender or holding
unseen parts consistent.

Our method is capable of converting a real portrait image to its
3D avatar and even possibly a talking head through editing guided
by semantic masks. Moreover, we can change its appearance while
keeping its geometry unchanged. The editing may disturb the gen-
der, and the style transfer may disturb the ethics of the original
portrait. Therefore misusing our system potentially poses a societal
threat, including ethics issues and fooling facial recognition systems.
We do not condone using our work with the intent of spreading
misinformation or tarnishing reputation. Thus, one should be care-
ful to deploy this technology. However, in case of misusing, existing
methods (e.g., [Dang et al. 2020]) for detecting fake faces might
alleviate this concern.
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