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Abstract

In recent years guider-follower approaches show a promising solution to the challenging problem of last-mile or indoor pedes-
trian navigation without micro-maps or indoor floor plans for path planning. However, the success of such guider-follower
approaches is highly dependent on a set of manually and carefully chosen image or video checkpoints. This selection process is
tedious and error-prone. To address this issue, we first conduct a pilot study to understand how users as guiders select critical
checkpoints from a video recorded while walking along a route, leading to a set of criteria for automatic checkpoint selection.
By using these criteria, including visibility, stairs, and clearness, we then implement this automation process. The key behind
our technique is a lightweight, effective algorithm using left-hand-side and right-hand-side objects for path occlusion detec-
tion, which benefits both automatic checkpoint selection and occlusion-aware path annotation on selected image checkpoints.
Our experimental results show that our automatic checkpoint selection method works well in different navigation scenarios.
The quality of automatically selected checkpoints is comparable to that of manually selected ones and higher than that of
checkpoints by alternative automatic methods.

CCS Concepts
• Computing methodologies → Video summarization;

1. Introduction

Pedestrian navigation is vital in our daily life, especially when we
visit unfamiliar sites. Outdoor pedestrian navigation is more or less
solved since digital maps are often available. However, last-mile
(e.g., outdoor to indoor) or indoor pedestrian navigation is still
challenging mainly due to the lack of micro-maps for path plan-
ning.

To address this issue, a possible solution is guider-follower nav-
igation, for which multiple systems have been proposed [KO10,
MS07, SSHC15, YWY∗16, WSS∗16, RPZ∗17, WGL∗18]. In such
systems, a guider first walks a path and records it for followers
to follow. A straightforward way is to rely on automatic position-
ing and then display the sequence of positions on a map for navi-
gation. However, automatic positioning is not always reliable, es-
pecially for indoor scenarios. Existing works also show a posi-
tive impact of using image- or video-checkpoints on navigation
[Kol04, BS06, HVC∗08, MHB11, WARG13, WBRM14, RPZ∗17].
However, the guider needs to annotate such visual checkpoints
manually. Manual selection of checkpoints is time-consuming:
the guide needs to walk along the entire path or watch the entire

† Corresponding author.

recorded video (which can be several minutes or even hours long
for navigation), possibly multiple times for selecting checkpoints.
Thus, an automatic checkpoint selection system is preferred. Re-
cently, Roy et al. [RPZ∗17] studied a set of criteria on how to
select the checkpoints manually. It motivates us to implement an
automatic system using such criteria.

In this paper, we study the problem of automatic image check-
point selection from a single video recorded while a guider is walk-
ing along a route, i.e., walking video (Figure 1). This system can
help the guider automatically select checkpoints for the existing
guider-and-follower systems [RPZ∗17]. On the other hand, it also
allows the guider to create easy-to-access and printable guidance
information using an ordinary smartphone. Followers can use the
generated guidance information without specific display devices
(e.g., smartglasses). This is particularly beneficial when the guid-
ance needs to be provided to multiple followers, such as attendees
for an event, since there is no guarantee that every follower has the
required equipment.

To some extent, our goal is analogous to the works of keyframe
extraction from videos [DKD98, CSJ15, ZCSG16, KVGUH18,
DM18, CZDZ18, MJC95, Sha95, HK17]. A key difference is that
we need to extract the “keyframes” based on the path of walking,
instead of video content. To understand how users as guiders man-
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Figure 1: Given a video recorded by a guider while walking a path, our algorithm leverages multiple user-elicited criteria (including visi-
bility, path occlusion, distance) to select a compact set of critical image checkpoints automatically. The selected checkpoints with occlusion-
aware path annotation can be used to guide followers to navigate the same path.

ually select critical checkpoints from videos, we study the criteria
provided by Roy et al. [RPZ∗17]. However, their criteria are some-
what subjective and not well-defined for a computational method.
We thus conduct a small-scale pilot study to elicit additional crite-
ria for checkpoint selection and the reasoning behinds from users,
and finally refine a set of computational criteria.

We observe that a walking path’s visibility is one of the most
critical criteria to automate the checkpoint selection process. To
this end, we first estimate the walking path by using existing si-
multaneous localization and mapping (SLAM) methods [LM13,
MUS15, YYR17, QLS18]. We then detect path occlusions by a
novel, lightweight algorithm. The key idea of our algorithm is to
determine left-hand-side (LHS) objects and right-hand-side (RHS)
objects concerning the path in the images. We believe that this path
occlusion detection idea can provide an exciting insight as a new
feature of geometry clue for the future works. The path occlusion
also helps generate occlusion-aware path annotation (e.g., arrows),
which can greatly improve the fidelity of the path information in-
side the checkpoint images. Our selected image checkpoints with
path annotation can be presented in a printed format or used in an
interactive guider-and-follower navigation system [RPZ∗17].

For evaluation, we have asked users as guiders to interactively
confirm our automatically selected checkpoints. Our experimental
results show that our method works well in different navigation sce-
narios. The quality of automatically selected checkpoints is compa-
rable to that of manually selected ones, and better than that of alter-
native automatic solutions including video summarization [YL95].

Here, we summarize our contributions in this paper: 1) Refining
a set of checkpoint selection criteria from HCI and implementing
them for a CG problem; 2) The idea of using LHS and RHS ob-
jects in a walking video for a lightweight and effective path occlu-
sion detection algorithm; 3) The first algorithm for automatic image
checkpoint selection for guider-follower pedestrian navigation.

After reviewing the literature in Section 2, we describe our pi-
lot study for our refined checkpoint selection criteria in Section 3
and our checkpoint section system in Section 4. Section 4.2 is one
of our major contributions, the path occlusion detection algorithm.
Finally, we present the results in Section 5. Figure 2 shows the flow
of our system and their corresponding sections in this paper.

Figure 2: Our system and their corresponding sections (Numbers
in the blanket).

2. Related Work

Our work is related to three different areas, including pedestrian
navigation, keyframe extraction, and occlusion detection.

Pedestrian Navigation. The pedestrian navigation problems
have been extensively studied in the research communities. A full
review of this topic is beyond the scope of this paper. Please refer
to insightful surveys [FABF13, BGVGT∗17, DP17] for more de-
tails. Many navigation systems use image checkpoints for naviga-
tion [BS06, HVC∗08, HGL∗09, CW10] and many of them require
reasonably accurate localization and the availability of complete
digital maps. However, while multiple research communities have
extensively studied indoor positioning [XYZ∗15, YWL12], effec-
tive indoor navigation is still mostly unavailable in practice. We
are interested in more challenging pedestrian navigation scenarios,
for both indoor and outdoor, without accurate positioning or digital
maps.

Guider-follower or leader-follower approaches aim to address
the navigation problem with insufficient or no map information.
Kameda and Ohta [KO10] allow guiders to use head-mounted cam-
eras to capture walking videos, which are then used by followers to
detect their relative position for navigation through image-based re-
trieval. The follow-up works propose to either use additional infor-
mation (e.g., IMU data [ZSL∗17,WGL∗18], GPS data [WGL∗18],
WiFi-fingerprints [YWY∗16], location-specific features like going
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upstairs/downstairs [SSHC15]), or explore different methods for
followers to interact with the recorded data (e.g., a scrolling method
on smartwatches [WSS∗16], interactive videos with fast video tran-
sitions between image/video checkpoints [RPZ∗17]).

While image/video checkpoints or landmark images play an im-
portant role in many of the above works, guiders need to author the
checkpoints manually. Manual checkpoint specification is tedious
and time-consuming [RPZ∗17]. Our focus is on automatic image
checkpoint selection, which is beneficial to the existing guider-
follower systems.

Keyframe Extraction. Our goal is analogous to the exist-
ing works on keyframe extraction from videos. The problem of
keyframe extraction has been extensively studied in the context
of video summarization [DKD98, CSJ15, ZCSG16, KVGUH18,
DM18, CZDZ18] and scene change detection [MJC95, Sha95,
HK17]. The goal of video summarization, however, is to find a
compact set of images that can well represent as much video con-
tent as possible. Thus they usually perform clustering on the color
histograms or semantic information of video frames, and find the
longest distance in the resulting clusters. Scene change detection
aims to detect abrupt or gradual transitions between shots by mea-
suring the significance of a change in video content. In contrast,
our video analysis is more dependent on the walking path (e.g., its
turning points), instead of the video content itself.

Occlusion Detection. The visibility or occlusion of the walking
path plays an important role in automatic checkpoint selection. A
straightforward solution to detect the occlusion of a path is first to
estimate the depth map of a scene or even perform 3D scene re-
construction, and then check the visibility of the path against the
estimated depth map or 3D scene. However, 3D reconstruction and
depth map reconstruction [CXG∗16, FSG17, DNZ∗17, SSHP17,
HK18, VKB∗18] usually heavy, hard-to-implement, and have var-
ious restrictions (e.g., camera movements or maximum distance).
Since our goal is to detect the occlusion of the walking path in
the video, which is a particular case for occlusion detection, we
design a lightweight, easy-to-implement algorithm tailor-made for
path occlusion detection, without explicitly recovering the 3D in-
formation of a scene.

3. Criteria for Checkpoint Selection

A naïve method for selecting checkpoints is to uniformly and
densely sample images along the walking path in the video. It
might help followers to reach their destination, but easily gener-
ate tons of duplicated frames. The redundant checkpoints require
unnecessary attention from followers, making it difficult for them
to maintain proper situational awareness [RPZ∗17]. On the other
hand, when the guider chooses checkpoints too sparsely, follow-
ers might miss some critical information (e.g., turning points) and
thus feel difficult to follow the path. The authors in Follow-My-
Lead (FML) [RPZ∗17] define four rules for manually positioning
checkpoints: 1) with at least one important feature, 2) able to see
the next checkpoint, 3) one checkpoint before and after each turn,
staircase or door, and 4) no more than 30 seconds between check-
points. However, these rules are somewhat subjective and some of
them are not easy to be implemented into computational systems.

(a) Without arrows

(b) With arrows
Figure 3: An example of turning right. Annotated arrows repre-
sent the motion direction, greatly reducing the number of required
checkpoints. With arrows, the next checkpoint (b-Right) can be sim-
ply selected when the path starts to get occluded in (b-Left).

It is thus necessary to refine these rules for automation systems. To
further study the rules for checkpoint selection, we conduct a pilot
study.

3.1. Pilot Study

We first recorded seven walking videos, while holding a camera
(iPhone in our case) roughly at the height of the shoulders and
facing the camera towards the walking direction. These videos
include different navigation scenarios and have various charac-
teristics, including indoor/outdoor, short/long, with/without stairs,
with/without crowds. Different scenarios may appear in the same
videos at different moments. The combination of these scenarios
forms a large variety of environments in our problem.

Then, we invited five university students to do the study. We
asked the participants to use a simple interface (i.e., for video
browsing, addition and deletion of checkpoints) to interactively ex-
tract a minimum number of checkpoint images which they think are
sufficient for others to navigate along the same paths in the videos.
Once a participant completed a set of checkpoints for a video, we
asked them the justification for each choice.

Unlike FML [RPZ∗17], which required participants to make in-
stant decisions to place checkpoints when following a path only
once, we allowed our participants to familiarize themselves by
browsing the videos back and forth to make a globally more op-
timal set of checkpoints.

Another difference is that the videos shown to the participants
were annotated with directional arrows (e.g., Figure 3 (b)), since,
a previous study [CB05] has shown that directional arrows have a
positive impact on navigation. Therefore, we believed that annota-
tions would influence the choice of checkpoints (Figure 3), and we
decided to include such annotations in the study as we will have
similar annotations in our final results.

Our goal here is to ask the participants to confirm the rules from
the FML work [RPZ∗17], replenish the common reasons behind
the selection, and provide new criteria if any, instead of performing
quantitative analysis. Thus, a large number of participants is not
required.

3.2. Preliminary Study Results

All the participants decided to place a checkpoint directly at the
starting point (possibly with small offset adjustment to place the
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Figure 4: Examples of turns which do not require checkpoints.

projected path in the middle of the frame). They also selected a
checkpoint at the destination, depending on its visibility in its pre-
vious checkpoint image (e.g., not being occluded). It means that a
clear view of the starting direction (Starting) and destination (Des-
tination) is essential for navigation. The FML rules do not include
these two rules.

One interesting finding of our study is all the participants
claimed that they would place one checkpoint before (to indicate
the turning motion) and one after (to show what a follower will see
next) every “turn” to indicate the turning of the path. This is sim-
ilar to one of the rules presented in FML [RPZ∗17]. However, we
found that the actual set of selected checkpoints was not always
consistent with this claim by the participants. In the interview pe-
riod, when we asked the participants to explain why they did not
place checkpoints before or after certain “turns” (e.g., Figure 4),
the participants reconsidered their reasons. Further, they explained
that it was due to visibility. As long as a turn is fully visible in the
previous checkpoint image, it is unnecessary to place a new check-
point before and after this turn. Thus, one possible rule for selecting
checkpoints is after the path becomes invisible (Visibility). This of-
ten occurs after a turn (out of the image) or moving behind another
object (occlusion) like a building wall (Figure 3 (b)). This finding
is different from the turning rule of FML [RPZ∗17].

If the path after a turn was straight but too long, 80% of the par-
ticipants tended to put an additional checkpoint (Long-distance) af-
ter the turn to indicate go straight. The distance threshold is roughly
50m for indoor and 100m for outdoor, which is more or less simi-
lar to the 30s rules from FML (for mainly indoor) when the guider
walk in average walking speed (~1.5m/s). Note that our values may
not be accurate here due to the limited number of subjects, but the
values work well for our results. Since a walking video when climb-
ing stairs was unclear due to the small FOV, 80% of the participants
tended to put checkpoints at the entry and exit of stairs (Stair) to in-
dicate the action. All the participants carefully selected clear frames
(Clearness) instead of blurry frames, which are less informative for
navigation, as checkpoints.

Another finding from our study is that, although all of the par-
ticipants selected almost similar checkpoint images in our provided
videos, 40% of the participants placed extra checkpoints at differ-
ent positions with apparent features. For instance, P2 and P5 placed
an extra checkpoint within a straight road when there was a visually
salient object (e.g., yellow bar, red fire extinguisher) in that frame.
However, they also mentioned that some of such checkpoints might
be used by followers for navigation verification but not vital. Be-
sides, P3 and P4 said that they preferred to place checkpoints when
there were text symbols such as letters and numbers in the image
frames. If there was a one-way route segment (i.e., no other exits),
40% of the participants placed checkpoints inside this segment.
Other participants only set one checkpoint respectively at the en-
try and the exit of the one-way segment. Two participants (P3 and

P4) tended to place certain checkpoints according to the semantic
events, such as “enter the door” and “go into the building.” Simi-
lar to the FML rules, some of the criteria from the participants are
still somewhat subjective, not clearly defined, or hard to be imple-
mented for automation. The implementation of such rules is beyond
the scope of this paper.

3.3. Summary of Criteria

We conclude a few rules that can be implemented into automation
for checkpoint selection, as summarized below.

Starting. A checkpoint is needed near the starting point with
navigation annotation (e.g., the projected path) being visible (e.g.,
centered in the frame).

Destination. If the destination cannot be clearly seen from the
previous checkpoint, we need to add a checkpoint close to the des-
tination.

Visibility. If the path starts to become invisible due to either oc-
clusion or out-of-image, a new checkpoint at the occluded point of
the path is needed to show the path next.

Long-distance. An extra checkpoint is needed if the distance
between the current checkpoint and the next turn is too far away.

Stair. Checkpoints before and after stairs are needed at the entry
and exit of stairs.

Clearness. A checkpoint image should not be blurry and should
contain sufficient visual features for recognition.

4. Automatic Checkpoint Selection

With the refined set of criteria for selecting checkpoints in walking
videos, we have developed our automatic system. We first extract
a walking path in an input video. We then extract the required fea-
tures such as occlusion and stairs. Finally, the checkpoints images
are annotated by direction arrows to enhance the information for
navigation.

4.1. Path Extraction

The first step of our system is to extract the walking path from
a walking video. Since guider-follower approaches do not rely on
any absolute positioning technique, we do not have a walking path
as input. Instead, we have to calculate it as the trajectory of the
camera.

This vision-based positioning task can be done easily us-
ing existing SLAM-like methods such as visual inertial odome-
try (VIO) [LM13,LLB∗15,FCDS17,QLS18] and concurrent odom-
etry and mapping (COM) [NLZ17]. Since we use an iPhone to cap-
ture the input videos, we directly employ the SLAM-based ARKit
for iPhone (or ARCore for Android devices) to obtain the relative
walking path. With the extracted path, we can analyze the path and
select image checkpoints along the path according to the rules dis-
cussed in Section 3.3. Specifically, we first create the first check-
point at the starting position at the beginning of the path because
of the “Starting” criteria. We then fine-tune this checkpoint until
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(a) Video frame (b) Optical flow (c) Left-right map (d) Overlaid path (e) Occlusion result
Figure 5: Illustration of our algorithm for occlusion detection of a path on a specific video frame.

(a) Problem (b) Our key idea
Figure 6: Our key idea for path occlusion detection. (a) Occlusion
occurs if there are objects on its left (right) hand side when it turns
left (right). (b) Our idea is to find left-hand-side objects (cyan) and
right-hand-side objects (pink).

the path afterward is visible in the center region of the frame. Af-
ter that, we search along the path and choose the next checkpoint
image (Figure 3 (b)) if it satisfies with other criteria, as discussed
below.

4.2. Path Occlusion Detection

Based on our pilot study, one of the criteria for selecting a check-
point is whether a path becomes invisible (i.e., occluded or out of
the image bounds) or not. To detect if part of the path is invisi-
ble, we project the path onto the previous checkpoint image. Once
a point on the path is found out of the frame bounds, we directly
select that position as the next checkpoint.

Invisibility is caused not only by out-of-frame bounds but also
by occlusion. For such cases, we need to determine the occlusion of
the path (Figure 5 (e)). One way to solve this particular occlusion
detection problem is to employ a dense depth map. However, it is
not easy to obtain a dense depth map with ordinary devices. RGB-D
cameras are still not popular on mobile devices. Depth cameras in-
volving infrared sensors do not work well outdoors due to the inter-
ference by the sunlight. Stereo cameras are still not standard in low-
end smartphones. Shape-from-motion [HK18,VKB∗18] on mobile
has a distance limitation. Full 3D reconstruction from videos is usu-
ally too complicated and heavy. Users always prefer a simple and
lightweight algorithm for getting results quicker at cheaper costs.
For our navigation problem, the lightweight algorithm would al-
low users to quickly generate annotated checkpoint images on their
mobile devices for sharing and/or printing right after they cap-
ture a navigation video. This is also important for refining the re-
sults through an iterative process by trying different paths and re-
capturing the corresponding videos. This motivates us to explore a
simple and lightweight alternative solution.

Figure 7: If the objects are on the left (right) hand side of a moving
path, they will move to the left (right) of the image when walking
along the path.

We observe that a path gets occluded if and only if there is an
object on its left (right) hand side when it turns left (right), as illus-
trated in Figure 6 (a). Our key idea is thus to determine left-hand-
side (LHS) objects and right-hand-side (RHS) objects concerning
the path, as illustrated in Figure 6.

It is easy to understand that objects on the left (right) hand side of
the path will leave the image from any edges on its left (right) parts
when they move behind the guider (Figure 7). Based on this obser-
vation, a feasible solution for determining LHS and RHS objects
is to detect each pixel’s exiting motion. Thus, we first compute the
optical flow of adjacent frames in the video and then estimate the
2D pixel trajectory along the frames based on the computed flow.
In our implementation, we use the dense optical flow (Figure 5 (b))
with dense inverse search (DISOptFlow [KTDVG16] in OpenCV)
to track the movement of each pixel in the consecutive frames.

We then mark a pixel which leaves from the left (right) edge of
the image, as “left” (“right”), corresponding to the red (blue) color
region in Figure 5 (c). Otherwise, we mark the pixel as “undefined”
(green regions in Figure 5 (c)). Applying this idea to all the image
pixels leads to a map, which we call a left-right map.

We apply a spatial median filter on the left-right map to reduce
the noise caused by optical flow. Furthermore, if parts of an object
are on the left (right) hand side of the path, the other undefined parts
of the same object are likely on the left (right) hand side of the path.
Thus, we propagate the pixel value in the left-right map upward and
backward to the pixels in the undefined regions if their colors are
similar to the one with the left-right value. Other advanced object
detection methods [LOW∗20] may improve propagation accuracy,
but more investigations are needed.

With the left-right map, we can determine the path occlusion. We
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(a) (b)

Figure 8: Illustration of an ambiguous case when there are multi-
ple turns. The object of one side can be before or after any turns.
To address this, we make use of the timestamp of exiting.

first project the 3D moving path onto the left-right map (Figure 5
(d)). If the path moves leftward in the 2D image and enters the
“left” region in the left-right map or vice versa, we determine it as
occluded. See an example of a path with the detected occlusion in
Figure 5 (e).

This method works well in most cases. However, when the path
turns more than once in an image, ambiguous cases exist, as illus-
trated in Figure 8. It is because there is no front-back relationship
data in the left-right map. Thus, the object can be either in front
of or behind any of the turns in the image. To address this, in each
pixel of the left-right map, we store the timestamp of exiting (i.e.,
frame index when the pixel leaves the image bounds in that frame).
Objects with earlier timestamps are more likely in the front of the
ones with later timestamps, since guiders are usually walking for-
ward. The occlusion can then be determined with less ambiguity if
the path enters the “left” or “right” pixels with an earlier timestamp
than the current timestamp of the path for forwarding motion.

Discussions. Our left-right map can be used for path occlusion
detection for the following reasons. First, a static object can occlude
the path afterward only if it is in the image. If a static object is not
in the camera frustum at any video frame, we can ignore it since it
never occludes any path in our problem. If the static object appears
in the video, there are two possibilities for its exit. This object can
either remain in the image till the end of video, or exit from one of
the image edges in a certain frame. For the former case, the object
(e.g., a large building in the background) is probably too far from
the camera, and there is no turn in the path. Thus, it never occludes
the path. The latter case implies that there are turns in the path or
the object is close to the camera. This object can occlude the path.
As it leaves from the edges of the images, our left-right map works
here.

Although our proposed method might not be as accurate as
existing 3D reconstruction methods [CXG∗16, FSG17, DNZ∗17,
SSHP17, HK18, VKB∗18], it has its advantages in simplicity and
efficiency. Most importantly, it generally works well for our pri-
mary task of automatic checkpoint selection. As mentioned above,
if the path afterward becomes invisible due to object occlusion
(e.g., the color-changing point of the path in Figure 5 (e)), we place
a new checkpoint there.

4.3. Stair Detection

One of the criteria for placing checkpoints is the entry and exit of
stairs. To accomplish this, we use a simple method to detect the

(a) Long slope (b) Stairs

(c) Plot of height (blue) and its triangle area (red)
Figure 9: There are a long slope (a) at the beginning (green region
in (c)) and three stairs at the end of the video (pink region in (c)).
We use the calculated triangle area curve to extract stairs.

stairs in the video based on their 3D Y-Coordinate. It is not as sim-
ple as measuring the height difference between the 3D path points,
since this cannot easily distinguish between stairs and long slopes
with gradual changes. Our idea is to detect sudden changes in the
height gradient. Figure 9 (c) shows a plot of height (blue line) of a
walking video with a long slope at the beginning and three stairs at
the end. We calculate the area of a triangle formed by each point
of the height curve and its adjacent points (see the red line). The
stairs can be extracted by finding the straight line segments in the
curve of height between the high points of the triangle area curve.
Figure 9 (b) gives an example of an automatically selected frame
corresponding to the entry of a stair. Due to the typical structure
of stairs, if the entry and exit of two consecutive stairs are close
together, we mark them as one stair to reduce the need of image
checkpoints.

4.4. Other Rules

For the remaining rules, such as distance, we calculate the 3D
norm-2 distance, and insert a checkpoint if the path distance ex-
ceeds a given threshold (50m for indoor and 100m for outdoor, se-
lected manually in the current implementation). For the clearness
rule, we refine the checkpoint position until the checkpoint image
is not blurry. We detect the degree of blurriness by calculating the
variance on the Laplacian filtered frame.

4.5. Occlusion-aware Checkpoint Annotation

After selecting the checkpoints from an input walking video, the
next step is to annotate the checkpoint images with directional nav-
igation arrows to improve the readability. The simplest way is to
project the smoothed 3D path into the checkpoint images and dis-
play it as an arrow. However, it can be not very clear for users if
physical objects occlude the path in the image (Figure 10). First,
parts of the project path, which are occluded by physical objects,
are meaningless and confusing for navigation. Second, it is not easy
to determine the correct projected path without considering path
occlusion when multiple objects occlude the paths.

These problems can be solved by detecting occlusions. Thus, our
proposed path occlusion detection method can also benefit the an-
notation of the selected checkpoints. We visualize the directional
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(a) (b) (c)
Figure 10: (a) Path segments occluded by physical objects are
meaningless or even confusing for navigation. (b) It is not easy
to determine which path is the correct one without considering the
occlusion of the path. (c) In contrast the path with occlusion il-
lustrates a turning point more clearly. Here we show two possible
paths indicated by different occlusion.

arrows for visible and occluded parts (Figure 5 (e)) in green and
red, respectively. Such colored directional arrows can help follow-
ers identify the correct path in the images more easily, as illustrated
in Figure 10 (c). Besides, we can also annotate the stair entry by
text to increase the readability (Figure 13).

5. Results and Experiments

We implemented our system using C++ with OpenCV. All the re-
sults were generated on a Windows laptop with 4 Cores i7 1.9GHz
CPU with 16GB RAM. We captured all the videos using an iPhone
X camera with a resolution of 2436× 1126. Due to the memory
issue, we down-scaled them by 4x for further processing. Table 1
shows the timing statistics of the core steps of our method on dif-
ferent videos using our unoptimized code. The steps for check-
point selection (Select) and stair extraction (Stair) are very fast
(0.25s and 0.001s on average for 1700 frames). The optical flow
and left-right map calculation steps are the most time consuming,
and each takes half a minute on average. We believe that parallel
programming (e.g., GPU or multi-threading) can greatly accelerate
the speed. Moreover, our current implementation operates on every
pixel in the video, while only the pixels near the projected path in
the checkpoint images are needed. By focusing on the calculation
of these core pixels, we can significantly accelerate our method.

5.1. Results

Figure 11 shows the example results of our path occlusion detection
method, with the corresponding left-right maps. Our algorithm de-
tects path occlusion very accurately, thanks to the left-right maps.
Figure 1 shows one of the example results for checkpoint images
automatically selected by our method. By checking the walking
video, which can be found in the demo video, this small set of
selected checkpoints faithfully capture the key information of the
walking path. Figure 12(a & b) are the selected checkpoint images
by two participants in our criteria study (Section 3). We can see that
our method leads to the results similar to those by human subjects.
We also compared our automatic checkpoint selection method with
an alternative solution based on video summarization. Figure 12 (c)
shows a set of selected checkpoints by a technique based on video
summarization [YL95]. Such techniques often lead to duplicated
frames or missing frames. Since video summarization cares more
about video content than a compact representation of a walking
path, their results are not good enough for navigation.

Length #Frame #CP OptFlow LR map Stair CP select
0:27 1534 5 25.385s 35.010s 0.001s 0.184s
0:38 1146 4 18.761s 24.486s 0.001s 0.199s
1:22 2476 7 44.211s 54.439s 0.001s 0.307s
0:59 1784 5 29.554s 41.220s 0.001s 0.274s
0:44 1317 5 22.662s 29.636s 0.001s 0.242s
1:13 2201 6 41.838s 47.801s 0.001s 0.283s

Table 1: The timing statistics of core steps of our method for dif-
ferent videos. CP stands for “checkpoint” and LR stands for “Left-
Right.”

5.2. Evaluation

Existing navigation works have already shown that a set of manu-
ally selected checkpoints from videos can help users (i.e., follow-
ers) to find their way more easily. Thus, in this paper, we focus on
the evaluation of the guider side. Our goal here is to demonstrate
that our system can select checkpoints similar to those by human
subjects. We conducted two experiments to evaluate the effective-
ness of our system, including preference and error.

First, we were interested in evaluating whether potential fol-
lowers would prefer our automatically selected checkpoint images
compared to those by four different simple automatic selection
methods, including 1) video summarization [YL95]: we set the
threshold to achieve the same number of checkpoints as ours for fair
comparison; 2) Extracted with fixed interval: we place checkpoints
for every 200 frames; 3) Extracted by a fixed range of curvature:
we place a new checkpoint if its curvature satisfied 0.2 ≤ κ ≤ 4.0
and its distance to its previous checkpoint exceeded by 100 frames;
4) Extracted by fixed turning angle: we traced the path direction
and placed a new checkpoint if its direction changed for 70o−110o

and its distance to the previous checkpoint exceeded by 100 frames.
We did not use the same number of checkpoints as ours for meth-
ods (2)-(5), as we believe these methods might have their optimal
numbers of checkpoints.

First, we invited eight participants to examine the checkpoint im-
ages generated by different methods in random order. These par-
ticipants were familiar with the environments in our testing videos.
We provided a questionnaire to the participants for their preference.
They had to provide a score (from 0 to 9; the higher, the better) for
each set of results.

Figure 15 shows the results of this preliminary study. Extracted
checkpoints using fixed interval showed a good preference (aver-
age preference = 6.95) while they were not concise enough (av-
erage conciseness = 5.85). Our results were more preferred (aver-
age preference = 7.23) and had higher quality (average quality =
7.03) than fixed intervals. Meanwhile, our method extracted only
5.4 image checkpoints on average, and were more concise (average
conciseness = 7.0).

Curvature and turning angle are highly noise-sensitive and scale-
dependent. Thus, they led to unsatisfied results (average prefer-
ence = 3.45 and 4.65, respectively). Finally, video summariza-
tion [YL95] only considers video content, and our participants least
prefer it (average preference = 2.85).

In the second experiment, we used the same interactive system
as in Section 3 to ask the participants to refine our automatically
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Figure 11: Example results of our path occlusion detection algorithm for different input video frames and their corresponding left-right
maps. The intensity of the red and blue colors is coded by the timestamp.

(a) By P1 (b) By P5 (c) By video summarization [YL95]

Figure 12: The checkpoints selected manually by two participants (a & b), and automatically by video summarization (c) [YL95]. Our
corresponding result is shown in Figure 1. This video is used in the checkpoint selection criteria study.

Figure 13: A set of automatically selected checkpoints from a video other than those used in criteria study.

Figure 14: A set of automatically selected checkpoints from another video other than those used in criteria study.

selected checkpoints interactively. We showed five videos to the
eight participants (i.e., 40 cases in total) and used our automati-
cally selected checkpoints as initial results. The participants had to
add/remove/move the checkpoints freely. We measured the num-
ber of changes by the participants and calculated the offset in our
results. As shown in Figure 16, 14 cases were directly accepted
by the participants without adding or removing checkpoints. 10
cases were required to add one checkpoint. Among all the cases, six

checkpoints were moved (yellow bar in Figure 16) by the partici-
pants with 83 frame offset on average. Our automatically selected
checkpoints are very close to the manual selected ones.

6. Discussions

Manually choosing a compact set of critical checkpoints is not
an easy task. Most of the participants said sometimes they were
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Figure 15: Our evaluation results for comparing different methods.
Error bars represent the standard error of mean.

Figure 16: The total number of checkpoint changes for all cases in
our study. “Move” (Yellow bar) are additional operations among
40 cases in the blue bars.

confused to place good checkpoints. P4 and P5 from the criteria
study commented that they were too familiar with some routes to
overlook several essential checkpoints easily. It is an interesting
dilemma for the guider-follower as guiders are supposed to be very
familiar with the path. At the same time, those who are too famil-
iar with the path might not be sensitive enough during the manual
selection of checkpoints. This observation further justifies the use-
fulness of our system.

Another interesting finding is that our timestamped left-right
map looks visually similar to a depth map of the scene, as shown in
Figure 17. It gives us an excellent direction to study whether exit-
ing motion is a reliable depth cue or not, and whether it can help to
perform 3D scene reconstruction in the future.

6.1. Limitations and Future Works

Our current method suffers from several limitations. Our method
highly depends on the performance of a SLAM tracking imple-
mentation (ARKit in our case) and the optical flow implementa-
tion, which is sometimes unstable and scene dependent. We would
investigate more information from the video and measured data
(e.g., IMU in smartphones, backward motion) to improve the per-
formance. We believe that more accurate reconstruction algorithms
and more robust implementations will appear due to the advance-
ment of computer vision and the popularity of AR in the near fu-
ture.

Our current implementation did not handle dynamic objects such
as pedestrians, and such moving objects may affect our results. In
the future, we would use object recognition to segment out pedes-
trians or other dynamic objects. We did not handle “hole” cases if
a path is invisible and reappear shortly in the same image. These
cases often happen when the path moves behind thin objects (e.g.,
human, streetlights, and columns) in the scene. A filtering of short-
term occlusion might solve the problem.

Figure 17: Our timestamped left-right map (Right) looks similar to
depth map.

Some of the criteria suggested during manual checkpoint selec-
tion are not easy to be implemented. For example, further studies
are needed to examine the possibility of robust recognition of com-
mon reference objects such as post boxes, eye-catching objects, and
landmarks in videos. Also, multi-way paths or stairs (i.e., with mul-
tiple exits and/or entries) might not be properly handled by our sim-
ple solution. One possible solution is to employ visual recognition
techniques to identify the exits and entries.

Finally, guider-follower methods often only support one-to-one
navigation, meaning that there is only one starting point, one des-
tination, and one path. However, in real scenarios, followers may
often come from different starting points (e.g., different entries),
go to different destinations (e.g., specific rooms), and with differ-
ent paths based on their personal conditions (multiple-to-multiple
navigation). In the future, we plan to investigate such navigation.
It is not easy since it is not efficient for the guider to walk every
possible path from every place. One possible idea is to combine
multiple walking videos from multiple guiders if there are shared
routes, and to generate a set of checkpoint images on the fly based
on personal preferences or real-time road conditions.
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