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Motion Planning for Convertible Indoor Scene
Layout Design

Guoming Xiong*, Qiang Fu*, Hongbo Fu, Bin Zhou, Guoliang Luo, Zhigang Deng+

Abstract—We present a system for designing indoor scenes with convertible furniture layouts. Such layouts are useful for scenarios
where an indoor scene has multiple purposes and requires layout conversion, such as merging multiple small furniture objects into a
larger one or changing the locus of the furniture. We aim at planning the motion for the convertible layouts of a scene with the most
efficient conversion process. To achieve this, our system first establishes object-level correspondences between the layout of a given
source and that of a reference to compute a target layout, where the objects are re-arranged in the source layout with respect to the
reference layout. After that, our system initializes the movement paths of objects between the source and target layouts based on
various mechanical constraints. A joint space-time optimization is then performed to program a control stream of object translations,
rotations, and stops, under which the movements of all objects are efficient and the potential object collisions are avoided. We
demonstrate the effectiveness of our system through various design examples of multi-purpose, indoor scenes with convertible layouts.

Index Terms—Indoor scene synthesis, motion planning, convertible layout.

F

1 INTRODUCTION

Furniture layout synthesis has been extensively studied in
the past decades. On one hand, recent related efforts have
been mainly focused on the creation of plausible station-
ary layouts by optimizing the positions and orientations
of objects with various layout constraints. On the other
hand, there widely exist indoor scenes with multiple lay-
outs, which need to be transformed frequently for different
functional purposes. For example, as shown in Figure 1, the
seats in a high-speed train need to be frequently adjusted
to ensure that they have the same directions as the moving
direction of the train. The cabinets in a library often have a
movable design to maximize the use of the limited space.
Using movable walls can generate various spatial divisions
for a large room. The composability of objects can be both
in- and cross-class such as modular furniture. Some of such
multi-purpose indoor scenes are especially designed for
small rooms. For instance, we might need to change a layout
of our living room to hold a party, or re-arrange desks and
chairs in a classroom from a lecture setting to a group-
discussion setting.

To cope with such a demand, a well-designed indoor
scene with convertible layouts should have an effective
layout conversion process. The convertible layouts can be
specified either by using the same set of objects but with
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Fig. 1. Top: Examples of convertible layouts in the real world. Bottom:
Movable walls along lead rails can divide a large room into smaller ones.

different object arrangements, or by using a reference layout
to guide the movement of the objects in a source layout to
a new arrangement. We focus on the second case and refer
to the new arrangement as a target layout. It is expected the
objects in the reference layout should be similar to those
in the source layout, in terms of both functionality and
configuration. The convertible layouts can be designed by
following certain mechanical constraints (such as rotating
shafts and lead rails) to make the conversion physically
executable. The automatic design of such indoor scenes,
however, remains challenging due to the following main
reasons.

• First, since the numbers of objects in the source and
reference layouts might not always be the same,
the correspondences between the two layouts, which
can be one-to-one or one-to-many mappings from
the reference to the source, should be established to
determine the starting/ending positions and orienta-
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tions of all the objects in the convertible layouts.
• Second, the movements of objects in convertible lay-

outs are typically not free-form but controlled by cer-
tain mechanical constraints. A metric to evaluate the
choice of motion mechanisms is needed to explore
a low-cost mechanical system satisfying the layout
conversion process.

• Lastly, since the movements of the objects are
spacetime-related during the layout conversion, a
control stream that performs the movements of
the associated motion mechanisms should be deter-
mined to avoid object collisions and improve the
conversion efficiency.

Aiming at efficiently executing the layout conversion with
low-cost motion mechanisms, we need to perform a joint
space-time optimization to program the movement se-
quence of all objects in the layout conversion process.
The configurations of the associated motion mechanisms,
including the connection positions, the types of rotating
shafts, and the starting/ending positions of lead rails,
should be optimized as well.

With the above motivation and insight, we present a
novel framework to design indoor scenes with convertible
layouts and well-planned motions, as illustrated in Figure 2.
Given a source layout (typically with more objects) and a
reference layout, our system first establishes object-level cor-
respondences between the two layouts. Then we calculate
the positions and orientations of the source objects guided
by the associated reference objects to generate a target
layout. Next, the initial paths of all movable objects and
the connection positions of the associated motion mecha-
nisms are determined based on the guidelines derived from
mechanical motion constraints. Afterwards, a joint space-
time optimization is performed to fine-tune the control
stream of all movable objects to address the potential object-
object collisions during the layout conversion and make the
conversion process efficient. We show various results and
potential applications to demonstrate the applicability and
effectiveness of our system for the synthesis of indoor scenes
with convertible layouts.

Our work has the following main contributions: 1) a
unified framework to design convertible layouts for indoor
scene synthesis; 2) the application of motion mechanisms
as constraints in the designed convertible layout to make
it executable; and 3) the introduction of a joint space-time
optimization algorithm to compute a control stream of the
movements and stops of objects for the layout conversion
process.

2 RELATED WORK

In this section, we first briefly review the recent related
works on indoor scene synthesis and then discuss
various existing research efforts on the analysis of motion
mechanisms from the perspective of computer graphics,
and its applications to the multi-purpose design of both
man-made objects and indoor scenes.

Indoor Scene Synthesis. In the past decades, many ap-
proaches have been proposed to synthesize indoor scenes
with plausible layouts. Benefiting from existing efforts that

Fig. 2. Given a source layout ((a)-top) and a reference layout ((a)-
bottom), our system generates a target layout (b) and designs a work-
able conversion process driven by motion mechanisms for translation
and orientation ((c)-top) and the programming of an efficient control
stream for such a conversion ((c)-bottom), to make the source and target
layouts convertible.

explore the structure or object relationship of indoor scenes
[1], [2], [3], an increasing number of digital 3D models can
be obtained for indoor scene creation. To facilitate indoor
scene creation, some existing approaches have focused on
the arrangement of small objects to enrich the details of
created indoor scenes [4], [5], [6], while the others are
more concerned about the layout generation of furniture-
level objects [7], [8]. Various interior design knowledge,
insight, and priors, such as pre-defined guidelines (e.g., [9],
[10]), indoor scene examples (e.g., [11], [12], [13]), human-
object relationships (e.g., [14], [15], [16]), and deep network
priors (e.g., [17], [18]) have been studied to generate a
static arrangement of 3D furniture models according to
their aesthetic or functional features. However, the above
methods are less concerned about the feasibility of possible
transitions between different layouts.

Motion Mechanisms. Revealing the motion mechanisms of
man-made objects, such as the degrees of freedom (DOFs)
of their movable parts, has attracted much attention in the
computer graphics and computer-aided design communi-
ties. For example, Mitra et al. proposed an approach for me-
chanical assembly visualization that incorporates motion ar-
rows, frame sequences, and animations to convey the causal
chain of motions and mechanical interactions between parts
[19]. Hu et al. presented a method to learn a model for
the mobility of parts in 3D objects [20]. These efforts have
inspired the design of man-made objects with movable parts
or motion mechanisms. For example, researchers proposed
to model objects with interactive mechanisms from multi-
view images or scanning data [21], [22], or to model works-
like prototypes, namely, objects with interactive parts such
as movable cabinet doors and drawers [23], [24]. In our
work, we utilize motion mechanisms as the constraints
to ensure workable convertible layout designs. Aiming at
such a goal, we do not intend to model precise motion
mechanisms or their relations in a convertible layout sys-
tem. Instead, we focus on some common types of motion
mechanisms including shafts and lead rails, and apply their
mechanical constraints to optimize the programming of
both the path and motion in the layout conversion process.

In addition, with similar motivations to ours, some
previous works on robotics and automatic control have
studied issues of indoor navigation [25], [26] and multi-
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Fig. 3. Left: Motion mechanisms and their symbols. Right: Symbols that
represent indoor scenes and movable objects driven by the associated
motion mechanisms.

agent systems [27], [28], [29]. These methods typically focus
on free movement, i.e., without mechanical constraints
to limit the DOFs of movement, while our work pays
more attention to motion planning constrained by motion
mechanisms to ensure designed convertible layouts feasible
at a low cost.

Multi-purpose Design. Designing man-made objects or
indoor scenes with multiple functionalities or for multiple
purposes has caught increasing attention in recent years.
Assembling parts from cross-category man-made objects is
one of the potential solutions to the design of multi-purpose
objects. Fu et al. presented a system that leverages human
poses to inspire the assembling of parts from different
object categories [30]. Hu et al. use functionality models for
functional hybrid creation [31]. Besides, some approaches
were also proposed to program the way to divide objects
into assembled pieces, which can be used to design knock-
down toys and furniture [32], [33]. The divided pieces are
then analyzed to be assembled into different configurations
or kinds of objects for meeting the need of multi-purpose
design [34], [35].

Yet designing multi-purpose indoor scenes remains chal-
lenging. Although existing methods for designing objects
with functionalities such as stackabilization and foldability
[36], [37] offer some inspirations for designing scenes with
convertible layouts, it is still not clear how to automatically
design convertible layouts with motion mechanisms. Garg
et al. presented an interactive system for computational
design of a reconfigurable entity, i.e., an object or a collection
of objects, whose transformations between various states
define its functionality or aesthetic appearance [38]. Their
motivation is similar to ours. The main difference is that,
their system assists users to manually refine the transforma-
tion process by highlighting certain periods on the timeline
when collisions happen. In other words, they rely on users
to resolve object collisions. In contrast, our system takes
an automatic approach by automatically programming the
layout conversion process (including both transformation
paths and motions). This further improves the efficiency,
especially in some scenarios, where more than one pair of
objects might collide with each other. Besides, our system
also considers motion mechanisms and their constraints in
path and motion planning, to make generated convertible
layouts more physically executable than pure computer
animations.

Fig. 4. Left: Pre-defined positions (blue crosses) to install a base or
rotating shaft on a movable object. Right: Examples of the movements
driven by a rotating shaft and a base passing a corner.

3 MECHANICAL CONSTRAINTS AND GUIDELINES

In this section we first introduce the motion mechanisms
that we utilize to construct a mechanical system for layout
conversion. Then we summarize the guidelines regarding
how to design an efficient system with such motion mecha-
nisms.

We focus on three kinds of fundamental motion mech-
anisms, that is, lead rails, bases, and rotating shafts, as
illustrated in Figure 3. A lead rail controls the translation
movement of indoor objects. In our implementation, each
object is set on a lead rail through a base or a rotating
shaft. We specify five potential positions at the bottom
of a movable object, as illustrated in Figure 4 (Left). The
difference between a base and a rotating shaft is that a
rotating shaft can rotate an associated object freely in any
position of a rail, while a base can only drive an associated
object to translate along a rail. To make the designed motion
mechanisms assemblable, we employ modular lead rails.
Namely, the component of a lead rail need to be either a
straight unit or a right angle corner units, and the lead
rail in a room need to be either horizontal or vertical for
less damage caused by its installation on the floor. Note
that the base can also turn the orientation of an associated
movable object through translations along a corner rail (e.g.,
Figure 4). For simplicity, we assume that movable indoor
objects are either light enough or have omni-directional
wheels so that they can be fluently translated or rotated by
their installed motion mechanisms. We also assume that an
object driven by its associated mechanisms can translate and
rotate in a uniform speed.

In this work, a layout conversion system is denoted as
S , which consists of several motion mechanisms. Let ns, nc,
nr be the numbers of straight rail units, corner rail units,
and rotating shafts, respectively. The time cost of an object o
during layout conversion includes the movement time of o,
and the waiting time of o in which it stops and waits for the
movement of other objects. Since the translation and rota-
tion of o are synchronous, according to the characteristics of
the chosen mechanisms, we use the maximum time to define
the time cost as To = max(Tt + T t

w, Tr + T r
w), where Tt, Tr ,

T t
w and T r

w are the required steps for translating, rotating,
waiting for translation, and waiting for rotation, respec-
tively. In this manner, we summarize a twofold guideline to
ensure the motion mechanisms in a convertible layout sys-
tem to be as simple as possible, and the conversion process
to be efficient as well. For the first purpose, we expect the
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system to have as few mechanisms as possible and define a
complexity cost to evaluate the designed mechanical system
as follows:

C(S) = ns + ω1 · nc + ω2 · nr, (1)

where weights ω1 and ω2 are set to 5 and 10 in our im-
plementation, respectively. We use larger weights for corner
units and rotating shafts, since they are more expensive to
produce than straight units due to the arc shape of corner
units and extra motors for rotating shafts. For the second
purpose, we use max(To),∀o, as the total time cost of the
system S . Such a cost is utilized to guide the movement se-
quence adjustment, aiming at an efficient layout conversion
process without object collisions.

4 OUR APPROACH

Our approach consists of three phases to program a simple
and efficient layout conversion process. First, we establish
the correspondences of the objects between the given source
and reference layouts to generate a target layout, which has
the same set of objects in the source layout and a similar
object arrangement with the reference layout. Second, we
discretize the timeline of movement as the initial control
stream (including only translations and rotations) and ex-
plore initial paths for all the objects that can be moved
from the source layout to the target layout. Finally, our
approach performs a joint space-time optimization that fine-
tunes both the control stream (including stops) and paths
in order to avoid potential object collisions in the layout
conversion process.

4.1 Establishing Object Correspondences
We represent an indoor layout by a 2D floor plan, with the
information including the positions, orientations, and sizes
of all associated indoor objects. Without loss of generality,
we assume that 1) the given source and reference layouts
have similar room sizes; 2) the source layout could have
more objects than the reference layout; 3) the rooms of all
layouts have real-world scales. We go through all pairs of
objects between the two layouts, and establish the object
correspondences through their similarities in both position
and size. The rationale of our algorithm is that shorter
paths in layout conversion more likely lead to lower time
and complexity cost, and similar sizes are more likely to
facilitate the exchange between objects. Note that, as the
source layout could have more objects than the reference
layout, such a correspondence can be either a non-injective
or a non-surjective mapping. In other words, one object in
the reference layout can be matched with multiple objects or
none in the source layout.

Let O and Õ be two sets of objects in the given source
and reference layouts, respectively, {pi} be the positions
of the source objects, and {p̃j} be similarly defined for
the reference objects. The areas of the object projections
from the top view in the source and reference layouts are
denoted as {si} and {s̃j}, respectively. To establish object
correspondences, we define the distance between a pair of
objects oi ∈ O and õj ∈ Õ as follows:

D(oi, õj) = ||pi − p̃j ||
2
2 + ω ∗ |si − s̃j |, (2)

where the weight ω, set to 0.01 in our experiments, is
to balance their scales. We calculate such a distance for
each pair of objects in the two given layouts. The object
correspondence is established in an order from the largest
object in Õ to the smallest one in Õ. For an object õj ∈ Õ,
since õj might be related to more than one object in O,
we expect that all the related objects should have small
distances (Equation 2) to õj and can be merged into a larger
one with a similar size as õj . To this end, we first sort the
objects in O based on their distances to õj from small to
large, and choose the top-K (K ≥ 1) sorted objects such
that |s̃j − S(

⋃
k=1,··· ,K ok)| < |s̃j − S(

⋃
k=1,··· ,K+1 ok)| as

the related objects to õj , where S(
⋃

k=1,··· ,K ok) is the area of
the object union {o1, · · · , oK}.

If there is only a single source object related to õj (i.e.,
K = 1), we determine its position and orientation in
the target layout by directly transferring the position and
orientation of õj to the related source object. When K ≥ 2,
the positions and orientations of the source objects related
to õj in the target layout become less determined. Since this
is essentially a packing problem, we apply commonly used
rules to guide the packing optimization: the transformed
source objects, denoted as O′j , should cover õj as much
as possible, while the intersection between the transformed
source objects should be minimized. This can be mathemat-
ically formulated as:

ζ(O′j , õj) =

{
∞,∃ok, ok′ ∈ O′j , δ(ok, ok′) > 0
−
∑

ok∈O′
j
δ(ok, õj), otherwise , (3)

where δ(oi, oj) is the overlapping area of objects oi
and oj with certain poses, i.e., positions and orientations.
Hence the poses of objects {ok} are resolved by solving
arg min ζ(O′, õj).

To solve the above minimization problem (i.e., the un-
known positions and orientations of the source objects
related to õj), we enumerate all possible positions and
orientations of these source objects by sweeping them over
õj and rotating them by 90 degree each time (we only focus
on four axis-aligned orientations in this work). Note that
there might exist certain source objects that are not related to
any reference object. We keep them unchanged or let users
adjust their positions and orientations in the target layout. A
new layout (i.e., the target layout) can be obtained after all
the source objects are processed in this way. Since automatic
establishment of object correspondences might lead to an
undesired target layout, we provide an interface to allow
users to manually refine the target layout by adjusting the
positions and/or orientations of certain objects.

4.2 Initial Programming
The purpose of initial programming is to suggest feasible
paths of objects for layout conversion as well as their pos-
sible movements, based on the aforementioned mechanical
constraints (Section 3).

Inspired by the work of Garg et al. [38], we also utilize
the timeline of each object to handle the movement. The
main difference between their work and ours is that we
discretize the timeline of each object into slices so that our
system can edit the tag of each slice (i.e., stay, translate,
or rotate) in the timeline to control its movement. For
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Fig. 5. An example of control stream in the timeline (Top), and the
motion of the associated object in two sample time slices (Bottom).
We illustrate the position and pose of the object on the lead rail, where
the starting/ending positions and poses are shown by the green/yellow
rectangles, respectively. Note how the values of translation and rotation
in the control stream impact the object movement.

example in Figure 5, each slice consists of two ternary values
(indicating front/back motions and stop, respectively) rep-
resenting the control streams for translation and rotation,
denoted as T (oi, t) and R(oi, t), respectively. T (oi, t) = 1
and T (oi, t) = −1 respectively represent the object oi
translating to and away from the ending position at time
t. T (oi, t) = 0 means waiting for translation. Similarly,
R(oi, t) = 1 and R(oi, t) = −1 respectively represent the
object oi rotating clockwise and counterclockwise at time
t, and R(oi, t) = 0 means waiting for rotation. T (oi, t)
and R(oi, t) are illustrated in blue and red, respectively in
the timeline of Figure 5. We assume that an object moves
uniformly along a lead rail. This uniform speed assumption
would ensure our design results executable in real-world
scenarios, where motors driving the object movement often
have uniform speeds. Specifically, in our implementation,
the translation speed on the lead rail is set to 1 unit step
(i.e., the length of a straight rail unit) per time step, while
it takes 4 time steps for an object to pass a corner rail unit,
and the rotation speed for rotating shaft is 18-degree per
time step.

Figure 6 shows the workflow of path initialization. Af-
ter the object correspondence is established, the starting
and ending positions/directions of all movable objects are
known from the source and target layouts. Based on these
known states, we can compute the basic translation direc-
tion and rotation angle for each object. Note that since the
rotation can be performed via either a corner rail or a rotat-
ing shaft, the control stream on translation and rotation for
each object can only be determined after the initial path is
programmed. Then we intend to search for an initial path for
each object, following the complexity cost in Equation 1 that
forces the path to have as few mechanisms as possible and as
short as possible, since the path distance also depends on the
numbers of lead rail units. We also expect each object to have
no collision with the room and the minimal intersection
with other objects in the course of its movement along the
path. In our implementation, we use the collision detector
of Unity3D for fast object collision detection.

To achieve this, we design a search algorithm, which
performs the following operations in order. 1) If a line
segment connecting the starting and ending positions is
horizontal or vertical, we choose it as an initial path unless
certain obstacles exist on it. 2) If not, as illustrated in Figure 7

Fig. 6. The positions and orientations of the objects in the source layout
(a) and the target layout (b) are utilized to determine their motions
(c). We then obtain the initial paths and movements (d) based on the
mechanical constraints.

(a), we have two right-angle sides (green and blue), and
choose the one where the object would not collide with the
room and has fewer collisions to the other objects in the
source layout as an initial path. Note that if the object needs
to perform a 180-degree rotation without any rotating shaft,
translation on the rail with only one corner (supporting
90-degree rotation only) is not enough, as illustrated in
Figure 7 (d). This can be addressed by adding a corner rail
at the beginning or end of the right-angle side (Figure 7
(e)). 3) If both right-angle sides result in object-object or
object-room collisions, we first insert a point (in red) in the
middle of the line segment between the starting and ending
positions (Figure 7 (b)) to create paths with two corners
(green and blue). We then move the inserted midpoint to
the two ends (Figure 7 (c)) until a certain path does not
have any object-room collisions. This path is then chosen
as the initial path. If all the above operations failed, user
intervention is required to adjust the target layout or directly
design the initial path for a certain object. Besides, we also
choose the connection positions (deciding the starting and
ending positions) of the bases or rotating shafts on the asso-
ciated objects. Specifically, among the five possible positions
(Figure 4), we choose the one that allows the installation
of motion mechanisms and would lead to fewest collisions
during the search process. In this manner, the initial path
can be obtained with the minimum complexity cost, while
avoiding potential collisions with obstacles. For example, in
Figure 8, our algorithm can produce different initial paths
for different settings of obstacles.

4.3 Conversion Fine-tuning
At the final step our approach fine-tunes the layout
conversion in spacetime by programming the initial control
stream, and then determines the exact motion mechanism
configurations. In the first task, we adjust the discretized
control stream in order to avoid object collisions during
layout conversion, and extend the initial paths to enable
the execution of the programmed control stream if needed.
In the second task, we mainly determine the types of
mechanisms (i.e., a base or rotating shaft), after the motions
of all objects are programmed. Besides, we also discuss
how to extend the proposed control stream programming
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Fig. 7. Top: Potential paths (highlighted in blue and green) between the
starting and ending positions (black points), and the inserted midpoint
(red). Bottom: An extra corner rail should be added (from (d) to (e)) for
180-degree rotation. Each arrow indicates the direction of an associated
object.

Fig. 8. Examples of initial path searching results in three scenarios of
obstacles (black).

algorithm to unconstrained motion planning.

Control Stream Programming. The layout conversion re-
quires a joint space-time optimization strategy to fine-tune
both T (oi, t) and R(oi, t) in the timeline simultaneously.
This is because even though the path and movement of each
object from its starting position to its ending position are
known after initial programming, naively letting these ob-
jects simultaneously move would easily cause object-object
collision. The key idea of a well-planned control stream is
to choose the right object to move at the right time and stop
the others that could lead to collisions at the same time.
More specifically, let sets Toi and Roi be the initial control
streams for translations and rotations of the object oi during
the conversion, respectively. Since the initial control streams
do not have stops, the fine-tuning process is to insert the
movements from the sets Toi and Roi to new collision-free
control streams T (oi, t) andR(oi, t), with adequate intervals
for stop (i.e., zero-value slices).

To achieve this we define forward and backtracking
manipulations to handle the movement insertion. The for-
ward manipulation is to move all objects towards their
ending positions/orientations, while the backtracking ma-
nipulation is to pause or even reverse the movements of
certain objects due to the detected collisions. Prior to these
manipulations, we first define the priority of an object to
determine which one should be adjusted when two objects
oi and oj collide with each other during layout conversion.
Let P (oi, oj) be the priority between a pair of objects, with
P (oi, oj) = 1 indicating that oi has a higher priority than oj ,
and P (oi, oj) = 0 otherwise. Due to the time cost described
in Section 3, we set P (oi, oj) = 1 if oi has a longer distance
to its ending position than oj .

Fig. 9. An example to illustrate the forward and backtracking manipula-
tions when object collision happens between a rotating object (red) and
a translating object (blue). In this example, the object oj has a higher
priority.

In each dispersed time slice t, once the forward manipu-
lation is performed on oi, there will be one of the four types
of feedback via collision detection with other objects, de-
noted as: F (oi, t) = [1, 1], F (oi, t) = [1, 0], F (oi, t) = [0, 1]
and F (oi, t) = [0, 0]. They respectively mean object oi can
both translate and rotate, only translate, only rotate, and
neither translate nor rotate (i.e., be blocked). Based on the
element values of F (oi, t), the forward manipulation pops
the associated Toi and/or Roi into T (oi, t) and/or R(oi, t),
respectively.

If two objects oi and oj collide with each other and
both F (oi, t) = [0, 0] and F (oj , t) = [0, 0], we call the
movements of oi and oj blocked. To address this problem,
we employ a backtracking manipulation, which performs
an opposite task that pushes T (oi, t) and/or R(oi, t) back to
Toi and/or Roi , respectively. The feedback of backtracking
manipulation is denoted as B(oi, t). For two collided and
blocked objects oi and oj , in which oi is the one with the
lower priority, the backtracking manipulation first pushes
back translation movement and then rotation movement
at time t − 1 to see if oj is able to move in time t. If
so, B(oi, t) = 1, and B(oi, t) = 0 otherwise. The back-
tracking manipulation iterates until the blocking problem is
addressed. In Figure 9 we show an intuitive case to illustrate
the forward and backtracking manipulations. Our system
leverages the two types of manipulations for control stream
fine-tuning, following the time cost in Section 3, which
encourages the synchronized translations and rotations of
all objects. The pseudo-code of this process is provided in
Algorithm 1.

Algorithm 1 tunes the timing of the movement
sequence(s) and records the tuned sequences(s) in the
control stream. Note that the backtracking manipulations
might lead to an object oi with a lower priority rolled
back to its initial status. If the forward manipulation for oi
is still blocked, our algorithm heuristically adds an extra
movement pair at the beginning of Toi andRoi for object oi,
and also extends its initial path. As an example in Figure 2,
the final programmed path of the tea table is actually
created by such a manipulation. This path is not in the
initial path determined in Figure 6. The added movement
pair consists of a translation or rotation that enforces an
associated object to move in an opposite direction against
the object with a higher priority, and an opposite motion
that puts the object back to its previous status. A new
movement pair is inserted into the middle of the previously
added movement pair if more than one movement pair is
required. Since rotation movements require rotating shaft(s)
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Algorithm 1: Control stream programming
Input: Movement sets Toi and Roi

Output: Control stream sets {T (oi, t)} and {R(oi, t)}
{T (oi, t)} and {R(oi, t)} are all-zero sets;
Time t = 0;
while Toi 6= ∅ and Roi 6= ∅,∀oi do

Do forward manipulation and get F (oi, t),∀oi;
for i = 1 to N do

if F (oi, t) 6= [0, 0] then
Pop Toi and/or Roi to T (oi, t) and/or
R(oi, t) based on F (oi, t);

end
end
if ∃F (oi, t) = [0, 0], F (oj , t) =
[0, 0], and oi collides with oj then

∆t = 1; Calculate priority P (oi, oj);
Do backtracking manipulation for object oi

who has lower priority and get B(oi, t);
if B(oi, t) = 1 then

Push the non-zero T (oi, t − ∆t) and/or
R(oi, t−∆t) to Toi and/or Roi ;

Set T (oi, t − ∆t) = 0 and/or R(oi, t −
∆t) = 0 ;

end
while B(oi, t) = 0 do

Push the non-zero T (oi, t − ∆t) and/or
R(oi, t−∆t) to Toi and/or Roi ;

Set T (oi, t − ∆t) = 0 and/or R(oi, t −
∆t) = 0 ;

∆t = ∆t+ 1;
Do backtracking manipulation for object oi
and update B(oi, t);

end
Do forward manipulation again for object oi

and oj ;
update {T (oi, t)}, {R(oi, t)}, Toi and Roi

based on F (oi, t);
end
t = t+ 1;

end
return {T (oi, t)} and {R(oi, t)};

with higher cost, the first choice is translation, and rotation
is used only if the translation is blocked.

Mechanism Configuration Determination. Following the
complexity cost in Equation 1, our approach adjusts the
motion mechanism configurations to make the designed
mechanical system as simple as possible. The discrete
control stream with a uniform speed as we assumed, would
ensure the paths to be constructed by integral lead rail units.
However, such paths might lead to the ending positions of
certain objects no longer as expected in the target layout.
For example, two couches might not be sufficiently close
to each other to form a bed. Such a subtle error can be
eliminated by slightly adjusting the positions of the related
objects in the source layout. Specifically, if the positions of
the objects after the layout conversion need to be slightly
adjusted, we add the offsets (i.e., how the ending position

of the object should be adjusted) to the source layout. On
the other hand, if the movement of a certain object can be
conducted with a base, we will not choose any rotating shaft
(for a lower complexity cost). If a certain object only rotates
one step (18-degree in our implementation), we would
change the direction of such an object in the source layout
to eliminate the required rotation. Note that this step is
mainly to determine the types of motion mechanisms (i.e., a
base or rotating shaft), since their connection positions have
been determined in the previously initial path generation
step (Section 4.2). This step would not impact Algorithm 1,
since it does not change the programmed motion.

Unconstrained Motion Planning. Our system can also
be extended for unconstrained motion planning, which is
able to generate layout conversions with free-form object
movements between multiple indoor layouts. Assuming
that many future indoor objects can move themselves (e.g.,
ratchair [39]), we can easily adapt our method to such
scenarios by disabling the mechanical constraints (which
enforce the paths to be either horizontal or vertical), and
performing our control stream programming algorithm to
tackle potential collisions. We will also show some experi-
mental results of unconstrained motion planning, and dis-
cuss the advantages of both constrained and unconstrained
motion planning in the subsequent section.

5 EXPERIMENTS AND DISCUSSIONS

In this section, we present various experimental results
generated by our method to show its effectiveness. We also
show some potential applications to validate the usefulness
and scalability of our system.

Experimental Results. In Figure 10, we show two cases of
convertible layout design. In the first case, we use a source
layout with two different reference layouts, leading to two
different mechanical systems by our method. In the second
case, we choose two slightly different source layouts with
the same reference layout. Our system again successfully
programs different conversion processes. The time costs
of these results from top to bottom are 8, 19, 14 and 21
steps in relation to the mechanical constraints (Section 3),
respectively. The costs indicate that the first designed con-
vertible layout in each case of Figure 10 performs better than
the second one. Thus our system is able to quantitatively
assess different convertible layout designs and choose better
source and/or target layouts.

In Figure 11, we show two more complex cases to evalu-
ate our system for rooms with obstacles or rooms with large
space. In the top case, we have two similar sets of source and
target layouts, without and with obstacles. Our system gen-
erates efficient conversion results and successfully navigates
the obstacles. In the bottom case, we display the results of
two convertible layout designs for a large classroom created
by our system. These results show that our system can tackle
large, indoor scenes. Typically, it takes under one minute
to generate convertible layouts by our system, including
the time for user intervention. We found that our system
typically required 0-2 user manipulations for completing
the design, while each intervention took about 10 seconds
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Fig. 10. Two examples of convertible layout design with two different
reference layouts (Top) and two different source layouts (Bottom).

on average. All the experiments were tested on a PC with
Intel’s Core i5-2.60GHz CPU, 4GB RAM, and the Unity3D
platform.
User Interface. Figure 12 shows the user interface of our
system. It consists of three panels: the menus (top), a main
panel for displaying both a 2D floor plan and a 3D scene
(bottom), and an object panel for adding furniture when
creating a 2D floor plan (bottom-left). The system UI assists
users to quickly build indoor layouts (e.g., Figure 12-left),
and intuitively shows the programmed layout conversion
process (e.g., Figure 12-right). As mentioned in Section 4.1,
users can also manually modify target layouts when the re-
sults by the automatic object correspondence establishment
algorithm are not satisfactory. For example in Figure 12-
left, the right floor plan is the target layout, and the object
highlighted in red can be manually modified by the user.
Applications. Our system can be used for several poten-
tial applications. For example, in Figure 13, we show two
commonly seen applications of convertible layout design in
real world. In the first case (Figure 13(Top)), we show how
our system can program the seats in a high-speed rail with
the capability to adjust their directions. A straightforward
approach to this task is to manually turn the orientations of
the seats one by one, as shown in Figure 1. Our system auto-
matically programs a more efficient way for layout conver-

Fig. 11. Additional examples of convertible indoor layouts designed by
our system. Top: Motion planning results without (Left) and with (Right)
obstacles. Bottom: convertible layout design for large rooms. We show
two results given different source layouts and the same target layouts.

Fig. 12. The user interface of our system for 2D floor plan editing (Left)
and 3D scene visualization (Right).

sion with synchronous movements, rather than one by one
rotating all chairs. In the second case (Figure 13(Bottom)),
our system designs a stowable exhibition hall, in which the
movable showcases can be arranged in different forms.

In Figure 14, we show two more indoor scene designs
created by our system. In these two examples, the convert-
ible layouts are designed with the user-specified, auto-lift
objects (labeled in blue in the floor plans). These examples
show the potential and scalability of our system for the de-
sign of more complex, multi-purpose, and stowable indoor
scenes.

As discussed in Section 4.3, our method can be easily
extended to unconstrained motion planning. In Figure 15,
we show three cases of layout conversion without mechan-
ical constraints (in the left, middle and right columns). The
right column also shows that our system can handle non-
rectangular room layouts. We observe that a large room
typically affords multiple solutions to convertible layouts
given multiple reference layouts, and a non-rectangular
room could require more translation movements whose
directions are neither horizontal nor vertical. Therefore,
it would be useful to choose the self-moving furniture
to design free-form layout conversions for large or non-
rectangular rooms. In contrast, due to the limited layout
variations in small rooms, layout conversion under mechan-
ical constraints would be a more suitable choice.
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Fig. 13. Two application examples of our system. We show the source (left) and target (right) layouts in each case.

Fig. 14. More complex convertible layout designs with auto-lift objects (highlighted in blue in the floor plans). We show the source (left) and target
(right) layouts in each case.

Fig. 15. Examples of unconstrained layout conversion programming,
where each auto-driving agent moves freely. The layouts in the middle
row can convert to two different layouts in the top and bottom rows with
our programmed conversion process.

User studies. We conducted two user studies to evaluate the
efficiency of our system for convertible layout design. In the
first one, we compare the time cost between our system and

TABLE 1
The computational time of designing convertible layouts with (W/) our

system, and the average interaction time of the participants for the
same tasks without (W/O) our system. All the examples with our

system listed in this table are automatically generated.

Figures 2 10-(c) 10-(d) 13-(a) 13-(b) 14-(b)
W/ (sec) 6.5 6.5 14.5 2.1 8.8 7.5

W/O (sec) 37.4 35.3 100.9 40.1 115.1 32.3

participants for motion planning, when the target layout
and initial path are known. This user study mainly evaluates
our control stream programming algorithm. In the second
one, we test our system in the design of the target layout and
initial path, by comparing its time cost to the participants.
This is to validate the efficiency of our convertible layout
design system.

In the first user study, we invited 10 computer science
undergraduate students (6 males, & 4 females, aged from 23
to 25) to participate in the study. All of them have basic
training in 3D modeling. Each participant was given six
different layout pairs (i.e., the source and target layouts)
with the associated initial motion paths, presented in a
random order. They were asked to plan the motion for
converting each source layout to the corresponding target
layout, with and without our system. For the latter, the
participants had to manually plan the movements of objects
through a simple interface where the participants could
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adjust the object motion in a timeline to address potential
object collisions, highlighted using the method of [38]. Table
1 summarizes the comparison results between the computa-
tional time of our system and the average interaction time
of the participants without our system. In this table, all the
cases with our method do not need any user intervention. It
can be seen that even with the highlight for object collision,
the participants needed significantly more time to design
each convertible layout without our system. Only for the
case in Figure 13-(a) our method still requires user assistance
to adjust the object priorities, which additionally takes about
12 seconds. But the total time (14.1 seconds) needed to create
this example with our system is still significantly less than
that (40.1 seconds) needed by the participants (without our
system).

In the second user study, 5 undergraduate students (4
males & 1 female; aged from 23 to 25) were invited to design
target layouts and initial paths, given nine different source
layouts and the associated reference layouts. We taught the
participants how to examine whether a designed convert-
ible layout is workable or not by showing them several
positive examples as well as the layout conversion pro-
cess in advance. In this process, the participants manually
manipulated the position/direction of each object within
each source layout to generate a target layout through the
UI of our system. Afterwards, we provided a 2D drawing
interface to assist the participants in drawing the paths
(obeying our mechanical constraints) between the source
and target layouts. Note that our system did not suggest any
object correspondence or potential path here. We then tested
the results designed by the participants through our system
to determine whether this task was completed. If not, we
would identify to the participants where the issue existed
and let them refine the target layout or paths until the
updated results passed the test. On average, each participant
spent about 119 seconds completing each design task, while
our system needed only less than 1 second for computation
and about 9 seconds for user intervention. Moreover, we
also analyzed the quality of the target layouts and initial
paths created by the participants and our system, by using
them as the inputs of the control stream programming
algorithm. We then compared both the complexity costs
and time costs of these results (i.e., convertible layouts). On
average, the complexity costs for the participants’ results
and ours are 41.0 and 42.4, respectively. Assuming each
time step of movement takes 1 second, the time costs for
the participants’ results and ours are 13.9 and 13.6 seconds,
respectively. We found that most of the paths designed by
the participants and our system are similar. Because the par-
ticipants can frequently adjust their target layouts, in some
cases, the participants’ results could have lower costs than
ours. However, considering the design time surges almost
twelve-fold for human users without our system, it shows
the usability and efficiency of our system for convertible
layout design.

Limitations. Despite the above-demonstrated effectiveness,
our current system still has several limitations:

• First, the quality of the programmed layout conver-
sion process relies on the input layouts of our system.

Fig. 16. Top: Two indoor layouts (Left and Right) without a feasible
solution of layout conversion, since the room size limits the rotation of
the desk (Middle). Bottom: The target layouts before (Left) and after
(Right) user intervention to manually fix the orientations of the two desks
at the bottom. We highlight the correct and incorrect orientations with
green and red arrows, respectively.

For example, our system requires that the source
and reference layouts are similar in terms of both
geometry and function. When two given layouts are
significantly different, it is difficult to design a rea-
sonable conversion process even for professional de-
signers. Our system might fail to produce convertible
layouts for input scenes with too limited space. For
example in Figure 16-Top, when the layout converts
from the left scene to the right one, the conversion
is stuck in a status shown in the middle, due to
the lack of adequate space to support the rotation
of the desk. This problem might be addressed by
manual intervention, e.g., specifying certain objects
to be auto-lift.

• Second, we have several simplified assumptions at
both the object correspondence establishment step
and the target layout creation step: (i) we only con-
sider the distance similarity and size similarity to
establish object correspondences while ignoring the
semantic and functional similarities; (ii) we deter-
mine the orientation of an object by fitting it to the
corresponding one in the reference layout, which
could lead to wrong orientations (Figure 16-Bottom)
especially for objects from different categories. Such
problems are currently fixed through user assistance
in our system.

• Third, besides the target layout refinement, there are
two scenarios that might need user assistance in our
current system: (i) since large scenes often have many
objects leading to complex collision scenarios (e.g.,
Figure 11-bottom), user assistance might also be
required to replace a certain suggested initial path
with the other one, to improve the quality of the
initial path and thus decrease the difficulty of the
subsequent motion planning task; (ii) our motion
planning is done in a greedy manner. This means
that the objects with high priorities have a higher
influence on the solution, and might fail to generate
a solution of the control stream programming caused
by complex object collisions. To fix such an issue, we
allow users to change the priorities of the collided
objects.

• Lastly, the mechanical constraints considered in this
work are somewhat limited. Therefore, our current
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system might be still insufficient to handle the con-
vertible layout designs with foldable or deformable
indoor objects. Besides, our current system only fo-
cuses on large movable furniture, but not on small
or lightweight furniture objects like chairs. It might
be more economical to move these objects manually
after the layout conversion, rather than automatically
move them through complex motion mechanisms.

6 CONCLUSION

In this paper, we have presented a system for motion
planning that enables the design of convertible indoor scene
layouts, with a minimal amount of user assistance. Our
system first establishes the object correspondences between
two given source and reference layouts, and then initially
programs the paths and associated movements of all the
objects based on the mechanical constraints. Finally, our
system fine-tunes the control stream and optimizes the
motion mechanisms to avoid object collisions and improve
conversion efficiency. In this way, our system can assist the
design of indoor scenes with convertible layouts, and inspire
multi-purpose indoor scene creation.

As the future work, we plan to extend our current
system to handle more types of motion mechanisms and the
reconfigurable function of indoor objects such as foldability,
to design more complex convertible indoor layouts. Mean-
while, discovering the composability of difficult shapes and
functionality of indoor objects, or leveraging a large indoor
layout database to search for potential convertible layouts,
will also be interesting to explore.
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