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ABSTRACT
In this work we introduce 2D-Dragger, a unified touch-based
target acquisition technique that enables easy access to small
targets in dense regions or distant targets on screens of vari-
ous sizes. The effective width of a target is constant with our
tool, allowing a fixed scale of finger movement for capturing a
new target. Our tool is thus insensitive to the distribution and
size of the selectable targets, and consistently works well for
screens of different sizes, from mobile to wall-sized screens.
Our user studies show that overall 2D-Dragger performs the
best compared to the state-of-the-art techniques for selecting
both near and distant targets of various sizes in different den-
sities.

Author Keywords
Target acquisition; accessibility; effective width; touch input

ACM Classification Keywords
H.5.2. User Interfaces: Graphical user interfaces (GUI); I.3.6
Methodology and Techniques: Interaction techniques

INTRODUCTION
Touch-based interaction is very convenient and intuitive to
perform, but suffers from various accessibility problems.
First, small targets especially in a dense region, are difficult to
access accurately due to the well-known fat finger problem,
which causes both inaccurate input and undesired occlusion.
This problem is more obvious on smaller touch screens, e.g.,
of wearable devices. On the other hand, on big touch screens
(e.g., table-size, wall-size), distant objects are not accessible
by direct touch. A similar problem also exists with mobile
devices when using single-hand interaction. The thumb be-
comes the only finger for interaction which is rather short in
the context of bigger mobile touch screens.

The small-target and distant-target acquisition problems have
been studied extensively. However, most of the existing tech-
niques focus only on one of the two problems. For exam-
ple, Shift [24] and LinearDragger [2] are two techniques
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for selecting small targets on mobile touch screens. Thumb-
Space [14] and BezelCursor [15, 16] are designed to facilitate
selection of distant objects in the scenario of single-handed
mobile interaction. Many techniques such as Vacuum [5] and
Drag-and-Pick [3] have been proposed to access distant ob-
jects on large displays. MagStick [22] is one of the very few
methods that aim to resolve both the small- and distance-
target problems, but it is designed for small screens (e.g., mo-
bile phones) and does not scale well to larger displays (e.g.,
tablet/tabletop screens).

Our work is inspired by LinearDragger [2], a recent tech-
nique that maps the targets in a local region under the touch-
ing finger into a 1D list and allows users to select one of the
targets using a linear dragging operation. Since each target in
such a local region is associated with a fixed effective width, it
is capable of selecting a small target in a dense cluster. How-
ever, this method cannot access targets outside the local re-
gion, let alone distant objects, since representing numerous
2D elements in a single 1D list is not effective.

Our technique, which we call 2D-Dragger, is a unified touch-
based target acquisition technique that enables easy access to
both small and distant targets on screens of various sizes, thus
providing users a consistent experience in different devices
and application scenarios. As illustrated in Figure 1, we skip
empty spaces between selectable targets and use a pointing-
like mechanism to select nearby targets, instead of packing
all elements into a single 1D list. This enables easy access to
distant objects even on large-size screens. 2D-Dragger uses
a fixed scale of finger movement to capture a new target so
that each target has a constant effective width, thus making
it work equally well for different target sizes and distribution
densities. 2D-Dragger does not cause any finger occlusion as
the user can start the selection at any location on the screen.
Since no virtual cursor is needed, our tool also introduces no
auxiliary visual elements.

We have conducted a controlled user study to evaluate the
performance of 2D-Dragger under different conditions, and
found that our technique performed better than LinearDrag-
ger, ObjectPointing, and Bubble+Touchpad in terms of selec-
tion time and/or error rate for reachable selection (i.e., select-
ing targets within the reach of a finger or arm). 2D-Dragger
also outperformed ObjectPointing and MagStick in terms of
efficiency or accuracy under the remote selection scenario
(i.e., selecting targets beyond the reach of a finger or arm).

RELATED WORK
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Figure 1. Overview of 2D-Dragger. Our technique uses a simple touch-and-drag operation to achieve efficient target acquisition. (a) When the user
places a finger on the screen, a selectable target (if any) near the contact point within a small region of interest (gray circle) becomes the first captured
target (solid black element 0). (b) Meanwhile a circular effective area (the left lighter green circle; slightly bigger for the firstly captured element) is
defined at the captured element 0. The user can then capture a nearby target (element 1) by dragging the contact finger out from the effective area in the
direction towards the new target. The right green circle is the effective area of element 1. (c) When a new target (element 2) is captured, a new circular
effective area (the rightmost green circle) is placed at the current finger location. The user can then continuously capture the next nearby target by
keep dragging the contact finger in the user’s intended direction. (d) Once the desired target is captured, the user can lift the contact finger to confirm
the selection. The rightmost green circle represents the effective area of the current selection. Note that the green circles here are invisible to users.

We focus our discussions here mainly on the target acqui-
sition techniques specifically designed for touch-based inter-
faces. Many techniques have been proposed to solve the inac-
curacy and occlusion issues caused by the fat-finger problem.
For example, Offset Cursor [21] and Shift [24] focus on solv-
ing the occlusion problem. The accuracy and/or the overall
performance of acquisition can be improved, for example, by
enlarging the effective size of small targets (e.g., [20, 4]) or
their visual size via zooming (e.g., [22, 19]), or using multiple
taps on small targets [1]. However, all the above techniques
become ineffective or even infeasible for selection of distant
objects, which are beyond the reach distance (e.g., of a thumb
for single-handed mobile interaction, or of an arm for large
screens). For example, both Shift and TapTap [22] require the
initial touching point to be in close proximity to an element
of interest.

Several techniques have been proposed to address the remote
selection problem caused by single-handed interaction of mo-
bile devices with screen sizes bigger than the reach limit of
the interaction thumb. This is generally achieved by map-
ping the thumb motion to cursor motion in various ways. The
MagStick technique [22] uses the first contact point as a ref-
erence point and the user can then drag the thumb to control
a virtual cursor such that the virtual cursor is moved in the
opposite direction with respect to the reference point. Due
to the 1:1 correspondence between motor and display move-
ment, the reach limit is at most doubled by MagStick. In other
words, MagStick only partially solves the distant-target ac-
quisition problem. The ThumbSpace technique [14] allows
the user to define a small input area within the thumb’s reach
and maps this input area to the entire screen space so that the
user can control a virtual cursor by using this input area as a
touch pad. While ThumbSpace works well for large screens,
it lacks precise touch control to acquire small targets. In ad-
dition, ThumbSpace still suffers from the occlusion problem.

The problem of how to access distant objects on areas beyond
an arm’s reach of the user has also been explicitly studied. For
example, Vacuum [5] uses a circular widget with a user con-
trollable arc of influence and brings far away objects inside
this influence arc closer to the widget’s center in the form of
proxies for selection and manipulation. Forlines et al. present
HybridPointing [11], which relies on a circular trailing wid-
get and allows fluid switching between absolute and relative

pointing with a direct input device. In contrast, our tech-
nique does not involve any explicit mode switching. Gesture
Select [8] is designed for selecting remote targets on large
screens through user-drawn initial and continuation marks,
instead of pointing-based selection. While these techniques
might be adapted for single-handed mobile interaction, how
to make them effective for selecting small targets in a dense
region is not an easy problem.

One possible solution to both the small- and distant-target
acquisition problems is to adopt cursor-based techniques
(e.g., [26, 13, 7, 9, 12, 10]) by replacing mouse input with
a virtual touchpad input. For example, Bubble Cursor [12],
which dynamically resizes the activation area of the cursor
depending on the proximity of surrounding targets, might be
adapted. With Bubble Cursor, the effective width of targets
is dependent on target distribution and thus is small when the
distribution is dense. Our technique bears close resemblance
to ObjectPointing [13], in the sense that both techniques aim
to skip empty spaces between selectable targets and at any
time only one target is captured. Their main difference is
that, in ObjectPointing, the effective widths are the sizes of
the selectable targets so that the cursor moves only within the
targets and is visible to the user. Such a design would lead
to unpredictable control, since the switching of the captured
target would be too fast (slow) if the target sizes are too small
(big). A more detailed comparison between 2D-Dragger and
touch-based Bubble Cursor and ObjectPointing is conducted
in our user study.

There are many methods using dynamic effective width (e.g.,
Bubble Cursor [12], DynaSpot [9], ObjectPointing [13]),
which usually assign small effective width to dense targets.
Therefore, they require very accurate input to select desired
targets in a dense region. Another method that uses dynamic
effective width is Bayesian Touch [6], which conceptualizes
touch inputs as an uncertain process and improves the accu-
racy using Bayesian touch criterion. However, this approach
is designed for direct-touch-based selection and how to ex-
tend it for remote target selection is unclear.

DESIGN RATIONALE
The design of 2D-Dragger is driven by the following set of
guidelines:
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A unified interface. A normal user nowadays often has ac-
cess to multiple touch devices (e.g., smartphone and touch-
enabled TV display), which are equipped with displays of
different sizes and resolutions. Providing a single unified
target selection technique can certainly enhance user expe-
rience when using such touch devices with different speci-
fications.

Skipping empty space. For sparsely distributed elements,
there are large empty gaps between elements. Skipping
such empty spaces will greatly aid the task of element se-
lection on large-size screens. This also generally shortens
the selection time according to Fitts’ law reference.

Constant effective width. A constant effective width is de-
sirable for accessing elements of various sizes. It avoids
error-prone selection for small-size elements, and reduces
moving distance for large-sized elements.

Supporting both direct and indirect selection. Direct tap
no doubt is the fastest way to access an element that is
within reach. However, for effective selection of small-size
elements (due to undesired occlusions) or remote elements
(out of users’ reach), indirect selection might be preferred.

USER INTERFACE
As illustrated in Figure 1, 2D-Dragger uses a simple touch-
and-drag operation to achieve efficient target acquisition.
When the user places a finger (e.g., a thumb for single-handed
interaction of mobile devices) on the screen, if there is any se-
lectable target near the contact point, this target will become
the currently captured target (Figure 1a). Otherwise (i.e., the
finger touches an empty space), the contact point is used as
a virtual starting point. Meanwhile a small circular effec-
tive area is defined at the initial contact point. The user can
then capture a nearby target by dragging the contact finger out
from the effective area in the corresponding direction, i.e., the
approximated direction from the currently captured target to
the next target (Figure 1b). When a new target is captured, a
new circular effective area is placed at the current finger loca-
tion. The user can continue to capture the next nearby target
by keep dragging the contact finger in the user’s intended di-
rection (Figure 1c). Once the desired target is captured, the
user can lift the contact finger to confirm the selection (Fig-
ure 1d). Since 2D-Dragger decouples the motion space and
visual space, it avoids finger occlusion naturally. The user
can place the finger near the target rather than on it, and then
select it by our regular dragging control.

A key feature of 2D-Dragger is that, while dragging to ac-
cess a target, it associates every selectable item with a circu-
lar effective area of constant width (Figure 1c). Note that the
effective area is always defined and centered at the current
finger location when a new target is captured. This ensures
that only a fixed scale of finger movement (to move outside
the circular effective area) is required to capture a new target.
This feature enables a regular dragging control for users to
capture any nearby target from the currently captured item.
Therefore, the control of our method is insensitive to the dis-
tance between and size of the selectable targets. We adopt a

(a) (b) (c)

Figure 2. Illustration of dynamic Delaunay triangulation (DT). (a) Static
DT; (b) and (c) In our dynamic DT, the elements in the finger’s moving
direction (arrows in green) are more likely to be the selection candidates
to better reflect the user’s intention.

small effective width so that the user can easily access distant
targets with only a short dragging motion.

Our design leads to a less error-prone selection experience.
Since the effective area is always centered at the current touch
point when a new target is captured, the user can safely select
the currently captured target by releasing the touching finger.
The centered effective area ensures that the selection opera-
tion would not be easily affected by the noisy input caused
by the finger releasing action. In contrast, LinearDragger de-
fines the effective area with a simple linear partition. There-
fore, it is more likely to introduce selection errors when the
touch point is close to the boundary of the effective area of the
current target, any small movement of the touch finger could
cause an unwanted switching to the target before or after the
current target.

Our method is more general and adaptable to different tar-
get distributions than LinearDragger due to one major differ-
ence. LinearDragger only allows a fixed browsing direction
(defined by the initial dragging direction) and therefore is not
directly applicable to targets in a large region, since it would
cause unpredictable target switching in the direction orthog-
onal to the dragging direction. LinearDragger requires O(n)
time on average to reach a desired target because of its lin-
ear search property. In contrast, 2D-Dragger allows users
to change the browsing direction during interaction and only
the targets in the moving direction will be captured. There-
fore, in theory, only O(

√
n) time on average is needed for

2D-Dragger to capture a desired target.

We integrate our dragging interface to the classical direct
touch method by associating a bigger effective area to the
first captured target (element 0 in Figure 1b) if the user di-
rectly places the finger over it (i.e., not in an empty space).
The user can then slightly drag the finger away from the first
contact point to expose the captured target before confirming
the selection, or the user could use our dragging control to
select other nearby targets. This design can reduce the error
rate of direct touch by allowing the user to correct the cap-
tured target if the first captured target is not the desired one.

IMPLEMENTATION

ROI and First Captured Target
When the user places a finger tip on the touch screen, a local
region of interest (ROI, gray circle in Figure 1a) is defined at
the first touch point. If there is any selectable target within
this ROI, the closest one is picked as the initial captured tar-
get. If no such target is found, we temporarily add a virtual
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starting point at the first touch point. In both cases the user
can then drag the touching finger to capture a nearby real tar-
get, or accept the currently captured target (if any) by releas-
ing the touching finger. Note that the virtual starting point
will be removed after the user has captured the first nearby
target. We empirically set the radius of the ROI to 3.6mm
(i.e., 26 pixels for our testing device), which is small enough
while still selectable by human finger.

Determining Nearby Targets
Recall that the user can capture any nearby target from the
currently captured one by dragging the touching finger in the
corresponding direction. To define the set of nearby targets,
we compute a Delaunay triangulation (DT), which takes the
centers of the selectable targets as the input vertices. As il-
lustrated in Figure 2, the candidate set of the nearby targets
(dots in blue) of a given target (dot in black) is their one-ring
neighborhood in the computed DT.

We assume that the finger’s moving direction indicates the
user’s intention, and the elements in this direction are thus
more likely to be the selection candidates. To facilitate better
orientation control of our interface and allow easier capture
of the targets in the finger’s moving direction, instead of a
static DT, we compute a dynamic DT, which is driven by the
moving direction of the finger. Specifically, when computing
the dynamic DT, we define the distance between two targets
p and q as follows:

dist(p, q) = ‖λ projv(dpq) + projv⊥ (dpq)‖, (1)

where dpq is the displacement vector from p to q, and v is
the normalized velocity vector of the finger’s movement, ob-
tained using the same method in [23]. v⊥ is the unit vector
perpendicular to v and projv(·) is the projection function that
projects the input vector to v. λ is a parameter in the range
[0, 1] to decide how much the triangulation space should be
scaled along the moving direction. λ = 1 for the traditional
Delaunay triangulation, i.e., dist(p, q) = ‖dpq‖. With this dis-
tance function, when the displacement vector dpq is perpen-
dicular to the moving direction v, dist(p, q) = ‖dpq‖, without
any change. If dpq is parallel with v, dist(p, q) = λ|dpq‖,
which becomes smaller and is scaled with the ratio λ. In our
current implementation we set λ as 0.5. Two examples of the
dynamic DT are shown in Figure 2 (b) and (c).

There may exist slim obtuse triangles in the computed
DT. The neighboring relationship represented by the longest
edges (red dotted edges in Figure 2) of these triangles, which
we call the weak edges, is not desirable as such edges may
cause undesired target switching during finger dragging. We
thus simply remove them from the computed DT. We flag an
edge e as a weak edge if its length is more than 0.95(a + b),
where a and b are the lengths of the opposite edges of any
triangle sharing the edge e.

Determining Next Captured Target
After identifying the set of nearby targets Q = {qi} of the cur-
rently captured target p, we need to find the best one q ∈ Q
according to the finger’s moving direction. Our first attempt
was to simply choose the nearby target with the best match-
ing direction, i.e., q = arg minqi θi, where θi represents the

angle between dpqi and v. However, we observed that this
often produces undesired switching between targets, due to
the user’s inability of precisely specifying their desired di-
rections. To address this difficulty, we propose an approach
which is more tolerant of imprecise user input. First, we find
a subset Q′ of Q that roughly matches the finger’s move di-
rection. Specifically, Q′ is defined as {qi|θi < α}, where α
is the deviation angle that represents how precise the user can
specify a given direction by moving a finger. The value of α is
determined by our preliminary study. There might exist two
or more elements in Q′, especially when the current selection
is surrounded by many potential targets. Simply switching to
the one with the smallest angle would not be reliable , since it
is not easy to specify accurate switching direction angles by
finger. Instead, the target q ∈ Q′ with the shortest distance
to the currently captured target is picked as the next captured
target, to avoid selecting an unintended target with a smaller
angle but a larger distance. If Q′ is empty, we choose the
target q ∈ Q that best matches the moving direction:

q =


argmin

qi∈Q
′

‖dpqi‖ Q′ , ∅

argmin
qi∈Q

θi Q′ = ∅.
(2)

To avoid target switching in the backward direction, we sim-
ply disable switching to a target qi if it is behind the current
moving direction (i.e., when θi > 90°).

Selection Cancelation
We have implemented and tested two cancelation methods.
First, move back the finger to the first contact point to can-
cel the selection. Second, introduce virtual targets at a screen
boundary so that the user can drag the finger to the bound-
ary to cancel the selection. We included both methods in our
system.

PRELIMINARY STUDY
The performance of 2D-Dragger is affected by two user-
dependent parameters, i.e., deviation angle α and effective
width w. We designed two preliminary studies to determine
the values of these two parameters.

Apparatus
The experiment was conducted on an Acer W3-810 tablet
computer, with 1.80 GHz Intel Atom CPU, 2.00 GB RAM
and an 8.1′′ (20.6cm) touch screen running MS Windows
8. The screen is of 17.5cm × 11cm and has a resolution of
1280×800 (73.6 pixels/cm).

Participants
We recruited 8 university students (4 males, 4 females) to par-
ticipate in both preliminary studies. All of them were right-
handed and had extensive experience in using touch devices,
such as tablets or smart phones.

Preliminary Study I: Determining Deviation Angle
Task Design. In each task of this study, the participants were
given a reference direction and they were required to spec-
ify the same direction by dragging their finger on the touch
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(a)

(b)

(c)

Figure 3. Illustration of preliminary study I. (a, b) In each task of this
study, participants were given a reference direction, which was visual-
ized as two points. The distance between the two points varies in differ-
ent tasks. (c) The participants were asked to specify the same direction
by dragging their finger on touch screen.

screen (see Figure 3). The reference direction was illustrated
by two small circles (of radius 6 pixels) on the screen, with
the one at the screen center as the starting point. The prox-
imity between the two circles was considered as a controlled
factor, with the settings {20px, 30px, 40px} to simulate dif-
ferent densities of elements in a region. In total 12 different
directions were evenly sampled and tested in the study, and
for each configuration 3 identical tasks were tested. The or-
der of the tasks in all configurations were randomized during
the study. In total there were 8(USER) × 3(PROXIMITY) ×
12(DIRECTION) × 3(TASK) = 864 trials were recorded. Be-
fore the user study, we explained the details of the procedure
and gave each participant several minutes warm-up time to
get familiar with this user interface.

Results. For each trial we recorded the deviation angle, i.e.,
the absolute value of the angle between the reference di-
rection and the direction specified by the participants. The
mean deviation angle µ was 12.455° with the standard de-
viation σ = 9.995°. Repeated measures ANOVA showed
that there was no significant main effect in deviation angle
(F(11, 84) = 0.691, p = 0.743) and different proximity set-
tings (F(2, 21) = 0.810, p = 0.458) settings for tested direc-
tions. This means the moving direction accuracy is insensi-
tive to the directions and distances between the source and
target. Therefore, using a predefined constant deviation angle
α would be sufficient for all configurations. Accordingly, we
set the deviation angle threshold α as µ + σ = 22.45°, which
is greater than around 83% of the deviation angles recorded
in this study.

Preliminary Study II: Determining Effective Width
The effective width determines how long the finger has to
move to trigger selection switching. It affects selection ef-
ficiency and accuracy. If it is set too small, switching would
be very sensitive to the finger’s movement and thus increase
the error rate and selection time. On the other hand, if set too
large, it would take longer time and distance to select a tar-
get, but with lower error rate. We conducted this preliminary
study to find an effective width that has both good selection
efficiency and low error rate.

Task Design. In this study the participants were asked to per-
form selection tasks with our technique in 4 different effective
width (target diameter) configurations, i.e., 5px, 20px, 35px,
and 50px. In each task, the participants needed to select a
given target element from a set of randomly distributed tar-
gets. As we aimed to remove the effect of the initial touch
position in this study, we restricted the first captured element
to be at the center of the canvas, independent of the first touch
point of the contact finger. For each configuration, 40 tasks
were assigned to each participant. The participants were al-
lowed to redo the selection when an incorrect target was se-
lected. In this study, a total of 8 (USER) × 4 (SIZE) × 40
(TASK) = 1280 trials were performed, and the completion
time, finger moving distance, and number of selection for
each trial were recorded.

Results. As can be shown in the results (Figure 4), 20px
was the best effective width, which overall gave the best ef-
ficiency and lowest error rate. Repeated measure ANOVA
showed a significant main effect in both selection time and er-
ror rate for the tested effective width settings (selection time:
F(3, 21) = 11.784, p = 4 × 10−5; error rate: F(3, 21) =
14.510, p < 7 × 10−6). Note that when the effective width
was too small (5 pixels), both selection time and error rate
were very large. When the effective width increased from 20
pixels to 50 pixels, the error rate did not change significantly,
while the selection time increased linearly. For these effec-
tive width settings, no significant main effect was observed
(selection time: F(2, 14) = 1.544, p = 0.237; error rate:
F(2, 14) = 0, p = 1). We chose 20px as the best effective
width, since it was among the best options, while was small
enough to minimize the finger’s move distance.
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Figure 4. The selection times (left) and error rates (right) under different
effective width configurations.

EVALUATION
To evaluate the effectiveness of 2D-Dragger we compared
our technique with other target selection techniques in two
scenarios, namely, reachable selection (Study I) and remote
selection (Study II), as illustrated in Figure 5. These two
selection scenarios simulate many kinds of selection tasks
on touch devices. The compared techniques were Bub-
ble+Touchpad, MagStick, LinearDragger, and ObjectPoint-
ing. We chose the four techniques because no other tech-
nique is applicable to both reachable and remote selection.
We modified some of them in our experiment for a fairer com-
parison. In addition, the experiments in [2] already showed
that LinearDragger was significantly faster than Direct Touch
/ Bubble [12] / Escape [27] / Shift [24] and we compared 2D-
Dragger with LinearDragger in Study I (reachable selection
scenario) using a similar task design. Therefore, we could
indirectly compare 2D-Dragger with these techniques using
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(a)

(b)
Figure 5. Two scenarios evaluated. (a) Reachable selection scenario: the
user can use a finger to directly touch any position on the screen. (b)
Remote selection scenario: it is difficult for the user to reach some area
of the screen. The area in red roughly represents where the user’s thumb
can reach. The red dots are the targets to be selected.

LinearDragger as reference. A detailed description of the
compared techniques is given below.

Bubble+Touchpad. Bubble Cursor [12] was first introduced
to assist element selection with computer mouse. A simple
extension of Bubble Cursor on touch devices was to use the
contact point of the finger as the cursor [2]. This setting, how-
ever, was unable to avoid the occlusion of the finger, making
the selection error-prone in dense layouts [2]. Moreover, re-
mote selection is not possible with this setting as the nearest
target is always selected. To address these problems, we com-
bined Bubble Cursor with a virtual Touchpad [25] in our ex-
periment. When the user touched the screen, the position of
the underlying cursor was initially set the same as the contact
point. When she moved her contact finger, the speed of the
cursor was set to three times faster than that of the finger so
that she could reach anywhere for reachable selection on the
screen of our test device while still being able to do precise
selection. We tested other speed parameters for our touch de-
vice, and found that (a) larger values reduced the selection
time but led to harder control of the selection and thus higher
error rate; (b) smaller values gave better control but increased
the selection time. The speed of 3 times faster achieved a
good balance between selection accuracy and efficiency.

There are many other refined touchpad-based methods [17,
18] using multiple touch actions or auxiliary devices for other
selection applications, rather than hand-held touch devices.
However, since our method can also be adapted to similar
applications, we compared our method only to the original
touch-pad techniques with special refinement for target-aware
pointing.

MagStick. MagStick [22] is a virtual cursor technique origi-
nally designed for selection on touch devices. The user con-
trols the cursor’s movement by moving the finger in the op-

posite direction. Therefore MagStick can avoid occlusion of
finger. In our experiment we followed the original implemen-
tation but with an improvement: each element is associated
with a proximity area and it is selected if the cursor is within
this area. We expanded the proximity area such that at any
time, only one element was selected. This implementation
could further reduce the effort of selecting a target element.

LinearDragger. LinearDragger [2] was designed for reach-
able selection of small elements in dense layouts. It assigns
equal-width effective areas linearly to all targets within the
ROI defined by the first touch point. Since it is not suitable
for remote selection, we only compared it with our tool in
Study I. The implementation of LinearDragger in our exper-
iment was the same as that in [2].

ObjectPointing. ObjectPointing [13] neglects the empty re-
gions between elements when moving the cursor. Its selection
behavior is similar to 2D-Dragger, but the effective width in
ObjectPointing is determined by the size of the currently se-
lected elements. In addition, its algorithm for jumping to the
next element is mainly determined by the cursor’s kinematics.

Apparatus and Participants
The same tablet device in the preliminary study was used
here. We recruited another 10 (4 females and 6 males) univer-
sity students to help with Studies I and II. They were different
from those in the preliminary study. Again all of them were
right-handed and had extensive experience in using touch de-
vices.

Study I: Reachable Selection
This study aimed to simulate the reachable selection scenario,
i.e., the target element is reachable by a finger. This sce-
nario is common when operating on a small-screen smart-
phone, tablet held by another hand, or touch table of small
size. In this study each participant was asked to hold the tablet
with his/her non-dominant hand, and to perform selection op-
erations with the dominant hand. Five techniques (TECH),
including 2D-Dragger, Bubble+Touchpad, MagStick, Lin-
earDragger, and ObjectPointing, were tested.

Task. As illustrated in Figure 5a, each participant was re-
quired to select a specific element, highlighted in red, from a
cluster of elements. All the elements including the target one
were randomly distributed in a circular region of radius 60px
(8.1mm) [2]. This circular region was located at the center
of the canvas, whose size was 1280px × 617px. Around the
cluster we randomly added extra distraction elements with a
gradually reduced density. The layout of the elements was
controlled by two factors: elements size and layout density.
The element size (SIZE) had three settings: 3px, 6px, and
9px. We chose 3px targets because many scenarios contain
such targets (dot flags on map, small-size texts in web pages
or documents). The layout density (DENSITY) was repre-
sented as the number of elements in the cluster. It had three
settings as well: 8, 16, and 24. For each layout configuration,
10 tasks (TASK) were tested. Totally there were 5 (TECH)
× 3 (SIZE) × 3 (DENSITY) × 10 (TASK) × 10 (USER) =
4500 trials for each participant. All tasks were divided into 5
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Figure 6. The selection times (top) and error rates (bottom) of
different techniques(2D-Dragger(2DD), Bubble+Touchpad(BT), Mag-
Stick(MS), LinearDragger(LD), and ObjectPointing(OP)) grouped by
Size (left) and Density (right) in User Study I. The error bars are the
standard error of mean.

groups of different techniques. Each TECH group was fur-
ther divided into 9 subgroups of different combinations of
SIZE and DENSITY. TECH was ordered in a balanced Latin-
square, while the order of subgroups was randomized.

Before the study the participants were given an instruction on
how to use each technique. Then they tried each technique
with similar tasks to the ones in the experiment to warm up.
The instruction and warm up session lasted about 30 minutes
on average. For each task, the participants were told to try
their best to reduce the error while performing selection as
quickly as they could. To better motivate them, we allowed
each participant to have only two attempts for each task in
order to avoid rapid but careless trials and errors using di-
rect touch. After finishing a group of tasks, the participants
were allowed to take a short break. On average it took each
participant about 30 minutes to finish all tasks. Across all par-
ticipants, the order of the techniques was counter-balanced.

Performance Measures. During the study, the following in-
formation was recorded: the selection attempts in individual
trials, including successful and failed ones; the completion
time for individual trials, which was the accumulation of the
time of all attempts. The duration of failed attempts was also
included in the completion time since they also reflected how
easy to use the tested techniques were. Combined with the
error rate, the completion time for individual trials give a rea-
sonable evaluation of the overall performance of the tested
techniques.

Results and Discussions. Figure 6 plots the statistics of the
core information. On average it took the least time (1.063s)
to finish one task with 2D-Dragger. The average comple-
tion times per task for other techniques were: 1.519s (Bub-
ble+Touchpad), 1.377s (MagStick), 1.810s (LinearDragger),
and 1.819s (ObjectPointing). Repeated measures ANOVA
showed a significant main effect in completion time for the

User Study I Selection Time Error Rate
BT MS LD OP BT MS LD OP

SIZE
3 ∗ ∗ ∗

6 ∗

9 ∗

DENSITY
8 ∗

16 ∗ ∗

24 ∗ ∗ ∗

AVG ∗ ∗ ∗

Table 1. Results of Dunnett tests for user study I. The tests were con-
ducted as multiple comparisons, in which 2D-Dragger was compared
with all other four techniques (Bubble+Touchpad(BT), MagStick(MS),
LinearDragger(LD), and ObjectPointing(OP)). An non-empty ∗ entry
means there is significant difference between the specified technique and
our technique for the given configuration.

tested techniques (F(4, 36) = 4.453, p < 0.005). The er-
ror rates of all techniques were 0.055 (2D-Dragger), 0.190
(Bubble+Touchpad), 0.081 (MagStick), 0.091 (LinearDrag-
ger), 0.123 (ObjectPointing). Repeated measures ANOVA
showed a significant main effect in error rate for the tested
techniques (F(4, 36) = 4.999, p < 0.003). We had the fol-
lowing findings on the interactions between different factors:

• Time: there was a significant interaction between TECH
and SIZE (F(8, 135) = 4.937, p < 3 × 10−5). Together
with Figure 6, as expected, we can see that the performance
of ObjectPointing strongly depended on the size of the el-
ements. For other techniques, the affection of elements
size was not significant. No significant interaction was
found between TECH and DENSITY (F(8, 135) = 0.497,
p = 0.856). This implied that all tested techniques were
affected by the element density similarly.

• Error: the significant interaction effects were found be-
tween TECH and SIZE (F(8, 135) = 2.470, p < 0.02) as
well as between TECH and DENSITY (F(8, 135) = 2.546,
p < 0.02). From Figure 6, we found that the error rates
of Bubble+Touchpad and ObjectPointing decreased as the
element sizes increased; Bubble+Touchpad’s error rate in-
creased as the element layout became denser. The er-
ror rates of other techniques were rather stable, with 2D-
Dragger the most stable.

To get a more thorough comparison, we conducted Dun-
nett tests as multiple comparisons, in which 2D-Dragger was
compared to all other techniques. The result was shown in Ta-
ble 1. Combined with Figure 6 (bar graph for size and density
configuration), we can conclude that 2D-Dragger was never
worse than any other techniques. The details are as follows:

• Bubble+Touchpad had achieved similar completion times
to 2D-Dragger, but its error rates were higher than those of
2D-Dragger. Specifically, the error rates of 2D-Dragger
were significantly lower than those of Bubble+Touchpad
when the size was small (3px) or layout was dense (=24).
This is possibly because the cursor’s movement is sensitive
to finger’s motion, especially when the target elements are
very dense. So when the target elements are too small or
too densely distributed, it is hard for Bubble+Touchpad to
balance the occlusion avoidance and selection accuracy.
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• Since LinearDragger always required dragging to a desired
element from the outermost one, 2D-Dragger was signifi-
cantly faster than LinearDragger in most cases. This effect
was even clearer when the layouts became denser.

• 2D-Dragger was significantly faster than ObjectPointing
when the element size was small or the layout was dense.
The deficiency of ObjectPointing was caused by its effec-
tive width being dependent on element sizes and its ele-
ment switching algorithm. When the elements were small,
it became difficult for the participants to control switching
with ObjectPointing. This was also the reason behind the
significantly higher error rate of ObjectPointing than 2D-
Dragger in the small-size configuration. In addition, since
the element switching algorithm of ObjectPointing does
not consider the nearby relation among elements, there are
many more candidate elements for switching. In dense lay-
outs, the number of candidates becomes even larger, mak-
ing it more difficult for our participants to switch to the
target elements.

• In this study, MagStick achieved a similar performance to
2D-Dragger, in terms of both completion time and error
rate.

Study II: Remote Selection
This study aimed to simulate the scenarios where a target el-
ement is beyond the reach of a finger or arm. This situa-
tion happens when operating on a large-screen smartphone
with a single hand, large-size touch table, and wall-size touch
screen. The participants were required to hold the tablet with
the dominant hand and use the thumb of the same hand to
perform the selection operation. We tested four techniques
in this study, namely, 2D-Dragger, Bubble+Touchpad, Mag-
Stick, and ObjectPointing. LinearDragger was excluded in
this study, since it requires the specification of a small set of
elements for linear navigation and becomes impractical with
many elements in a layout.

Task. The task was to select a desired element among distrac-
tion elements as well, but with different layout settings. For
each task, the elements were randomly and uniformly dis-
tributed on a 1290px × 617px canvas, and one of them was
highlighted in red as the target element (Figure 5b). Since
the participants were required to hold the tablet and perform
the selection with the same hand, they could not select the
target by direct touch for most tasks. The layouts of the el-
ements were controlled by two factors as well: element size
and layout density. The element size had the same settings as
in Study I: 3px, 6px, and 9px. The layout density was repre-
sented as the number of all elements on canvas. It had three
settings: 50, 100, and 150. For each configuration, 10 tasks
were tested. Totally 4 (TECH) × 3 (SIZE) × 3 (DENSITY)
× 10 (TASK) × 10 (USER) = 3600 trials per participant were
collected. The distribution of all tasks to the participants was
similar to that in User Study I except that the size of the TECH
group was 4 this time.

Since the tasks were different from the ones in Study I, the
participants were given about 15 minutes to get familiar with
the tasks as warm-up. The experiment was divided into four
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Figure 7. The selection times (top) and error rates (bottom) of different
techniques (2D-Dragger(2DD), Bubble+Touchpad(BT), MagStick(MS),
and ObjectPointing(OP)) grouped by Size (left) and Density (right) in
User Study II. The error bars are the standard error of mean. Again
space between 2D-Dragger and Bubble+Touchpad

Study II Selection Time Error Rate
BT MS OP BT MS OP

SIZE
3 ∗ ∗

6 ∗

9 ∗

DENSITY
50 ∗ ∗

100 ∗ ∗

150 ∗ ∗

AVG ∗ ∗

Table 2. Results of Dunnett tests for user study II. The tests were con-
ducted as multiple comparisons, in which 2D-Dragger was compared
with all other three techniques (Bubble+Touchpad(BT), MagStick(MS),
and ObjectPointing(OP)). An non-empty ∗ entry means there is a signifi-
cant difference between the specified technique and our technique in the
given configuration.

groups according to the tested techniques. In each group, the
order of tasks was randomized. As in Study I, the participants
were also given two chances to complete each task. After fin-
ishing a group of tasks, the participants could take an optional
break. Each participant completed all tasks for about 30 min-
utes on average.

Performance Measures. Same as those in Study I.

Results and Discussions. Figure 7 plots the statistics of the
core information. On average 2D-Dragger took the least time
(1.650s) to finish each task. The average completion times per
task for other techniques were: 1.656s (Bubble+Touchpad),
1.882s (MagStick), and 2.762s (ObjectPointing). Repeated
measures ANOVA showed a significant main effect in com-
pletion time for the tested techniques (F(3, 27) = 8.073,
p < 0.001). The error rates of all techniques were 0.053
(2D-Dragger), 0.119 (Bubble+Touchpad), 0.279 (MagStick),
0.114 (ObjectPointing). Repeated measures ANOVA showed
a significant main effect in error rate for the tested techniques
(F(3, 27) = 6.399, p < 0.002). For the interaction between
different factors, we had the following findings:
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• Time: there was a significant interaction between TECH
and SIZE (F(8, 135) = 5.183, p < 0.0005). Together with
Figure 7, we found that only ObjectPointing was strongly
affected by the element size. No significant interaction was
found between TECH and DENSITY (F(8, 135) = 0.209,
p = 0.970). The performance of all tested techniques was
not affected much by the layout density.

• Error: there was no significant interaction between TECH
and SIZE (F(8, 135) = 0.56, p = 0.759) as well as between
TECH and DENSITY (F(8, 135) = 0.235, p = 0.964).
These facts implied that the error rates of the tested tech-
niques were not affected much by the element size or lay-
out density in the remote selection scenario.

We also conducted Dunnett tests as multiple comparisons in
this study. The results are shown in Table 2. Combined
with Figure 7, again we conclude that 2D-Dragger was never
worse than the other tested techniques. The details are as fol-
lows:

• MagStick had achieved similar performance with 2D-
Dragger in terms of completion time. However, its er-
ror rates were significantly higher than 2D-Dragger for all
configurations. This is mainly because the selectable re-
gion with MagStick did not cover the whole canvas, and it
was thus impossible for the participants to select the target
elements for some tasks. This fact suggests that although
MagStick can double the selectable region, it might not be
sufficient for some remote selection scenarios, such as se-
lection on wall-size touch screen.

• ObjectPointing was still significantly slower than 2D-
Dragger when the elements were small. In this case, the
participants needed to move the finger more carefully to
avoid undesired switching of the captured elements, thus
increasing the time of operation. In all density configu-
rations, 2D-Dragger was significantly faster than Object-
Pointing. The reason was that, in each density configura-
tion, there were tasks with small elements. Thus its overall
performance was impeded by these tasks. In terms of the
error rate, there was no significant difference between 2D-
Dragger and ObjectPointing.

• In this study, Bubble+Touchpad had achieved similar per-
formance as 2D-Dragger in terms of both completion time
and error rate.

Summary
In both studies, the results showed that our tool outperformed
the other techniques. Specifically, in Study I (reachable selec-
tion scenario), 2D-Dragger and MagStick outperformed the
other techniques in terms of both selection time and/or er-
ror rate. In Study II (remote selection scenario), 2D-Dragger
and Bubble+Touchpad were superior to the other techniques
in terms of selection time and/or error rate. MagStick cannot
reach some distant objects due to its reachability problem.
Therefore these two studies confirmed that, as a unified tool,
2D-Dragger was more powerful than the tested tools when
dealing with both reachable and remote selection scenarios.

APPLICATIONS
Our method can be used in various application scenarios, and
provides consistent experience on touch screen devices with
different sizes. For example, our technique can benefit the
following:

• General object selection with irregular layouts and sizes,
such as text and hyperlinks in webpages, characters or ob-
jects in computer games, elements and controls in WYSI-
WYG editors (webpage, presentation slide, rich text docu-
ment), etc. These scenarios require very accurate selection
operation.

• Object browsing in applications like map location, photo
wall, style effect preview in design software, etc. They
usually need regular switching for information preview.

CONCLUSION
This paper has introduced 2D-Dragger, a unified touch-based
target acquisition tool, which is effective for different appli-
cation scenarios and target layouts. Our main contributions
are the design of the algorithm that makes universal selection
possible without losing performance, and the user studies. No
previous touch-based selection methods exhibit the desirable
properties of 2D-Dragger, namely, separated motion and dis-
play space, discrete selection, uniform effective width, no oc-
clusion problem, and minimized finger movement. Our ex-
periments show that 2D-Dragger outperformed the previous
tested selection tools both for reachable selection and remote
selection.

LIMITATIONS AND FUTURE WORK
One limitation of our method is that the selection of void
space (i.e., the space between elements) is not naturally sup-
ported by our technique. Another limitation is that when the
screen is large and elements are distributed very densely, our
method would not be helpful in selecting distant elements,
because the finger needs to move a very long distance to se-
lect it. A possible solution is to employ the movement speed
of the finger to accelerate target switching in unimportant re-
gions, where the finger typically moves very fast. Another
possible solution is to employ multi-touch operations. This
will be explored in the future.
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