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Abstract. We propose LiDAL, a novel active learning method for 3D Li-
DAR semantic segmentation by exploiting inter-frame uncertainty among
LiDAR frames. Our core idea is that a well-trained model should generate
robust results irrespective of viewpoints for scene scanning and thus the
inconsistencies in model predictions across frames provide a very reliable
measure of uncertainty for active sample selection. To implement this un-
certainty measure, we introduce new inter-frame divergence and entropy
formulations, which serve as the metrics for active selection. Moreover, we
demonstrate additional performance gains by predicting and incorporat-
ing pseudo-labels, which are also selected using the proposed inter-frame
uncertainty measure. Experimental results validate the effectiveness of
LiDAL: we achieve 95% of the performance of fully supervised learning
with less than 5% of annotations on the SemanticKITTI and nuScenes
datasets, outperforming state-of-the-art active learning methods. Code
release: https://github.com/hzykent/LiDAL
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1 Introduction

Light detection and ranging (LiDAR) sensors capture more precise and farther-
away distance measurements than conventional visual cameras, and have become
a necessity for an accurate perception system of outdoor scenes. These sensors
generate rich 3D geometry of real-world scenes as 3D point clouds to facilitate
a thorough scene understanding, in which 3D LiDAR semantic segmentation
serves as a cornerstone. The semantic segmentation task is to parse a scene and
assign an object class label to each point in 3D point clouds, thus providing
point-wise perception information for numerous downstream applications like
robotics [43] and autonomous vehicles [20].
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Fig. 1: Illustration of inter-frame uncertainty. While in one frame (Left)
an object is correctly predicted as “vehicle” (highlighted in a red box), in the
subsequent frame (Right) a large part of this object is mistakenly predicted as
“fence” when scanned from a different viewpoint.

Thanks to the large-scale LiDAR datasets [1,4] made publicly available in
recent years, the state of the art in 3D LiDAR semantic segmentation has been
significantly pushed forward [42,12,59]. However, the requirement of fully labeled
point clouds for existing segmentation methods has become a major obstacle to
scaling up the perception system or extending it to new scenarios. Typically,
since a LiDAR sensor may perceive millions of points per second, exhaustively
labeling all points is extremely laborious and time-consuming. It poses demands
on developing label-efficient approaches for 3D LiDAR semantic segmentation.

Active learning provides a promising solution to reduce the costs associated
with labeling. Its core idea is to design a learning algorithm that can inter-
actively query a user to label new data samples according to a certain policy,
leading to models trained with only a fraction of the data while yielding similar
performances. Inspired by 2D counterparts [44,8,29,21,37], some previous works
have explored active learning for 3D LiDAR semantic segmentation [28,23,51,36].
However, these methods almost exclusively operate on single LiDAR frames.
Such a strategy is surprising since, unlike most 2D datasets, in which images are
captured as independent samples, 3D LiDAR datasets are generally scanned as
continuous point cloud frames. As a consequence, inter-frame constraints natu-
rally embedded in the LiDAR scene sequences are largely ignored. We believe
such constraints are particularly interesting for examining the quality of network
predictions; i.e., the same object in a LiDAR scene should receive the same label
when scanned from different viewpoints (see Fig. 1).

In this work, we propose to exploit inter-frame constraints in a novel view-
consistency-based uncertainty measure. More specifically, we propose new inter-
frame divergence and entropy formulations based on the variance of predicted
score functions across continuous LiDAR frames. For a given (unlabeled) object
(e.g., the one in a red box in Fig. 1), if its predicted labels differ across frames,
we assume faulty network predictions and then strive to obtain user-specified
labels for the most uncertain regions. In addition to the main active learning
formulation, we also explore further improvements to the labeling efficiency with
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self-training by utilizing the proposed uncertainty measure in an inverse way.
During each active learning iteration, we augment the user-specified labels with
pseudo-labels generated from the most certain regions across frames to further
boost performance without extra annotations or much computational cost.

To summarize, our contributions are threefold:

1. We propose a novel active learning strategy for 3D LiDAR semantic seg-
mentation by estimating model uncertainty based on the inconsistency of
predictions across frames.

2. We explore self-training in the proposed active learning framework and show
that further gains can be realized by including pseudo-labels.

3. Through extensive experiments, we show that the proposed active learning
strategy and self-training technique significantly improve labeling efficiency
over baselines, and establish the state of the art in active learning for 3D
LiDAR semantic segmentation.

2 Related Work

Compared to fully supervised methods [42,14,59,39,6,13], label-efficient 3D se-
mantic segmentation is a relatively open research problem. Previous explorations
can be roughly divided into five categories: transfer learning, unsupervised and
self-supervised learning, weakly-supervised learning, active learning, and self-
training. LiDAL falls into both the active learning and self-training categories.

Transfer Learning. Taking advantage of existing fully labeled datasets,
transfer learning has been introduced to 3D semantic segmentation for reducing
the annotation costs. Various domain adaptation approaches have been devel-
oped to make them perform well in novel scenarios given only labeled data from
other domains [24,56,18] or even synthetic training sets [50]. They achieve fairly
decent results but still require fully labeled data from a source domain and fail
to generalize to new scenarios that are highly different from the source.

Unsupervised and Self-supervised Learning. Leveraging the colossal
amount of unlabeled data, pre-trained models can be fine-tuned on a small set
of labeled data to alleviate the over-dependence on labels and thus achieve satis-
factory performances [9,41,38,53,15]. Pseudo tasks used for pre-training include
reconstructing space [32], contrast learning [52,26,10], ball cover prediction [35],
instance discrimination [58], and point completion [46], etc. Compared to other
label-efficient counterparts, these methods require more labeled data and most
of them only apply to object-level point clouds.

Weakly-supervised Learning. Instead of point-by-point labeling in fully
supervised learning, weak labels take various forms like scene-level or sub-cloud-
level labels [30,48], 2D supervision [45], fewer point labels [55,5,57,11,49], seg-
level labels [27,40], and box-level labels [25], etc. These methods can reduce
the number of labeled samples, but either require intricate labeling processes or
produce much more inferior results than the fully-supervised counterparts.
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Fig. 2: Pipeline of LiDAL. In each round of active learning, we first train a
3D LiDAR semantic segmentation network in supervision with labeled dataset
DL. Second, we use the trained network to compute an inter-frame divergence
score and an inter-frame entropy score for all regions from the unlabeled dataset
DU . We then select a batch of regions based on these scores for active learning
and self-training, and finally request their respective labels from the human
annotation and the pseudo-labeling. The process is repeated until the labeling
budget is exhausted or all training data is labeled.

Active Learning. During network training, active learning methods iter-
atively select the most valuable data for label acquisition. The very few exist-
ing methods have explored uncertainty measurements like segment entropy [22],
color discontinuity [51], and structural complexity [51,36]. The existing methods
take LiDAR data as separated frames and only consider intra-frame information.
Inspired by a 2D work operating on multi-view images [37], we take advantage
of the inter-frame constraints for active learning in this work. Different from
this 2D work, due to the distinct natures of 2D images and 3D point clouds,
we design novel uncertainty formulations and selection strategies. Moreover, we
propose a joint active learning and self-training framework to further exploit the
inter-frame constraints.

Self-training. Building on the principle of knowledge distillation, previous
methods generate pseudo labels to expand sparse labels [54,27] or to facilitate
the network training using only scene-level supervision [30]. In this work, we
develop a pseudo-labeling method applied in conjunction with our active learning
framework to achieve even greater gains in efficiency.

3 Method

3.1 Overview

The goal of LiDAL is to train a well-performing 3D LiDAR semantic segmen-
tation model with a constrained annotation budget. Specifically, we assume the
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availability of data D = {DL, DU}. The data consists of sequences of LiDAR
frames, each provided with an ego-pose of the scanning device. Initially, DL is
a small set of LiDAR frames randomly selected from D with each frame having
its label annotation, and DU is a large unlabeled set without any annotations.
Following previous works [37,51], we use a sub-scene region as a fundamental
query unit to focus on the most informative parts of the LiDAR frames.

As illustrated in Fig. 2, our LiDAL method consists of four main steps: 1.
Train the network to convergence using the currently labeled dataset DL. 2. Cal-
culate the model uncertainty scores for each region of DU with two indicators:
inter-frame divergence and inter-frame entropy (Section 3.2). 3. Select regions
based on the uncertainty measures for active learning and self-training (Sec-
tion 3.3). 4. Obtain labels from human annotation and pseudo-labeling. These
steps will be repeated until the labeling budget is exhausted or all training data
is labeled.

3.2 Uncertainty Scoring

At each iteration, after the first step of training the network on DL, our active
learning method LiDAL then aims at predicting which samples from DU are the
most informative to the network at the current state. To this end, we introduce
two novel uncertainty scoring metrics named inter-frame divergence and inter-
frame entropy. Fig. 3 provides an overview of the scoring process.

Inter-frame Divergence. In a nutshell, the proposed inter-frame divergence
score aims at estimating which objects are consistently predicted the same way,
irrespective of the scanning viewpoints.

For each frame, we first calculate its point-wise class probability maps using
the current trained segmentation network. To attain robust probability predic-
tions, we perform data augmentations with random translation, rotation, scaling,
and jittering. The probability P for a point p in frame Fi to belong to class c is
given by:

P p
i (c) =

1

D

D∑
d=1

P p
i,d(c), (1)

whereD is the number of augmented inference runs of the segmentation network,
and P p

i,d(c) is the softmax probability of point p belonging to class c in the
augmented inference run d.

Next, using the provided ego-pose, we register each frame in the world coor-
dinate system. For each point in a given frame, we find its corresponding points
in the neighboring frames and assign to it their associated probability distri-
butions. Implementation details can be found in Supplementary Section A.
Each point p in frame Fi is now associated with a set of probability distributions
Ωp

i , each coming from a neighboring frame:

Ωp
i = {P p

j , j|F
p
j corresponds to F p

i }, (2)
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Fig. 3: Illustration of uncertainty scoring. For each unlabeled LiDAR frame
in the dataset, we first obtain its averaged class probability predictions from
augmented inference runs. Next, we register each frame with its provided ego-
pose. For each point in the frame, we then find its corresponding points in
neighboring frames and assign to it their associated class probability predictions.
With the aggregated multiple class probability predictions per point, we compute
the inter-frame divergence and entropy scores. We assign these two scores to each
unlabeled region by averaging the scores of all the points contained in it.

where F p
j denotes the point p in frame Fj , and Fj represents one of the neigh-

boring frames of Fi.

In our setting, when estimating the point correspondences between neigh-
boring frames, we assume that the objects in the scene are static and thus the
points in the same registered position represent the same object. The moving
objects are not specially treated for two reasons. First, they contribute only
a small portion of the dataset. Second, when estimating correspondences after
registration, the prediction disagreements introduced by the 3D motions can be
seen as inter-frame inconsistency and help the system select these informative
regions.

The inter-frame divergence corresponds to the average pairwise KL diver-
gence between the class distribution at any given point and the class distribu-
tions assigned to that point from the neighboring frames. It effectively captures
the degree of agreement between the prediction in the current frame with the
predictions coming from the neighboring frames. Specifically, we define the inter-
frame divergence score FD for a point p in frame Fi as follows:

FDp
i =

1

|Ωp
i |

∑
Pp

j ∈Ωp
i

DKL(P
p
i ||P

p
j ), (3)

where DKL(P
p
i ||P

p
j ) is the KL Divergence between distributions P p

i and P p
j .
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Inter-frame Entropy. After measuring how inconsistent the predictions are
across frames, we then define the inter-frame entropy score, which indicates the
amount of uncertainty for the network to process a certain point. For a point p in
frame Fi, with the aggregated probability distributionsΩp

i , the mean distribution
Mp

i can be calculated as:

Mp
i =

1

|Ωp
i |

∑
Pp

j ∈Ωp
i

P p
j , (4)

which can be seen as the marginalization of the prediction probabilities over the
scanning viewpoints.

The inter-frame entropy score FE is defined as the entropy of the mean class
probability distribution Mp

i :

FEp
i = −

∑
c

Mp
i (c) log(M

p
i (c)). (5)

A high inter-frame entropy score implies that on average, the prediction of
the current network for this point is significantly uncertain. Since the mean class
probability distribution is the average result from both the augmented inference
runs and the aggregation of corresponding points, the inter-frame entropy score
estimates both the intra-frame uncertainty under random affine transformations
and inter-frame uncertainty under viewpoint changes.

3.3 Region Selection

To select the most informative parts of the unlabeled dataset, we opt for using
sub-scene regions as the fundamental label querying units, following previous
works [37,51]. Our implementation uses the constrained K-means clustering [2]
algorithm for region division. An ideal sub-scene region consists of one or several
object classes and is lightweight to label for the annotator.

For each region r, the two scores FDr
i and FEr

i are computed as the average
of the inter-frame divergence and inter-frame entropy scores of all the points
contained in r:

FDr
i =

1

|r|
∑
p∈r

FDp
i , (6)

FEr
i =

1

|r|
∑
p∈r

FEp
i , (7)

where |r| is the number of points contained in region r.

Active Learning. We now discuss our active learning strategy utilizing the
proposed inter-frame uncertainty scores. Our strategy to select the next region
for labeling consists of two steps. First, we look for the region r from frame Fi

that has the highest inter-frame divergence score in DU :

(i, r) = argmax
(j,s)∈DU

FDs
j , (8)
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Fig. 4: Examples of uncertainty scores. Red and blue indicate inter-frame
divergence and entropy, respectively. The darker the color, the higher the value.
Due to the sparsity and varying-density property of LiDAR point clouds, neural
networks tend to generate class distributions that are more uniform for farther
away sparse points. As highlighted by the dotted red boxes, this property results
in misleadingly high values for far away sparse points in terms of inter-frame
entropy but affects less on the inter-frame divergence scores.

where (j, s) refers to region s from frame Fj .

Since the inter-frame divergence indicates that for each region how inconsis-
tent the predictions are across frames, the scores are similar for all the regions
that are in correspondence. To determine which one of the regions in corre-
spondence contains the largest amount of beneficial information to improve the
network, we retrieve the set of regions representing the same part of the outdoor
scene and denote this set as S. We then look for the region from S with the
highest inter-frame entropy score:

(k, t) = argmax
(j,s)∈S

{FEs
j |(j, s) and (i, r) overlap}, (9)

where (k, t) refers to the selected region t from frame Fk. Implementation details
can be found in Supplementary Section A.

The selected region is added to DL and all regions in set S are then removed
from DU to avoid label redundancy. The process is repeated until reaching the
labeling budget. The active learning algorithm is summarized in Alg. 1.

One possible alternative strategy is to first find the region with the highest
inter-frame entropy score and then select the one with the highest inter-frame
divergence score in the corresponding set. A similar strategy is implemented in
a previous work operating on multi-view images [37]. However, unlike 2D images
with dense and uniformly sampled pixels, 3D LiDAR frames have sparse and
varying-density points. Specifically, the farther from the scanning viewpoint,
the sparser the LiDAR points. As shown in Fig. 4, due to the sparsity, neural
networks tend to predict uniform class distributions for peripheral points. This
property will result in misleadingly high inter-frame entropy scores for points far
away from the scanning viewpoint (Equation 5), while the inter-frame divergence
scores remain stable (Equation 3). Considering the robustness of the system, we
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opt for the proposed strategy instead of the possible alternative. A quantitative
comparison can be found in Section 4.4.

Self-training. To further exploit the inter-frame constraints embedded in the
LiDAR sequences, we leverage the fact that our measure of viewpoint inconsis-
tency can also help us identify reliable regions with high-quality pseudo-labels,
which can be directly injected into the training set.

On the contrary with respect to active learning, which selects samples with
the most uncertain predictions, self-training aims at acquiring confident and ac-
curate pseudo-labels. To this end, we conduct a reversed process of the proposed
active learning strategy. Specifically, we first look for the region r from frame Fi

that has the lowest inter-frame divergence score in DU :

(i, r) = argmin
(j,s)∈DU

FDs
j , (10)

We then look for the region from the corresponding set S that has the lowest
inter-frame entropy score:

(k, t) = argmin
(j,s)∈S

{FEs
j |(j, s) and (i, r) overlap}, (11)

The pseudo-label of the selected region is retrieved from the network predic-
tions and all regions in set S will not be used for further pseudo-labeling. The
process is repeated until reaching the target number of pseudo-labels. In order
to prevent label drifting [7], we reset the pseudo label set at each iteration and
only select regions that are not already selected in the previous iteration. The
self-training algorithm is summarized in Alg. 2.

Algorithm 1 Active Learning

Input:
Data set D, labeled set DL,
annotation budget B,metric M

Init:
Added samples A← {}
Unlabeled set DU ← D \DL

repeat
(i, r)← argmax(j,s)∈DU

MFD
s
j

Retrieve S ▷ Corresponding set
(k, t)← argmax(j,s)∈S MFE

s
j

A← A ∪ (k, t)
DL ← DL ∪ (k, t)
DU ← DU \ S

until |A| = B or |DU | = 0
return A

Algorithm 2 Self-training

Input:
Data set D, labeled set DL,
previous pseudo set P,
target number T,metric M

Init:
New pseudo set P ′ ← {}
D′

U ← (D \DL) \ P ▷ No re-labeling
repeat

(i, r)← argmin(j,s)∈D′
U
MFD

s
j

Retrieve S ▷ Corresponding set
(k, t)← argmin(j,s)∈S MFE

s
j

P ′ ← P ′ ∪ (k, t)
D′

U ← D′
U \ S

until |P ′| = T or |D′
U | = 0

return P ′
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4 Experiments

To demonstrate the effectiveness of our proposed method, we now present var-
ious experiments conducted on two large-scale 3D LiDAR semantic segmenta-
tion datasets, i.e., SemanticKITTI [1] and nuScenes [4]. We first introduce the
datasets and evaluation metrics in Section 4.1, and then present the experimen-
tal settings in Section 4.2. We report the results on the SemanticKITTI and
nuScenes datasets in Section 4.3, and the ablation studies in Section 4.4.

4.1 Datasets and Metrics

SemanticKITTI [1]. SemanticKITTI is a large-scale driving-scene dataset de-
rived from the KITTI Vision Odometry Benchmark and was collected in Ger-
many with the Velodyne-HDLE64 LiDAR. The dataset consists of 22 sequences
containing 43,552 point cloud scans. We perform all our experiments using the
official training (seq 00-07 and 09-10) and validation (seq 08) split. 19 classes
are used for segmentation.
nuScenes [4]. nuScenes was collected in Boston and Singapore with 32-beam
LiDAR sensors. It contains 1,000 scenes of 20s duration annotated with 2Hz
frequency. Following the official train/val splits, we perform all label acquisition
strategies on the 700 training sequences (28k scans) and evaluate them on 150
validation sequences (6k scans). 16 classes are used for segmentation.
Metrics. For evaluation, we report mean class intersection over union (mIoU)
results for both the SemanticKITTI and nuScenes datasets following the official
guidance.

4.2 Experimental Settings

Network Architectures. To verify the effectiveness of the proposed active
learning strategy on various network architectures, we adopt MinkowskiNet [6]
based on sparse convolution, and SPVCNN [39] based on point-voxel CNN, as our
backbone networks for their great performance and high efficiency. We make the
same choices for the network architectures as ReDAL [51], a recent state-of-the-
art active learning method of 3D semantic segmentation, for better comparison.

Baseline Active Learning Methods. We select eight baseline methods for
comparison, including random frame selection (RANDfr), random region selec-
tion (RANDre), segment-entropy (SEGENT) [22], softmax margin (MAR) [17,31,47],
softmax confidence (CONF) [34,47], softmax entropy (ENT) [16,47], core-set se-
lection (CSET) [33], and ReDAL [51]. The implementation details for all the
methods are explained in Supplementary Section B.

Learning Protocol. Following the same protocol as ReDAL [51], the model is
initialized by training on xinit% of randomly selected LiDAR frames with full
annotations. The active learning process consists of K rounds of the following
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Fig. 5: Mean intersection over union scores on SemanticKITTI Val [1].
Detailed results can be found in Supplementary Section C.

actions: 1. Finetune the model on the current labeled set DL. 2. Select xactive%
of data from the current unlabeled set DU for human annotation according to
different active selection strategies. 3. Update DL and DU .

The labeling budget is measured by the percentage of labeled points. For
both SemanticKITTI and nuScenes datasets, we use xinit = 1%, K = 4, and
xactive = 1%. For self-training, the target number of pseudo-labels in terms of
percentage of labeled points T = 1%. To ensure the reliability of the results, all
the experiments are performed three times and the average results are reported.
More training details can be found in Supplementary Section A.

4.3 Results and Analysis

In this section, we present the performance of our approach compared to the
baseline methods on the SemanticKITTI and nuScenes datasets. Fig. 5 and
Fig. 6 show the comparative results. In each subplot, the x-axis represents the
percentage of labeled points and the y-axis indicates the mIoU score achieved by
the respective networks, which are trained with data selected through different
active learning strategies.

Since most of the baseline methods are not designed for LiDAR point clouds,
we re-implement these methods for LiDAR data based on their official codes. For
ReDAL [51], in its published paper, it is evaluated on the SemanticKITTI dataset
but not on the nuScenes dataset. For the SemanticKITTI dataset, we find that
the reported scores of its initial networks (trained with 1% of randomly selected
frames) are way lower than our implementations (41.9 vs 48.8 for SPVCNN and
37.5 vs 47.3 for MinkowskiNet). We retrained its networks and got better results
using its official code but with a finer training schedule (details can be found
in Supplementary Section A). Both the retrained results and the reported
results are presented in Fig. 5. For nuScenes, we adapt its official code and report
the results.
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Fig. 6: Mean intersection over union scores on nuScenes Val [4]. Detailed
results can be found in Supplementary Section C.

SemanticKITTI. As shown in Fig. 5, our proposed LiDAL significantly sur-
passes the existing active learning strategies using the same percentages of la-
beled data. Specifically, our method is able to reach nearly 95% of the fully
supervised performance with only 5% of labeled data for the SPVCNN network
and even achieve about 98% of the fully supervised result for the MinkowskiNet
network.

In addition, we notice that many active learning strategies perform worse
than the random baseline and some even bring negative effects on the network
performance (e.g., the mIoU scores may drop after adding the data samples
selected by SEGENT). For uncertainty-based methods, such as SEGENT and
CONF, since the model uncertainty values are calculated only within each frame
and are biased by the peripheral points due to the scanning property of LiDAR,
their performances are degraded. Even for pure diversity-based approaches, such
as CSET, since the LiDAR datasets are captured as continuous frames and have
plenty of redundant information among neighboring frames, simply clustering
features may fail to produce diverse label acquisition.

Moreover, we observe that the performance gap between RANDre and RANDfr

is trivial. It showcases that if not combined with effective uncertainty measures,
region-based training brings little benefit to the network performance.

nuScenes. We also evaluate our algorithm on the novel nuScenes dataset and
report the results in Fig. 6. As shown in the figure, our method outperforms all
the competitors in terms of mIoU under all the experimental settings. Specif-
ically, for both SPVCNN and MinkowskiNet, our method achieves more than
95% of the fully supervised performances with only 5% of labeled data.

Compared to the results of SemanticKITTI, similar phenomena can be wit-
nessed that many active learning strategies perform worse than the random
baseline. However, the negative effects are alleviated and the mIoU scores con-
sistently increase by adding data samples selected by most strategies. A possible
explanation is that, since the nuScenes dataset contains 1,000 scenes of tens of
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Table 1: Ablation study: building components. FD: inter-frame divergence
score; NMS: non-maximum suppression, i.e., select the region with the highest
score in the corresponding set; FE: inter-frame entropy score.

FD Frame-level Region-level NMS FE Pseudo mIoU(%)

✓ ✓ 51.8

✓ ✓ 52.5

✓ ✓ ✓ 55.5

✓ ✓ ✓ 56.4

✓ ✓ ✓ ✓ 57.1

frames while the SemanticKITTI dataset contains only 22 scenes of thousands of
frames, the network is less likely to be biased by the data selected from nuScenes
than that from SemanticKITTI.

4.4 Ablation Study

In this section, we conduct a number of controlled experiments that demonstrate
the effectiveness of the building modules in LiDAL, and also examine some spe-
cific decisions in our LiDAL design. All the experiments are conducted on the
SemanticKITTI validation set evaluating the performance of the SPVCNN net-
work trained on the data selected in the first active learning round, keeping all
the hyper-parameters the same. More ablation studies can be found in Supple-
mentary Section D.

Building Components. In Table 1, we evaluate the effectiveness of each com-
ponent of our method. 1. Effect of region-level labeling. “FD + Frame-level”
represents the baseline, which is to select frames with the highest average inter-
frame divergence scores for training. By changing from “FD + Frame-level” to
“FD + Region-level” (selecting regions), we can improve the performance by
0.7%. This improvement is brought by focusing on the most informative parts
of the scenes. 2. Effect of active selection strategy. “FD + Region-level +
NMS” refers to selecting only the region with the highest inter-frame divergence
score in the corresponding set. By avoiding the label redundancy, we can gain
about 3% of improvement. “FD + Region-level + FE” refers to the proposed se-
lection strategy described in Section 3.3. From the proposed inter-frame entropy
measure, we further improve about 0.9%. 3. Effect of pseudo-labels. “FD
+ Region-level + FE + Pseudo” denotes the complete strategy of LiDAL. The
introduction of pseudo-labels brings around 0.7% of performance improvement.

Region Selection Strategies. In Section 3.3, we discuss two possible region
selection strategies for both active learning and self-training. We advocate the
proposed one that first finds corresponding sets using the inter-frame divergence
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Table 2: Ablation study: (Left) Region selection strategy; (Right) Target
number of pseudo-label.

Strategy mIoU(%)

FE + FD 55.7

FD + FE 57.1

Target Number(%) mIoU(%)

0.0 56.4

0.5 56.8

1.0 57.1

2.0 56.4

scores and then selects regions with the inter-frame entropy scores. To justify
our choice, we implement both strategies and report the results in Table 2 (Left).
“FD + FE” refers to the proposed strategy and “FE + FD” refers to the possible
alternative strategy that first finds corresponding sets using the entropy scores
and then selects regions with the divergence scores. As shown in the table, the
proposed strategy significantly outperforms the possible alternative strategy. It
may be caused by the misleadingly high entropy values of peripheral points, as
illustrated in Fig. 4.

Target Number of Pseudo-labels. In Section 3.3, we explore self-training
in the proposed active learning framework and show that further gains can be
realized by including pseudo-labels in Table 1. To investigate the impact of
pseudo-labels, we inject different numbers of pseudo-labels into the training set
and report the results in Table 2 (Right). We observe that with the increasing
number of pseudo-labels, the gain of network performance first increases and then
decreases. We speculate that adding pseudo-labels with a reasonable number
will improve the network performance but superfluous pseudo-labels may bring
unhelpful training biases and label noises. A further study on pseudo-labels can
be found in Supplementary Section D.

5 Conclusion

In this paper, we have presented a novel active learning strategy for 3D LiDAR
semantic segmentation, named LiDAL. Aiming at exploiting the inter-frame con-
straints embedded in LiDAR sequences, we propose two uncertainty measures
estimating the inconsistencies of network predictions among frames. We design
a unified framework of both active learning and self-training by utilizing the
proposed measures. Extensive experiments show that LiDAL achieves state-of-
the-art results on the challenging SemanticKITTI and nuScenes datasets, signif-
icantly improving over strong baselines. For future works, one straightforward
direction is to explore the potential of inter-frame constraints for RGB-D se-
quences of indoor scenes. Moreover, we believe that future works with special
treatments for moving objects will further improve the performance.
Acknowledgements. This work is supported by Hong Kong RGCGRF 16206722
and a grant from City University of Hong Kong (Project No. 7005729).
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Abstract. This supplementary document is organized as follows:

– Section A explains in more detail about the LiDAL implementation.

– Section B describes the baseline active learning methods.

– Section C enumerates detailed semantic segmentation results of the
line charts in the main paper.

– Section D provides more ablation studies on the self-training strat-
egy, class distribution of actively selected samples, and pseudo-label
accuracy.

A Implementation Details

As explained in Section 3.1 of the main paper, our LiDAL method consists of four
steps: 1. Train the network to convergence using the currently labeled dataset
DL. 2. Calculate the model uncertainty scores for each region of DU . 3. Select
regions based on the uncertainty measures for active learning and self-training.
4. Obtain labels from human annotation and pseudo-labeling. In this section, we
supplement implementation details to these steps. Note that the used symbols
are the same as those in Section 3 of the main paper.

A.1 Network Training

All the experiments are conducted on a PC with 8 NVIDIA Tesla V100 GPUs.
The batch sizes are set to 30 and 90 for the SemanticKITTI [1] and nuScenes [4]
datasets, respectively.

For both datasets, we train the networks by minimizing the cross-entropy
loss using Adam optimizer with an initial learning rate 1e-3. For fully-supervised
baselines, the networks are trained for 80,000 iterations. For each round of active
learning (including the initial round), the networks are trained or fine-tuned for
20,000 iterations.

The training settings are the same for SPVCNN [39] and MinkowskiNet [6]
network architectures.
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Fig. 1: An example of divided sub-scene regions in the SemanticKITTI
dataset. Points of the same regions are painted with the same colors.

A.2 Correspondence Estimation

In Section 3.2 of the main paper, after the registration of each frame, we then
find for each point its corresponding points in the neighboring frames to calcu-
late inter-frame uncertainty measures. Since there are hundreds of thousands of
points in a LiDAR frame, it is impractical to register all the LiDAR frames at
the same time and then estimate correspondences for each point.

To address this issue, for each frame Fi, we retrieve its neighboring Nnei

frames for correspondence estimation. After registration, for each point p of the
frame Fi, we find its nearest point in each of the neighboring Nnei frames as
the initial corresponding points. Since a certain position may be scanned in not
all the frames due to occlusion and the movement of the scanning device, point
p may not have proper corresponding points in some neighboring frames. We
then filter out the corresponding points whose distances to p are larger than
a threshold Tp. For both the SemanticKITTI and nuScenes datasets, we set
Nnei = 24 and Tp = 0.1m.

A.3 Region Division and Overlap Determining

We utilize the constrained K-means clustering [2] algorithm to divide a LiDAR
frame F into multiple sub-scene regions. As an extension of the classical K-means
algorithm, this algorithm forces the number of points in each of the K clusters
in (Nmin, Nmax). For both the SemanticKITTI and nuScenes datasets, we set

K = 20, Nmin = 0.95 ∗ |F |
K , and Nmax = 1.05 ∗ |F |

K , where |F | is the number
of points contained in frame F . An example of divided sub-scene regions of the
SemanticKITTI dataset is shown in Fig 1.

In Section 3.3 of the main paper, for a specific region r, we need to retrieve
the set of regions overlapping with r for further processing. To determine if two
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regions overlap, we may check the Earth Mover’s distance [19] or the Chamfer
distance [3] between the two regions. However, we find that a simpler solution
based on the distance between the weight centers of two regions yields similar
results. Considering the efficiency of this simple solution, we determine that two
regions overlap if the distance between their weight centers is less than Tr. For
both the SemanticKITTI and nuScenes datasets, we set Tr = 5m.

A.4 Label Acquisition

For active learning, instead of using a human annotator, we simulate annotation
by using the ground-truth annotation of the dataset as the annotation from a
human annotator. For self-training, we use the network predictions averaged over
8 augmented inference runs as the pseudo-labels.

B Baseline Active Learning Methods

In this section, we describe the implementation of the baseline active learning
methods used in our experiments (Section 4.2 of the main paper).

Random Selection (RANDfr and RANDre). In each round of active learn-
ing, this baseline method randomly selects a portion of LiDAR frames or point
cloud regions from the unlabeled dataset for label acquisition. It is a commonly
used baseline strategy in the literature [51,37,33,7].

Segment-entropy (SEGENT). Based on the assumption that points within
a region are supposed to share the same label, segment-entropy is proposed to
serve as a metric for active selection [22]. In this method, the distribution of
predicted labels within a region r is estimated by:

Eseg = −
∑
c

q(c) log q(c), (1)

ŷp = argmax
c

P p, (2)

q(c) =
1

|r|
∑
p∈r

f(ŷp, c), (3)

f(ŷp, c) =

{
1, if ŷp = c

0, otherwise
, (4)

where Eseg is the proposed segment-entropy, P p is the probability distribution
of point p, ŷp is the predicted label of point p, and q(c) is the percentage of
points predicted as class c. The segment-entropy score of a frame is the average
of the scores of all the points inside this frame. The frames with the largest
segment-entropy scores are selected for label acquisition. In the implementation
of this method, we utilize the same region division results as our LiDAL for a
fair comparison.
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Softmax Margin (MAR). Some previous active learning methods [17,31,47]
rank all the samples in order of the model decision margin, which is the difference
of softmax probabilities between the most probable label and the second most
probable label, and then select the samples with the least differences. For a point
p, the softmax margin is calculated as:

MARp = P p(ŷ1)− P p(ŷ2), (5)

where P p is the probability distribution of point p, ŷ1 is the most probable label
class, and ŷ2 is the second most probable label class.

The softmax margin of a frame is calculated by averaging the values of all the
points inside it. The frames with the least softmax margin values are selected
for label acquisition.

Softmax Confidence (CONF). Similar to MAR, the softmax probability of
the most probable label is considered as a confidence score in some previous
methods [34,47]. For point p, the softmax confidence is calculated as:

CONF p = P p(ŷ1), (6)

where P p is the probability distribution of point p, and ŷ1 is the most probable
label class.

For a frame, the softmax confidence score is the average result of the scores of
all the associated points. The frames with the least confidence scores are selected
for label acquisition.

Softmax Entropy (ENT). Unlike MAR and CONF, which consider only the
top two most probable classes, softmax entropy takes into account probabilities
of all classes to measure the information of a probability distribution [16,47]. For
point p, the softmax entropy score is calculated as:

ENT p = −
∑
c

P p(c) log(P p(c)), (7)

where P p(c) is the probability of point p belonging to class c.
For a frame, the softmax entropy score is the average result of the scores of

all the associated points. The frames with the largest entropy scores are selected
for label acquisition.

Core-set Selection (CSET). Core-set refers to a small subset that captures
the diversity of the whole dataset [33], and thus a model trained on this subset
yields similar performance to that trained on the whole dataset. This method
first extracts features for each sample of the dataset using the currently trained
network. Operating on the feature space, it then selects a small set of samples for
labeling utilizing the furthest point sampling strategy. In the implementation,
we use the intermediate results of the second-last layers of the networks as the
features. The feature of a frame is averaged over all the associated points.
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ReDAL. Region-based and diversity-aware active learning (ReDAL) [51] is a
recent state-of-the-art method designed for 3D semantic segmentation of both
indoor and outdoor scenes. This method first divides a 3D scene into sub-scene
regions and then estimates the region information utilizing three metrics: soft-
max entropy, color discontinuity, and structural complexity. With the estimated
region information scores, this method further designs a diversity-aware selec-
tion algorithm to avoid visually similar regions appearing in a querying batch for
labeling. Since both the SemanticKITTI and nuScenes datasets do not provide
colored point clouds, the color discontinuity metric is discarded in the imple-
mentation following the instruction of ReDAL’s official code.

C Detailed Experimental Results

In this section, we provide more details on our experimental results, for bench-
marking purposes with future works. The results of fully-supervised networks
are reported in Table 1. Detailed scores for Fig. 5 in the main paper are shown
in Tables 2 and 3. For Fig. 6, the detailed scores are presented in Tables 4 and 5.

Table 1: Mean intersection over union scores of fully-supervised net-
works.

Network \ Dataset SemanticKITTI nuScenes

SPVCNN 64.5 71.7

MinkowskiNet 61.4 70.6

Table 2: Mean intersection over union scores on SemanticKITTI Val
with SPVCNN.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 48.8 52.1 53.6 55.6 57.2

RANDre 48.8 51.7 55.0 56.1 58.2

SEGENT 48.8 49.8 48.3 49.1 48.2

MAR 48.8 49.4 50.0 48.7 49.3

CONF 48.8 48.0 48.9 50.4 51.6

ENT 48.8 49.6 48.5 50.1 49.9

CSET 48.8 53.1 52.9 53.2 52.6

ReDALreported 41.9 51.7 55.8 56.9 58.2

ReDALretrained 48.8 51.3 54.0 58.6 58.1

LiDAL (ours) 48.8 57.1 58.7 59.3 59.5
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Table 3: Mean intersection over union scores on SemanticKITTI Val
with MinkowskiNet.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 47.3 51.4 55.8 57.7 56.6

RANDre 47.3 50.1 55.8 55.9 58.5

SEGENT 47.3 49.8 48.8 49.5 47.7

MAR 47.3 50.2 49.8 49.4 50.1

CONF 47.3 48.5 48.5 51.4 51.7

ENT 47.3 49.9 48.8 49.0 50.2

CSET 47.3 52.6 55.9 56.4 57.6

ReDALreported 37.5 48.9 55.3 58.4 59.8

ReDALretrained 47.3 51.4 52.5 58.4 58.1

LiDAL (ours) 47.3 56.7 58.7 59.5 60.1

Table 4: Mean intersection over union scores on nuScenes Val with
SPVCNN.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 51.8 58.4 60.5 60.6 63.2

RANDre 51.8 60.3 62.3 63.7 63.6

SEGENT 51.8 55.5 56.1 55 57.8

MAR 51.8 55.2 56.4 57.0 57.7

CONF 51.8 55.1 54.9 55.4 56.0

ENT 51.8 55.4 56.7 56.6 57.2

CSET 51.8 59.4 62.3 62.9 63.0

ReDAL 51.8 54.3 57.0 57.2 58.3

LiDAL (ours) 51.8 60.8 65.6 67.6 68.2

Table 5: Mean intersection over union scores on nuScenes Val with
MinkowskiNet.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 49.7 57.9 60.5 61.8 61.7

RANDre 49.7 58.7 60.9 62.0 63.1

SEGENT 49.7 54.8 55.3 56.5 58.5

MAR 49.7 53.9 55.0 56.7 59.1

CONF 49.7 54.4 55.7 56.8 55.5

ENT 49.7 54.9 56.4 57.2 57.6

CSET 49.7 58.5 62.0 63.2 63.6

ReDAL 49.7 54.5 53.9 56.7 57.2

LiDAL (ours) 49.7 62.3 64.7 66.5 67.0
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D More Ablation Studies

In this section, we provide more ablation studies to examine the design decision of
our self-training strategy and to analyse the actively selected labels and pseudo-
labels.

Self-training Strategy. In Section 3.3 of the main paper, we inject pseudo-
labels to the training set at each active learning round to further boost the per-
formance. We have considered three commonly used strategies for self-training:

– S1: Enlarge the pseudo-label set in each round with the newly selected re-
gions. (The selection criterion is discussed in the main paper.)

– S2: Keep the size of the pseudo-label set constant, and replace in each round
with the newly selected regions.

– S3: (Our design choice) Keep the size of the pseudo-label set constant, and
replace in each round with the newly selected regions that are not already
in the last pseudo-label set.

The results of these three self-training strategies on the SemanticKITTI
dataset with SPVCNN are shown in Table 6. As shown in the table, both two
alternative strategies generate more inferior results to our design choice. We
assume that, for S1, it is easily susceptible to label drifting as its size of pseudo-
label set increases over time. For S2, since the previous pseudo-label set used for
training is also considered for the pseudo-labeling of the current round, it tends
to select a stable set of regions that are less and less helpful during training.

Table 6: Mean intersection over union scores of different self-training
strategies on SemanticKITTI Val with SPVCNN.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

S1 48.8 56.9 57.2 59.1 58.8

S2 48.8 57.2 58.5 58.9 59.0

S3 (Our design choice) 48.8 57.1 58.7 59.3 59.5

Class Distribution of Actively Selected Samples. To gain a better un-
derstanding of the property of inter-frame constraints, we count the class dis-
tribution of samples selected in all 4 rounds of LiDAL operating on the Se-
manticKITTI dataset with SPVCNN network. As shown in Table 7, LiDAL
focuses more on less-represented but highly important classes like person and
bicyclist. This is foreseeable since the networks struggle to generate consistent
predictions for these hard samples. This is a valuable property that can benefit
downstream tasks like autonomous driving, which poses great significance on
safety issues.
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Table 7: Class distributions of labels(‰). We present samples selected in
all 4 rounds of LiDAL operating on the SemanticKITTI dataset with SPVCNN
network.
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Full 103 43.68 0.17 0.42 2.02 2.40 0.36 0.13 0.04 205.22 15.19 148.59 4.03 137.00 74.69 275.57 6.23 80.67 2.95 0.63

LiDAL 103 36.75 0.25 1.06 4.01 7.45 0.89 0.39 0.07 146.42 22.30 154.42 11.91 127.15 98.29 277.80 9.01 95.91 4.34 1.57

Accuracy of Pseudo-labels. The main challenge with pseudo-labels is to
ensure their accuracy and to avoid drifting. In Section 4.4 of the main paper,
we evaluate the effects of injecting different numbers of pseudo-labels into the
training set. Here we quantitatively measure the accuracy of added pseudo-labels
in Table 8. The study is conducted in the first training round of SPVCNN on
the SemanticKITTI dataset. As shown in the table, the generated pseudo-labels
maintain high accuracy in general, but the accuracy drops when more and more
pseudo-labels are selected. This confirms our conjecture in the main paper that
adding a reasonable number of pseudo-labels will improve network performance,
but redundant pseudo-labels might introduce unhelpful training bias and label
noise.

Table 8: Accuracy of pseudo-labels. Samples are selected in the first training
round of SPVCNN on SemanticKITTI dataset.

Range of Added Pseudo-labels Mean Accuracy

0-1% 97.58%

1-2% 97.04%

2-3% 93.05%
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