
1

Global Beautification of 2D and 3D Layouts with
Interactive Ambiguity Resolution

Pengfei Xu, Guohang Yan, Hongbo Fu, Takeo Igarashi, Chiew-Lan Tai, and Hui Huang

Abstract—Specifying precise relationships among graphic elements is often a time-consuming process with traditional alignment
tools. Automatic beautification of roughly designed layouts can provide a more efficient solution but often lead to undesired results due
to ambiguity problems. To facilitate ambiguity resolution in layout beautification, we present a novel user interface for visualizing and
editing inferred relationships through an automatic global layout beautification process. First, our interface provides a preview of the
beautified layout with inferred constraints without directly modifying an input layout. In this way, the user can easily keep refining
beautification results by interactively repositioning and/or resizing elements in the input layout. Second, we present a gestural interface
for editing automatically inferred constraints by directly interacting with the visualized constraints via simple gestures. Our technique is
applicable to both 2D and 3D global layout beautification, supported by efficient system implementation that provides instant user
feedback. Our user study validates that our tool is capable of creating, editing and refining layouts of graphic elements, and is
significantly faster than the standard snap-dragging or command-based alignment tools for both 2D and 3D layout tasks.

Index Terms—Global beautification, layout editing, snapping, alignment, ambiguity resolution, gestural interface.

F

1 INTRODUCTION

Specifying precise relationships, such as alignment and
equal-spacing between graphic elements, might be one of
the most fundamental operations in creating 2D or 3D
layouts. 2D layouts are commonly achieved in commercial
software packages, like Adobe Illustrator and Microsoft
PowerPoint, by using command-based arrangement tools
(e.g., issuing a command to equally space the selected
elements horizontally) and/or direct positioning aided by
snapping. To arrange 3D shapes in a scene, commercial soft-
ware packages, such as Autodesk 3ds Max, usually adopt a
multiple viewport interface to transform a 3D arrangement
into 2D arrangements in three projection planes (see the
accompanying video). In each projection plane, 2D arrange-
ment commands and snapping tools are usually employed.

Snapping might be the simplest beautification technique.
It first infers spatial relationships between an element being
manipulated and each of the existing elements, and then
provides snapping suggestions to interactively achieve de-
sired relationships [1]. We classify snapping as a local beau-
tification technique since each time only a current element is
being beautified while all existing elements are kept fixed,
leading to an element-by-element beautification process. Due
to its local nature, snapping itself is not very effective for
designing constrained global patterns (e.g., equal-spacing
patterns with the ending elements aligned, as shown in
Figure 1). Therefore, snapping-based alignment tools are

• P. Xu (xupengfei.cg@gmail.com), G. Yan (guohang.yan@gmail.com), and
H. Huang (hhzhiyan@gmail.com) are with the Visual Computing Re-
search Center (VCC), and Guangdong Laboratory of Artificial Intelligence
and Digital Economy (SZ), Shenzhen University.

• H. Fu (hongbofu@cityu.edu.hk) is with the City University of Hong Kong.
• T. Igarashi (takeo@acm.org) is with the University of Tokyo.
• C. Tai (taicl@cs.ust.hk) is with the Hong Kong University of Science &

Technology.
• H. Huang is the corresponding author of this paper.

Input window Preview window

Preview windowInput window

Fig. 1. Our novel interface for global beautification of layouts (2D top,
3D bottom) with the power of interactive ambiguity resolution. Grids are
visualized only for view reference purpose (i.e., not for editing).

often used together with command-based tools. As we will
discuss shortly, such traditional tools are rather tedious
and require a carefully ordered set of manual operations
to achieve a desired layout.

On the other hand, humans are able to unambiguously
tell the desired layouts of graphic elements by viewing all
elements as a whole. This motivates us to design a tool
for global beautification of layouts of graphic elements, i.e.,
to first infer perceptually meaningful relationships among
a set of roughly placed graphic elements and then refine

2

(d)

(b)

(a)

(c)

Input Preview

Fig. 2. To refine a beautified layout, as previewed in right, the user may
directly reposition (a-1) or resize (a-2) individual elements, or remove
inferred (b-1) or add new (b-2) edge-alignment relationships, or remove
inferred (c-1) or add new (c-2 and c-3) equal-spacing relationships.

their positions and sizes to get a well-aligned layout that
involves only small changes to the input layout. While simi-
lar concepts of global beautification have been proposed for
sketch-based user interfaces, the existing methods (e.g., [2],
[3]) simply apply global beautification results directly to
elements being edited, as often done for local beautification
interfaces. Early beautification of elements being edited
would prevent the user from placing them freely to form
a global pattern, thus disturbing the process of layout de-
sign. In addition, the patterns formed by the elements may
involve ambiguities. The widely-adopted suggestion-based
interfaces [4], [5], [6] are not directly applicable here, since
a handful of ambiguous relationships may easily lead to an
excessive number of suggestions.

We present a novel user interface for addressing a com-
monly known ambiguity problem in global layout beautifi-
cation. As shown in Figure 1, our interface shows a preview
of the beautification, without immediately modifying any
input element. In our prototype, this preview is displayed
in a separated window. While this interface is simple, it has
the following benefits. First, the user can focus on the layout
design by manipulating individual elements in the input
window. Second, the user might refine the beautification
results by slightly modifying the input elements. To facilitate
a more direct control of the beautification results, we also

Fig. 3. The elements in three layouts have the same projected positions.
The visualized relations (dashed lines) help the perception of their
relative positions in 3D.

present a gestural interface, which allows easy editing of
automatically inferred constraints, i.e., desired relationships
between elements in the input window. See Figure 2 and the
accompanying video for live demos.

Comparing with 2D layout creation, arranging 3D el-
ements could be much more tedious since the additional
dimension will introduce extra arrangement operations. Be-
sides, more ambiguities will appear during the interaction
since 3D elements are displayed as projected 2D shapes,
losing the certainty of depth. These problems can be greatly
alleviated by extending our proposed user interface to 3D
elements arrangement. By detecting and visualizing the
relations between the projected elements in the screen space,
the perception ambiguities in the arranged elements can be
eliminated (see Figure 3). In addition, enforcing the detected
relations by optimization will ease the tedious elements ma-
nipulation procedure since placing the projected elements
in screen space to achieve 2D patterns requires much fewer
operations than 3D elements manipulation.

We present an effective development of the proposed
global layout beautification interface for both 2D and 3D
layout tasks. Our tool allows interactive refinement of
graphic elements and/or constraints with instant beautifi-
cation feedback. We have conducted three studies to verify
the effectiveness of our interface. First, we ran a study to
evaluate the effectiveness of beautification preview. Sec-
ond, we ran a study to evaluate whether our tool could
replace the standard snapping and alignment commands
in 2D elements arrangement tasks, omitting other layout
helper features (e.g., equal-sizing, auto-align) which can
peacefully coexist with our tool. Third, we ran a study to
evaluate whether our tool is more user-friendly compared to
a traditional multi-viewpoint interface with snapping in 3D
elements arrangement tasks. The results show that our tool
provided an efficient way for creating, editing, and refining
the 2D test layouts and a more natural way for arranging 3D
elements. The intuitiveness and ease-of-use of our interface
were also confirmed by user participants.

2 RELATED WORK

Traditional alignment techniques. It is hard to track down
the history of shape alignment tools. Command-based align-
ment tools might be one of the most common ways to
align objects [7]. They adopt a two-step procedure: first
select a group of objects to be aligned and then issue a
certain arrangement command (e.g., left-align or equally
space the selected objects). The group-aware arrangement
commands introduced by Xu et al. [8] improve the tradi-
tional arrangement commands by allowing the alignment

3

of multiple groups of elements with one single selection.
However, their technique is not able to optimize an entire
layout in a global manner. Snapping is another widely used
technique for aligning 2D [1], [9] or 3D elements [10], [11].
It provides aligned positions by snapping an object to either
the background grids, manually created guides, or other
objects [12]. Snapping supports direct manipulation and is
thus more intuitive to use, while command-based tools are
more effective in aligning multiple objects simultaneously
and have a better control of global alignment. Given their
unique advantages, these traditional tools collectively are
capable of creating very complex well-aligned layouts of
graphic elements. However, even a simple arrangement task
as shown in Figure 1 already demands a series of operations
with the traditional alignment tools. The repeated use of
operations like snapping, element selection, and command
selection is tedious and error-prone, especially for complex
layouts. In addition, since different ordering of such oper-
ations might lead to different results, a user has to plan a
series of operations beforehand and pay special attention to
their order during editing. This somewhat diverts the user
from the tasks of layout design and creation.

Automatic/semi-automatic layout techniques. There ex-
ist many layout helper features beyond the basic snapping
and alignment commands, and some have already been
integrated into commercial editors. For example, many algo-
rithms have been proposed for automatic or semi-automatic
graph layout generation [13], [14], [15], e.g., the auto-align
and auto-space tools in Microsoft Visio. However, they of-
ten significantly change the layout of the input elements
without attempting to infer and maintain the underlying
patterns in the input layout. The equal-sizing feature in
Microsoft Visio allows easy size-adjustment of selected ele-
ments. Several editors such as OmniGraffle and PowerPoint
support easy creation of equally spaced elements when
duplicating an element multiple times. These helper features
are very efficient for only specific tasks and are orthogonal
to our tool.

Beautification techniques. Our work is inspired by pre-
vious efforts on beautification that also aims to bring as
small change to the initial input as possible. There are plenty
of beautification techniques mainly developed for sketch-
based user interfaces to tolerate errors from freehand input
sketches. These existing techniques can be largely catego-
rized into two groups [16]: local beautification and global beau-
tification. Similar to snap-dragging [1], local beautification of
freehand sketches beautifies a current input stroke based
on either itself (often through sketch recognition [17], [18],
[19], [20]) or its geometric relationship(s) to the existing ele-
ments (e.g., [4], [21], [22]). A typical user interface for local
beautification achieves beautification progressively, stroke
by stroke. Each stroke is replaced with its beautified ver-
sion and kept fixed during the beautification of subsequent
strokes. Due to the local nature, such interfaces are often
easy to control. However, unfortunately, local beautification
is not suitable for the beautification of layouts, which should
be treated globally.

Compared to local beautification, global beautification
has been insufficiently explored. Pavlidis and Van Wyk [3]
present the first automatic beautifier for drawings and illus-
trations. Their algorithm focuses on inferring and enforcing

relations among points and lines, and thus can be extended
for our layout beautification problem by considering special
requirements like how to preserve aspect ratios of elements.
However, they do not give details about the user interface
of their system. Bolz [23] presents for the first time a user
interface for global beautification of drawings. It concen-
trates on how to deal with parameter settings (e.g., via
a parameter menu). Due to possibly frequent parameter
changes, the beautifier by default is manually activated each
time, though it is discussed that automatic activation of
the beautifier (like ours) is a desired feature. Bolz’s system
overlays the beautified drawing with an outline of the un-
modified version for some seconds. A similar visualization
of the original and beautified versions is adopted in [2],
which however deliberately defers the beautifier’s feedback.
Otherwise, the user may easily get disturbed by beautifica-
tion results. In contrast, our user interface allows instant
feedback with minimal disturbance. Cheema et al. [24]
present a novel sketch beautification algorithm but adopt
a simple interface similar to Bolz’s. Jiang et al. [25] solve a
similar layout regularization problem arising from facade
images. However, they focus more on an automatic 2D
layout regularization system instead of a general interactive
framework for layout beautification. In brief, none of the
above methods has explored an interface for visualizing and
editing constraints.

Techniques utilizing geometric features. Our optimiza-
tion strategy for determining valid constraints bears some
resemblance to the previous solutions for identifying ge-
ometric features towards sketch recognition. For example,
Veselova and Davis [26] employ studies of human percep-
tion to determine which geometric features are the most
important for symbol recognition. Hammond and Davis [27]
present a graphical debugging tool for learning structural
descriptions from automatically generated near-miss exam-
ples. Similar to earlier work [3], [4], we adopt an automatic,
iterative approach to avoid dramatic changes to the input
layout.

Techniques for ambiguity resolution. It is not always
possible to infer desired relationships among roughly placed
elements, especially when there are ambiguities. A possible
solution for ambiguity resolution is to provide multiple
alternatives as suggestions from which the user can then
choose [4], [5], [6]. The effectiveness of such suggestion-
based interfaces has been demonstrated for progressive
beautification [4], [6]. It is unclear whether suggestions
can be used to effectively resolve ambiguity from global
beautification since a handful of ambiguous relationships
may easily lead to a large set of suggestions. Instead of
attempting to select the best suggestions from a big pool,
we design a gestural interface for directly editing a limited
number of constraints.

Constraint-based systems. Constraint-based systems
have been extensively studied and a detailed review is be-
yond the scope of this paper. Most constraint-based systems
require the user to specify constraints explicitly (e.g., [28],
[29], [30]). Instead, our beautification interface focuses on
automatic inference of geometric constraints, and thus only
very few edits on constraints (after roughly placing ele-
ments) are needed to achieve a desired layout. Note that our
current system performs once-off alignment only and does

4

not maintain inferred constraints during subsequent edit-
ing [31]. Recently Zeidler et al. [32] introduce a novel layout
preview but focus on the resizing behavior of a constraint-
based layout during the design phase. Since constraint-
based systems often need to deal with various linear and
nonlinear constraints, possibly with complex interactions
among them, significant effort has been devoted to the topic
of constraint solving (e.g., [33], [34], [35], [36]). Such solvers
can be potentially used for our beautification optimization
problem.

3 USER INTERFACE

In this section, we first describe our main interface for global
beautification and then present our gestural interface for
editing constraints. To make it simple, we first assume that
the beautifier is already activated and applied to all input
elements, and will discuss how our beautifier can coexist
with other tools at the end of this section.

3.1 Global Beautifier Interface
Our global beautifier takes a set of roughly placed elements
as input and returns a well-aligned layout as output. Since
the desired relationships might not be immediately clear
during editing, even to a human viewer, we design a user
interface that does not directly change the location and
size of elements in the input layout but rather gives a
preview of the refined layout in another window (Figure 1).
In this way, the user can focus on layout design itself by
placing elements roughly, without being disturbed by the
beautifier’s feedback.

Since the input layout is not immediately replaced with
the beautified version, the user may keep editing the current
layout by translating or resizing individual elements, and
our beautifier gives instant feedback in the preview window.
This simple interface is suitable for creating, editing or
refining layouts. At any point, the user may confirm to apply
the beautified layout to the input one.

3.2 Gestural Interface for Editing Constraints
Automatically inferring underlying relationships among el-
ements plays a vital role in layout beautification. Since
relationships are formulated as constraints in the beautifi-
cation optimization, we will use the terms relationships and
constraints interchangeably in the following discussion.

Automatically inferred relationships might not always
be wholly desirable. This problem might be indirectly solved
by the interactive refinement of certain elements’ position
and/or size. Alternatively, the user may directly add or
remove relationships using a gestural interface as shown in
Figure 2 (b) and (c). Our implemented beautifier currently
supports two types of geometric relationships: edge align-
ment and equal-spacing.

At any time the user may edit constraints in the input
window, where he or she may edit elements for inter-
active refinement. To facilitate the editing of constraints,
we display all automatically inferred relationships using
dashed lines and arrows in both the input and preview
windows (Figure 1). The visualized constraints in the input
window are editable via the gestural interface while those

(a) (b) (c)

Fig. 4. Two examples of our gestural interface for adding alignment
constraints. An appropriate constraint is automatically determined by
examining the relative location of two involved elements and the position
of the stroke’s ending points relative to the elements.

in the preview window are read-only for examining the
currently achieved relationships. In real-world applications,
constraints may be displayed on demand to avoid visual
clutter, since in general only few constraint edits are needed.

The user enters the mode for editing edge alignment
constraints by clicking an “alignment constraint editing”
button, which might be replaced with a gesture in the future
implementation. In this mode, repositioning and resizing
of individual elements are disabled. To remove an existing
alignment constraint, the user performs a cutting gesture on
a constraint of interest (Figure 2 (b-1)), i.e., drawing a stroke
roughly perpendicular to the dashed line corresponding to
the constraint. To add a new alignment constraint, the user
simply draws a stroke connecting a pair of elements of
interest (Figure 2 (b-2)). Our interface automatically deter-
mines whether a horizontal or vertical alignment constraint
is needed by examining the relative location of the two ele-
ments. For example, the stroke in Figure 4 (a) is interpreted
as an intention for vertical alignment while the stroke in
Figure 4 (b) is for horizontal alignment. For horizontal align-
ment, the user may indicate the preference for top-, middle-
or bottom-align by placing the ending points of the stroke
into the respective parts of the elements. For this reason, the
stroke in Figure 4 (b) is recognized for achieving middle
alignment. A similar control exists for vertical alignment
(see an example in Figure 4 (a)). To make the interface more
user-friendly, we may put three control handles (e.g., small
translucent circles) on each side of an element, indicating
that the user can drag from one handle to another to set
alignments. The mode for editing alignment constraints is
deactivated when the user switches to other editing modes.

For simplicity, the activation and deactivation of our ges-
tural tool for editing equal-spacing constraints are achieved
via mode-switching buttons. To remove an equal-spacing
constraint the user performs a cutting gesture (Figure 2 (c-
1)). To add a new equal-spacing constraint, the user invokes
multiple (at least two) strokes, with each of them connecting
a pair of elements (Figure 2 (c-2 and c-3)). Constraints
for equal-spacing between the specified pairs of elements
will then be added. Horizontal or vertical equal-spacing
is automatically determined by looking into the relative
position of pairs of elements.

Not all automatically inferred constraints can be en-
forced at the same time. Our interface only visualizes the
constraints that can coexist. However, the user may intro-
duce constraints that conflict with the existing ones. To
capture the user’s latest intention, any constraint that is in
conflict with the newly added constraint will be removed.
Thus in some cases, the user may see one or more existing

5

constraints removed due to the new constraints.

3.3 Interface for 3D Element Arrangement
Creating 3D layouts involves the alignment of elements in
the additional depth dimension. A straightforward exten-
sion of our 2D beautification approach to 3D is to first ask
users to roughly place the elements in the 3D space and
then directly detect the 3D relations among these elements.
Although this simple solution might reduce the number
of operations for the precise 3D position and orientation
specification, it still requires direct manipulation of elements
in 3D, which is a tedious process, especially for novice users.
With a 2D display device, we notice that the perception of
3D layouts is actually based on the rendered elements in
the 2D screen space. It implies that 3D relations could be
inferred from the projected 2D elements. This motivated us
to design and develop a 2D interface for 3D layout creation
and beautification.

Our interface allows a user to manipulate the projected
elements in the screen space. By arranging the projected
elements, the user can form a layout which can be perceived
as a desired 3D layout (see Figure 3). The global beautifier
takes the projected elements as input and infers the 2D
relations among them. These 2D relations are then further
interpreted as 3D relations among 3D elements by a back
projection. These 3D relations are visualized to the user for
assisting the perception. The global beautifier also returns a
well-aligned 3D layout as output in the preview window
(Figure 1 bottom). The user can change the view in the
preview window to better examine the 3D layout. If the
generated 3D layout is not the desired one, the user can
modify the layout by rearranging the projected elements or
using the gestural interface to edit the current relations.

Note that the relations among 3D elements can only
determine their relative 3D positions. To determine the
absolute 3D positions, the user can select some elements as
anchors. These anchor elements possess exact 3D positions
and can be manipulated in the 3D space with traditional
tools. The other elements, which we call floating elements,
have incomplete 3D information and can be manipulated in
the screen space. The 3D positions of these floating elements
are inferred when the user accepts the beautified 3D layout.
The user can also change the view in the input window for
better perception during the arrangement. The projected 2D
position of the floating elements remains unchanged, but
their orientations alter with the camera. The user can also
change an anchor element to a floating element to remove
its 3D position information (see the accompanying video for
a clear illustration).

4 IMPLEMENTATION

Now we describe how we implement the proposed beauti-
fier interface, which essentially follows the general beauti-
fication framework proposed by Pavlidis and Van Wyk [3].
The details are listed here for easy reproduction.

4.1 Pattern Detection
We focus only on edge alignment and equal-spacing re-
lationships, since they already enable all the functions of
snapping and alignment commands. We do not consider

(a) (b)

(d)(c)

Fig. 5. Illustration for inferring relationships (dashed lines) for horizontal
alignment of 2D elements.

face alignment in 3D arrangement explicitly since it could
be implicitly achieved by two edge alignment relationships.
For illustration, we always use rectangles to represent 2D
graphic elements and cuboids to represent 3D graphic el-
ements since element alignment is often achieved at the
bounding box level.

Inferring edge-alignment relationships. The alignment
relations are inferred by detecting collinearity relations
among the 2D edges, which are extracted from the bounding
boxes of 2D elements or the 2D projected bounding boxes
of 3D elements. For 2D elements, we also include the hor-
izontal and vertical middle edges (i.e., a horizontal or ver-
tical segment passing through the center) of the bounding
box, following the snapping tools in existing editors like
Microsoft Visio. Given a set of extracted 2D edges, detecting
collinearity relations is essentially a clustering problem,
where a set of collinear lines form a cluster. Although there
exist many general techniques for such clustering problems,
most of them require indicating the scale of the cluster by
parameters, which in most techniques are global. However,
the alignment lines in a given layout may have different
qualities. Some of them would be invalid if all alignment
lines are detected under the same configuration. Therefore,
the clustering algorithm should be adaptive to each align-
ment line.

RANSAC-based approach. Our solution is a variant of
the classic RANSAC algorithm [37]. Since the number of
edges is usually not big (from dozens to hundreds), it is
possible to find globally optimal lines without randomness.
Specifically, for every edge, we use the following iterative
procedure to find a candidate alignment line: 1) the current
edge as an initial inlier gives an initial fitted line; 2) all other
edges are tested against the fitted line to find an updated set
of inliers; 3) refit the line to the updated set of inliers. Steps
2 and 3 are repeated until convergence. Each edge as the
initial inlier gives a candidate alignment line, and we pick
the best line as the determinate alignment line. The inliers
(edges) of the picked line are then removed from the current
set of edges and we repeat the above iterative procedure to
find the next alignment line till no more lines can be found.
See the appendix for more details of Steps 2 and 3.

Once we find a candidate alignment line for each edge,
we select the best alignment line Pa. Generally we prefer
an alignment line with a larger group of inliers and a lower
variance of the vertical coordinate among the inliers. All
the inlier edges corresponding to the selected alignment

6

(a) (b)

(d)(c)

Fig. 6. Illustration for inferring relationships (dashed lines) for alignment
of 3D elements.

line have edge-alignment relationships between each other
(Figure 5 (d) and Figure 6 (d)).

Our algorithm is able to detect the edge alignment in
any direction. In our implementation, we only detect the
horizontal and vertical alignments for 2D elements, based
on the observation that most 2D layouts are axis-aligned.
For 3D elements, we detect the alignments with general
directions and allow the elements to be in any orientations.

Inferring equal-spacing relationships. In our imple-
mentation, we allow the existence of equal-spacing rela-
tionships only in a group of graphic elements that have
edge-alignment relationships. We use an iterative bottom-up
clustering approach to detect equal-spacing relationships.
The spacing is defined as the distance between every pair
of adjacent elements. Initially, each spacing cluster consists
of only one spacing. Each iteration groups two clusters with
the smallest distance. The distance between two spacings
d1 and d2 is defined as |d1 − d2|/(d1 + d2). For two spacing
clusters, it is defined as the difference of the average spacing
between two clusters. The clustering process continues until
the distance of the best pair of spacing groups is larger
than a predefined threshold (we set as 0.15). Note that
our gestural interface allows interactively adding equal-
spacing constraints to non-adjacent pairs of elements (see
an example in Figure 2 (c)).

4.2 Layout Refinement by Optimization

Following the previous beautification work [3], we use an
optimization-based approach to refine the layout of 2D or
3D elements to satisfy the inferred relationships while re-
taining as much as possible the perceived 2D layout, i.e., the
layout composed of 2D elements or projected 3D elements
in the screen space. The optimization can be generalized as
below.

Objective. Retaining the perceived layout can be
achieved by retaining the position, orientation, and size of
all elements in the screen space. For each graphic element
g ∈ G, where G is the set of input graphic elements, its
position, orientation, and size are represented by vector

P=(x, y, z)T

p = (x, y, z)T

(x, y, z)T
u

v

w

o = (u, v, w)T

h

w

l

s = (w, h, l)T

Fig. 7. Illustration of the variables during the optimization.

pg , og , and sg , respectively (See Figure 7). pg is a vector
which contains the coordinates of the element center, e.g.,
(xg, yg, zg)

T for 3D elements. og is a vector that contains
all the axis directions of an element, e.g., (ug,vg,wg)

T

for 3D elements. sg is a vector which contains the size
parameters, e.g., (wg, hg, lg)

T for 3D elements. Therefore,
to retain the perceived layout we minimize the following
objective function:

E =
∑
g∈G

(||Mp(p
′
g − pg)||2 + α||o′g − og||2 + β||s′g − sg||2),

(1)
where p′g , o′g , and s′g are the variables being optimized,
denoting the changed position, orientation and size of el-
ements after refinement, respectively. α and β are used
to control the relative weight of different objectives. We
set α = 1 and β = 1 in our implementation. Mp is the
transformation matrix between the actual position and the
perceived position. For 2D elements, Mp is the identity
matrix since the actual position and perceived position are
the same. For 3D elements, Mp is determined by the camera
view when performing the layout editing. Therefore, Eq. (1)
can be rewritten as:

E2D =
∑

g∈G2D

(||p′g − pg||2 + α||o′g − og||2 + β||s′g − sg||2),

E3D =
∑

g∈G3D

(||Mp(p
′
g − pg)||2 + α||o′g − og||2 + β|s′g − sg||2).

(2)
Here minimizing ||Mp(p

′
g − pg)||2 is not equivalent to

minimizing ||p′g − pg||2, since the transformation is not
reversible.

Constraints. The above minimization is subject to a set of
constraints. We first identify the intrinsic constraints on the
axis directions of each graphic element g. For 3D elements,
the constraints are listed below:

ugvg = 0, vgwg = 0, wgug = 0,

||ug||2 = 1, ||vg||2 = 1, ||wg||2 = 1.
(3)

The above equations mean that the axis directions of an
element should be unit vectors and orthogonal to each other.
The intrinsic constraints on axis direction for 2D elements
can be obtained similarly. If the aspect ratio ag needs to be
retained during the refinement (e.g., arranging 2D images),
a constraint on size sg = (wg, hg)

T is added, where wg =
aghg .

The rest of the constraints are derived from the detected
relationships. For alignment relationships, let Sa denote a

7

(a) (b) (c)

Fig. 8. Left in each box: input layouts. Right in each box: results by simultaneously enforcing all detected constraints (top) and results by automatically
rejecting the highlighted constraints (bottom). Note that the constraint of keeping the aspect ratios of elements is enforced in (b) and (c) but not (a).

set of inliers that will be aligned to the same line Pa. For
each edge si ∈ Sa, it has two properties, i.e., position
p(si)and direction d(si). These two properties are repre-
sented by the position pg , orientation og , and size sg of
element g, which contains this edge. For example, for the
top edge si of a 2D element g, we have p(si) = pg +

1
2hgvg

and d(si) = ug . If edges si and sj have an edge-alignment
relationship, we have the following constraints:

d(si) = d(sj),

(p(si)− p(sj))× d(si) = 0.
(4)

Each pair of neighboring graphic elements in Pa gives
rise to a set of constraints in Eq. (4), resulting in a total
of |Sa| − 1 sets of constraints, where |Sa| is the cardinality
of Sa. For equal-spacing relationships, let Ss be a set of
element pairs with the equal-spacing relationship detected
for every element pair. The spacing between a pair of
elements is represented by the positions, orientations, and
sizes of these two elements. Enforcing the equality of these
spacings introduces another |Ss| − 1 constraints. For the 3D
case, we add extra position constraints for anchor elements,
which introduces k equality constraints if there are k anchor
elements.

Optimization. The objective function (2) and some of
the constraints in (3) and (4) are quadratic, therefore the
optimization is a quadratic programming problem with
quadratic constraints. Since our constraints are not convex,
we can not directly solve the problem efficiently. We noticed
that the quadratic constraints are all about optimizing the
orientation, therefore we adopt a two-step procedure to
obtain an approximate optimum. We first extract the orienta-
tion relations among elements, and optimize them using an
iterative approach, i.e., iteratively changing the orientation
of each elements until convergence. After determining the
orientations, the remaining constraints are all linear, and
thus the optimization problem can be solved efficiently.

In general, only a subset of the constraints can be en-
forced during the optimization. This is because simulta-
neously enforcing some constraints may cause the refined
layout to deviate too much from the original layout (Figure 8
(a)). Worse, the layout may become degenerate in that the
sizes of some graphic elements may become zero or negative
(Figure 8 (b) and (c)).

Similar to [3], [4], we use an iterative approach to de-
termine valid constraints. Specifically, we iteratively check
the validity of each of our orientation, alignment, and
spacing equality constraints by examining the optimized
layout. After adding each constraint to the system, we
check the current optimal solution and drop the constraint
if the layout becomes degenerate or changes too much.

Since our two-step optimization procedure ensures that
the constraints are in the linear equality form, and the
constraints are added incrementally, this strategy works
efficiently. The alignment constraints are added in the order
in which the corresponding alignment lines are detected,
i.e., the constraints are preserved in a higher priority if
the corresponding alignment line is detected earlier. Within
the edge-alignment constraints corresponding to a specific
alignment line, we rank them by their alignment error. This
means that a constraint (p(si) − p(sj)) × d(si) = 0 has a
higher priority if |(p(si) − p(sj)) × d(si)| is smaller. Note
that the orientation constraint between a pair of elements
is realized right before adding their alignment constraint,
therefore d(si) is determined. After considering all the con-
straints of an edge-alignment pattern, we add the detected
equal-spacing relationships from this alignment pattern. All
constraints of an equal-spacing pattern are simultaneously
added, and they are all rejected if the new layout becomes
degenerate or deviates too much from the original layout,
since equal-spacing often exists as a global pattern. We
use the CHOLMOD sparse linear system solver [38] to
incrementally solve the resulting constraint optimization
problem after each constraint is added. It provides the fast
update for the linear system, without repeatedly solving
it from scratch, and thus is able to solve the incremental
constraint optimization problem efficiently. During the op-
timization, the relative weights between different objectives
are equal, i.e., β in Eq. (1) or (2) is 1, and α is not applicable
due to our two-step optimization procedure.

Since the most popular 2D elements editors only sup-
port axis-aligned edge alignment and equal-spacing rela-
tionships, our current implementation did not consider ori-
entation constraints for 2D elements, i.e., all the elements
are axis-aligned and are not rotated during the editing.
We included the orientation constraints in our 3D layout
system. See also Figure 6 and the accompanying video.

While our simple strategy generally works well and effi-
ciently, we are aware of another possible solution which de-
termines constraints by adding linear inequality constraints
to restrict the solution domain. For example, the refined
size of a graphic element should be within a certain range.
We can then incrementally add a constraint and retain it
only if the feasible region of this constraint problem is not
empty. For this solution, we may resort to existing constraint
solvers like QOCA [35] and Gecode [36].

5 USER STUDIES

We have extensively tested our technique on layouts of vari-
ous patterns, most of which are time-consuming to produce
when snapping and alignment commands are used. See

8

Task 1

Task 2
0

2

4

6

8

10

12

14

AVG 1 2

Number of constraint edits

0

10

20

30

40

50

60

70

80

AVG 1 2

Number of general
opera�ons

0

50

100

150

200

250

AVG 1 2

Comple�on �me

With preview

Without preview

(s)

Fig. 9. Two layout refinement tasks used in study 1 and the resulting statistics. Error bars represent standard error of the mean.

some of the tested layouts in Figures 8–11. Our tool is also
applicable to layouts with nested elements (See Figure 10).
Note that a fixed set of parameter values were always used
throughout our experimentation. Three user studies were
conducted to evaluate the effectiveness of our technique. We
focused on representative layouts and avoided introducing
tasks with over-complicated layouts, since it would take a
lot of time to complete such tasks with traditional tools,
making the studies unnecessarily long. We will discuss the
scalability of our interface when dealing with complicated
tasks in Section 6.

5.1 Study 1: Evaluation of Beautification Preview

We first evaluated the performance of the beautifier with
and without a preview window. This study was based on
2D layout tasks. Eight university students helped with the
evaluation. They have extensive experience in using the tra-
ditional 2D alignment tools, e.g., in Microsoft PowerPoint.

Apparatus. The study was conducted on an ordinary
PC (DELL Optiplex 960), with 3.00 GHz Intel Core 2 Duo
CPU and 4.00 GB RAM. Two LCD monitors (20-inch and
17-inch) were connected, one for the beautifier interface
(with the preview window if used), and the other only for
displaying a static target layout. Our beautifier achieved
real-time performance for moderately complex layouts. For
example, for a typical layout containing a dozen of elements
like those shown in Figure 11, it took our technique less than
0.01 seconds for alignment relationships inference and less
than 0.02 seconds for layout refinement.

Tasks. We asked participants to perform 2D layout re-
finement. For each task, each participant was asked to refine
a source layout, which already resembled a target layout
with visualized alignment and equal-spacing relationships
(Figure 9), displayed on a separate monitor. The source and
target layouts were consistently numbered so that the par-
ticipants knew the correspondence between the elements.
Common operations, such as element translation, resizing

Input Preview

Fig. 10. The application of our tool to layouts with nested elements.

and selection (by single click or rectangle selection tool),
were allowed. Element creation and removal are disabled.

Two tasks (Figure 9) were tested and had different layout
complexity. Task 1 was more challenging since it involved
more potential ambiguities during refinement. Each par-
ticipant was required to complete each of the two tasks,
with two tools: our beautifier with and without a preview
window. For the latter, the beautified result was instantly
applied to the input layout, as similarly done in the previous
works [2], [23]. See the accompanying video for such an
interface in action. In total, we had 8 (participants) × 2
(tools) × 2 (tasks) = 32 trials.

With each of the two tools (i.e., the beautifier with and
without a preview), the participants were asked to quickly
reproduce each of the two target layouts by achieving as
many visualized target relationships as possible. However,
they were allowed to proceed to the next task without fully
reproducing the target layout of the current task. To help the
participants better track their progress, the alignment and
equal-spacing relationships of the layout were visualized
and shown in the preview window or the input window
in the case of no preview window. The order of the tasks
and the tools in each task were counter-balanced across par-
ticipants. Before the study, the participants were introduced
to these two tools, and they practiced in a short warm-up
session until they felt comfortable. The whole study lasted
less than 20 minutes on average for each participant.

Performance measures. During the study, the following
information was recorded for quantitative analysis: the com-
pletion time of individual trials, the time spent on element
editing (selection, moving, resizing), the number of general
operations (moving, resizing, duplicate, removal, undo),
and the number of edits for edge-alignment constraints and
equal-spacing constraints.

Results. Figure 9 plots the statistics of the core informa-
tion captured in Study 1. The preview window significantly
shortened the average completion time per task among the
participants, from 151.7 seconds to 103.2 seconds. A signifi-
cant difference was confirmed by repeated measures analy-
sis of variance (repeated measures ANOVA): F = 57.77 and
p = 0.000126. The benefit of our interface with the preview
window was even clearer for Task 1, a more challenging
task. The average completion time of Task 1 was 110.5 sec-
onds with our interface, compared to 180.6 seconds without
the preview window (F = 41.59, p = 0.000351).

Figure 9 also shows the average number of operations for

9

1(a)

1(b)

1(c)

2(a)

2(b)

3(a)

3(b)
0

50

100

150

200

250

300

350

400

450

500

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Our tool
Snapping and alignment commands

(s)

Fig. 11. From left to right: 1(a)-(c): target layouts used in the layout creation scenario; 2(a)&(b): source layouts (left) and target layouts (right) in the
layout editing scenario; 3(a)&(b): source (left) and target layouts (right) in the layout refinement scenario; average completion time (in seconds) of
each task. Error bars represent standard error of the mean.

editing constraints and the average number of general oper-
ations (moving, resizing, etc). While on average the number
of general operations was less with our interface, the dif-
ference was not statistically significant. Repeated measures
ANOVA confirmed a significant difference in the average
of constraint edits for Task 1 (F = 17.78, p = 0.003954)
but not for Task 2 (F = 2.951, p = 0.12951) between the
beautifier with and without the preview window. For the
more challenging Task 1, without the preview window, the
users easily got distracted by intermediate beautification
results, making them difficult to achieve desired layouts
simply by direct repositioning and resizing of elements.
Thus they had to resort to the tools for editing constraints
more often. It is interesting to note that the standard errors
here were relatively large, indicating that different partici-
pants might have different preferences for the interface for
editing constraints.

5.2 Study 2: Comparing to Snapping & Alignment Com-
mands
We conducted a user study to evaluate the effectiveness of
our technique for 2D layout tasks, compared to snapping
and alignment commands, which are arguably the most
popular tools available in almost all commercial 2D graphic
editors like OmniGraffle, Visio, and InDesign. We imple-
mented these standard tools in a way like in PowerPoint
2013. Specifically, snapping was activated only for the el-
ement being dragged. This element could be snapped to
achieve edge/center alignment or equal spacing with other
elements. The compared system supported 8 commands:
align top/middle/bottom/left/center/right, and distribute
horizontally/vertically. We chose the lead object for align-
ment similar to PowerPoint, e.g., the topmost element for
top-align, and the outermost elements for even distribution.
We deliberately excluded layout helper features beyond the
standard snapping and alignment commands, since it is
expected that such extra functions would similarly benefit
our tool and the compared system.

Apparatus and participants. We used the same set of
instruments as those in Study 1. Another 11 university
students were recruited for the user study. Again all of them
had used traditional alignment tools extensively. A handful
of them were even good at vector graphics editing and were
familiar with professional software like Adobe Illustrator.

Tasks. Besides layout refinement, we evaluated the per-
formance of the traditional tools and ours in another two
scenarios, i.e., creating and editing layouts. In the creation
scenario, three tasks were tested. For each task, each partic-
ipant was asked to create a layout from scratch towards a
reference target layout (Figure 11 1(a)-(c)). The participants
were allowed to draw, duplicate, or remove elements. The
layout editing scenario comprises two tasks, each of which
required the participants to significantly change an input
layout towards a target layout (Figure 11 2(a)-(b)). Element
creation and removal were disabled. Like Study 1, the
participants were asked to complete two layout refinement
tasks (Figure 11 3(a)-(b)). But this time we locked the aspect
ratios of the elements, controlled by a toggle button. For the
editing and refining scenarios, consistent correspondence
numbers were provided.

In total, there were seven tasks under the three scenarios.
All target layouts in these tasks had reasonable complexities
to simulate the layout creation tasks in practice while main-
taining an acceptable duration of the study. Each participant
was asked to complete each of them twice, one with our
tool and the other with the set of traditional alignment tools.
That is, our experiment involved 11 (participants)× 2 (tools)
× 7 (tasks) = 154 trials. The tools in each task were (almost)
counter-balanced and the order of the tasks in each scenario
was random. The participants took breaks between different
scenarios so that they were briefed on the newly enabled
or disabled operations before each scenario. For simplicity,
no break was allowed between tasks in each scenario. The
whole study lasted around one hour on average for each
participant.

Performance measures. Besides the measures used in
Study 1, the following information was also recorded: the
time spent on drawing the elements (for the creation sce-
nario only), and the number of specific operations with the
traditional tools (commands like edge alignment and equal
spacing, etc).

Results. Figure 11 shows the target layouts in each task,
and the corresponding average completion times. Repeated
measures ANOVA found a significant difference in the
average completion time per task among the participants
between our tool and the traditional tools (F = 78.8,
p < 4 × 10−6). On average, significantly less time was
needed to accomplish each task using our tool (110.7 sec-

10

onds) compared to the traditional tools (260.7 seconds).
Our tool performed much better than the traditional

tools for target layouts involving complex relationships such
as Tasks 1(b) and 2(a). For easier tasks, such as Tasks 1(a)
and 1(c), using our tool was still faster. For the tasks in
the refinement scenario, due to the locked aspect ratios of
the elements, the editing freedom was seriously restricted,
making such tasks more challenging to complete for the
traditional tools. More than half of the participants failed to
reproduce the target layouts with the traditional tools, while
all of them had no difficulty with our tool. Given the above
results, we believe that the superiority of our tool would
hold, and even become more notable, when the complexities
of target layouts increase.

In Figure 12 we show more statistics from the user
study. There was no statistically significant difference in the
drawing time between the two tools (p = 0.465), though we
observed that our tool was still slightly faster. Our tool re-
quired significantly fewer general operations (p < 5×10−5).
The task success rates also reflect the effectiveness of our
tool. For almost all the tasks, each participant could success-
fully reproduce the target layouts with our tool. In contrast,
the completion rates for the traditional tools were much
lower, despite they had been used by all the participants
on a regular basis. This confirms the ease of use of our tool,
even for the first-time users.

Figure 12 also shows the average number of edits on
edge alignment and equal-spacing constraints for individual
tasks. While the number of edits was small, constraint
editing was performed for 5 out of 7 tasks. We speculate
that the number of constraint edits needed is correlated
with layout complexity, which is somewhat reflected by
the (average) completion time. For example, the number of
constraint edits used for Task 1(b) was much bigger than
that for Task 1(a) and Task 1(c). A similar conclusion on the
average completion time of these tasks could be reached.

It can be seen that the standard error of the mean (shown
as error bars in Figures 11 and 12) of the completion time,
editing time, and editing number is much larger with the
traditional tools. This means that the performance of our
tool was more consistent across all participants. In other
words our tool was less dependent on the experience of the
individual participants.

Our statistics show that on average each participant
performed 0.97 edge-alignment commands and 1.90 equal-
spacing commands per task. This is mainly because equal-
spacing commands were more indispensable, while edge-
alignment commands could be replaced with more intuitive
snapping operations. This reiterates the fact that snapping
has to be used together with command-based alignment
tools in many cases.

We also got some interesting observations from the user
study. With our tool, some participants tended to draw
or edit elements carefully at the beginning despite being
told that our tool can tolerate rough inputs. However, they
quickly get used to our tool and performed the creation
and editing operations more casually. Another observation
was that, in the refining scenario, when using the traditional
tools, some participants moved all the elements away before
editing, though most of the input elements were already
located very close to the target positions. Such behavior was

0

20

40

60

80

100

120

140

160

180

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Number of general opera�ons

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AVG 1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Success rates

0

1

2

3

4

5

6

1 (a) 1 (b) 1 (c) 2 (a) 2 (b) 3 (a) 3 (b)

Number of constraint edits

Edge alignment

Equal-spacing

0

5

10

15

20

25

AVG 1 (a) 1 (b) 1 (c)

Drawing �me
Our tool

Snapping and alignment
commands

(s)

Fig. 12. More statistics. The timings are in seconds. Error bars represent
standard error of the mean.

never observed with our tool. This behavior was largely due
to the not-aligned elements triggering often excessive and
distracting suggestions from snap-dragging.

After completing the tasks, we asked each participant
to provide feedback on the two tools in terms of their ease
of use. All participants except one preferred our tool. They
expressed that our tool enables them to disregard the order
of specific operations and focus on the layout design. One
participant who preferred the traditional tools liked the
full user control and disliked rough inputs. This concern
could be addressed by integrating snap-dragging into our
framework.

5.3 Study 3: Comparing to 3D Arrangement Interface

We evaluated our framework for 3D layout tasks, compared
to the traditional multi-viewport interface, which is a stan-
dard component of 3D graphic editors like Autodesk 3ds
Max. We implemented this traditional tool following the
one in 3ds Max, i.e., by providing the top, front, left, and
free viewports for editing elements. The user could freely
change the position and/or size of 3D elements without
affecting their depth in each viewport. To further increase
the usability, we enabled the 2D snapping effect for align-
ment and equal-spacing in the top, front, and left viewports,
except for the free viewport, since 2D snapping could not be
directly extended to this viewport.

Apparatus. This study was conducted on another PC
(Dell Precision Tower 7910), with 2.3 GHz Intel Xeon CPU
and 64.00 GB RAM. Two 24-inch LCD monitors were con-
nected for this study. Similar to Studies 1 and 2, these two
monitors were used for displaying a target layout and the
layout editor (with our interface or the traditional inter-
face), respectively. Our beautifier for 3D layout optimization
achieved real-time performance. We also tested it on the PC
used in Studies 1 and 2, and the real-time performance was
also guaranteed.

Participants. We recruited another 15 university stu-
dents to help in the study. Six of them were familiar with a
3D graphic editor. Six participants had 3D elements manip-

11

Task 1 Task 2 Task 3 Task 4 Task 5
0

20

40

60

80

100

120

140

160

AVG 1 2 3 4 5

Comple�on Time

Our tool

Tradi�onal tool

(s)

Fig. 13. Left: The target layouts used in Study 3. Right: The average completion time (in seconds) of each task. Error bars represent standard error
of the mean.

ulation experiences. The other three participants considered
them as novice users of a 3D graphic editor.

Tasks. We evaluated the performance of the traditional
and our interfaces in creating 3D layouts with given 3D
elements. This layout creation scenario is very common
in 3D editing, since 3D elements are often reusable in
assembling 3D objects or creating 3D scenes. As shown in
Figure 13 (Left), five tasks were tested in this study. For
each task, the participants were asked to achieve a target
layout by arranging a set of elements, with the traditional
and our interfaces respectively. To reduce the difficulty
of using the traditional interface, we did not require the
participants to perform element resizing operations. The
target layouts were achievable by only element reposition
operations. Among the given elements, one was placed in
the center area of the scene and considered as the anchor
element. Other elements were placed in the border area of
the scene for further arrangement. When using our interface,
the elements in the border area were considered as floating
elements, i.e., elements without their 3D positions. In Tasks
1 – 4, the orientations of the elements before and after the
arrangement were all aligned with the global axis, which
is common in creating 3D objects or scenes. In Task 5, the
original orientations of the elements had slight variations.
In addition, their orientations in the target layout were
not aligned with the global axis. It corresponded to more
general 3D arrangement tasks, in which elements could be
in arbitrary orientations. The order of two interfaces was
(almost) counter-balanced and the tasks were tested with a
random order. In total there were 5 (tasks) × 2 (interfaces)
× 15 (participants) = 150 trials. Before completing the tasks,
there was a 10-minute practice session for the participants
to get familiar with the traditional and our interfaces. There
was no break between tasks in this study.

Performance measures. We recorded the following in-
formation for quantitative analysis: the completion time of
individual trials, the number of general operations (moving,
view transition, undo, and redo), and the number of relation
editing with our interface.

Results. Figure 13 (Right) shows the resulting average
completion time for each task. Figure 14 shows the other
statistics. Repeated measures ANOVA confirmed that there
was a significant difference in the average completion time
(F = 61.20, p < 1.8 × 10−6) and the average number of
general operations (F = 127.27, p < 2.1 × 10−8) among
the participants between our and traditional interfaces. On
average, the participants spent significantly less time (50.1s

0

1

2

3

4

5

6

1 2 3 4 5

Number of constraint edits

0

5

10

15

20

25

30

35

40

AVG 1 2 3 4 5

Number of general opera�ons
Our tool
Tradi�onal tool

Fig. 14. More statistics. Error bars represent standard error of the mean.

vs. 76.7s) and fewer general operations (8.8 vs. 20.4) in
completing each task using our interface compared to the
traditional interface. Compared with the tasks in Studies
1 and 2, these tasks could be completed with less time
and fewer operations, since the participants could focus
on element moving operations only. Figure 14 (Left) also
shows the average number of relation edits when using
our interface. It is worth noting that participants tended
to use the gestural tools more frequently (on average, 3.29
constraint edits vs. 8.8 general operations), compared with
the tasks in Studies 1 and 2. It is possibly because the
alignment relations among 3D elements had more variations
and ambiguities (see Figure 3). It was thus more difficult to
achieve the desired alignment relations by element arrange-
ment, compared with 2D cases. None of the participants
used the gestural tool to edit the equal-spacing relations,
since they could be easily formed as long as the desired
alignment relations were achieved.

The performance of our and the traditional interfaces
varied for individual tasks. Task 1 was the simplest one with
both interfaces. Confirmed by repeated measures ANOVA,
the participants spent significantly less time with our inter-
face (p < 0.03) since they could perform rough operations.
The number of general operations was also significantly less
when using our interface (p < 0.002). Task 2 was more
complex than Task 1 when using the traditional interface
since the elements in the target layout had varied depths.
The participants needed to move the elements in the appro-
priate viewports to achieve the target layout. It confused the
novice users who were not familiar with the multiple view-
port interface. Our interface significantly outperformed the
traditional one in both the completion time (p < 8 × 10−7)
and the number of operations (p < 2 × 10−6). For Task 3,
our interface was slightly faster but the difference between
the two interfaces was not significant (p = 0.6). This task
was a little hard with our interface since the relations were

12

occluded by each other. Some participants were confused
during editing and thus spent more time on figuring out
how to specify the desired relations. Still, our interface
required significantly fewer general operations (p < 0.04).
Task 4 was similar to Task 1, but required the participants
to plan the operations carefully when using the traditional
interface. In contrast, our interface was not affected by the
order of the operations, and therefore achieved significantly
less completion time (p < 0.002) and fewer general opera-
tions (p < 8 × 10−4). Task 5 was challenging when using
the traditional interface. The user needed to first fine-tune
the elements’ orientations and performed a group transfor-
mation to make them aligned with the global axis. After
the arrangement, the user needed to perform another group
transformation to achieve the target layout. To reduce the
difficulty when using the traditional interface, we assumed
that the elements’ orientations were already fine-tuned and
aligned with the global axis. The participants did not need to
perform group transformation after the arrangement either.
When using our interface, we still used the original setting
of Task 5. The results showed that our interface achieved
significantly less completion time (p < 0.007) and fewer
general operations (p < 9 × 10−4) than the traditional
interface, even though the traditional interface was used in
a simplified setting.

We also obtained some feedback from the participants.
They expressed that our interface was easy to use, and
effectively saved the operation time of specifying the depths
of the elements. The visualization was very useful for per-
ceiving the relations among elements. They also commented
that the interface was not suitable for arranging elements
with occlusions, in which case the relation visualization
might introduce severe visual clutter, preventing them from
achieving desired layouts.

6 DISCUSSIONS

To use our tool in existing graphic editors like PowerPoint,
the user may first select a set of target elements and then
enter a “layout beautification mode”, for example, via an
activation button, menu or gesture. Similar to the inter-
face described in our prototype, we may pop up a dialog
to edit elements and/or constraints while previewing the
beautified layout in the input panel. In the mode of element
editing, our interface is completely compatible with existing
layout helper features. All edits are confirmed after the user
hits the “apply” button; otherwise, they are canceled.

While the results of Study 1 imply the usefulness of
having a preview of the refined layout in the experimen-
tal condition, rendering the original and refined layouts
in separate windows might cause the problem of divided
attention. To alleviate this problem we might use a smaller
preview window instead of a full-scale copy of the design.
It is not necessary to always activate the preview window
especially when the input layout is undergoing dramatic
changes, e.g., at the beginning of layout editing and creation
tasks in Study 2, and the tasks in Study 3.

To further solve the problem of divided attention and to
save space required by an extra preview window, we could
show the preview in place. For example, we might overlay
the beautified layout as a translucent layer on top of the
original layout. Since this solution easily results in visual

Fig. 15. Our interface has good scalability when the complexity of the
layouts increases. For practiced users, it took less than 4 minutes to
finish each 2D task (Top) and less than 5 minutes to finish each 3D task
(Bottom).

clutter, it might work well for only relatively simple layouts
with fewer elements, but would likely not be able to scale to
very complex diagrams. In the future, it is worth evaluating
whether such alternative solutions would be more effective
than a simple preview window in our current prototype.

Our interface has good scalability with the complexity of
layouts. To create each 2D or 3D layout shown in Figure 15,
it took less than 5 minutes on average for practiced users.
Compared to the completion times reported in Studies 2
and 3, we conclude that the interaction time is roughly
proportional to the number of elements and relations in a
target layout, indicating good scalability of our interface.
The real-time performance was not affected, thanks to the
high efficiency of our algorithm. Although our interface
is able to handle dozens of elements for practiced users,
it is not wise to edit too many elements simultaneously
for novice users, since visualizing too many constraints
may cause visual clutter and thus confusion. This issue is
more notable in 3D applications due to the overlap between
elements and visualized constraints. It is thus advisable to
utilize our interface in an incremental way when dealing
with a large number of elements, i.e., decomposing the
whole layout into several sub-layouts, and creating them
one by one.

Our current implementation only considers the edges
of the bounding boxes of the elements when detecting
relations. Although this setting is sufficient for most layout
creation tasks, it would be promising to include a tool
for manually adding edges to the elements for relation
detection. The manually added edges would help to form
more complex patterns, and therefore further strengthen the
layout creation capability of our interface.

Since our main goal in this work is to find a better alter-
native to snapping and alignment commands, we focused
only on a limited set of simple constraints, i.e., alignment
and equal spacing. However, it is easy to incorporate new
constraints, such as symmetry and length equality into
our framework. Similarly, although our current prototype
concentrated on grid-like layouts, it is possible to handle
more general layouts by introducing advanced pattern de-

13

tectors, e.g., to detect elements distributed roughly along an
arbitrary line, circle, etc.

7 CONCLUSION AND FUTURE WORK

We presented a novel user interface for layout beautification.
Our user studies confirmed that our technique is very
effective and can even be used as a better replacement
of the standard snapping and command-based alignment
tools, given its faster performance and better ease of use.
We speculate that the advantages of our tool would be even
clearer to novice users who have little or no experience in
creating precise layouts.

It would be interesting to apply our tool to real-world
examples like posters and to really integrate it with existing
graphic editors to examine the interplay between our tool
and other layout helper features. Our current implementa-
tion requires explicit mode switching to activate or deacti-
vate the gesture interface for editing geometric constraints.
In the future, we will explore a modeless interface where the
user could use the editing operations of both element and
constraint without explicit mode switching.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments
and the user study participants for their time. This work
was supported in parts by NSFC (61602310, 61761146002,
61861130365), GD Higher Education Innovation Key Pro-
gram (2018KZDXM058), GD Science and Technology Pro-
gram (2015A030312015), Shenzhen Innovation Program
(JCYJ20170302154106666), LHTD (20170003), the Research
Grants Council of HKSAR (HKUST16210718), a Gift from
Adobe, the Center for Applied Computing and Interactive
Media (ACIM) of School of Creative Media, CityU, and
the National Engineering Laboratory for Big Data System
Computing Technology, SZU.

REFERENCES

[1] E. A. Bier and M. C. Stone, “Snap-dragging,” in ACM SIGGRAPH
Computer Graphics, vol. 20, no. 4, 1986, pp. 233–240.

[2] D. Galindo and C. Faure, “Perceptually-based representation of
network diagrams,” in International Conference on Document Analy-
sis and Recognition, vol. 1, 1997, pp. 352–356.

[3] T. Pavlidis and C. J. Van Wyk, “An automatic beautifier for draw-
ings and illustrations,” in ACM SIGGRAPH Computer Graphics,
vol. 19, no. 3, 1985, pp. 225–234.

[4] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka, “Inter-
active beautification: a technique for rapid geometric design,” in
UIST ’97, 1997, pp. 105–114.

[5] T. Igarashi and J. F. Hughes, “A suggestive interface for 3D
drawing,” in UIST ’01, 2001, pp. 173–181.

[6] S. Murugappan, S. Sellamani, and K. Ramani, “Towards beautifi-
cation of freehand sketches using suggestions,” in 6th Eurographics
Symposium on Sketch-Based Interfaces and Modeling, 2009, pp. 69–76.

[7] R. Raisamo and K.-J. Räihä, “A new direct manipulation technique
for aligning objects in drawing programs,” in UIST, 1996, pp. 157–
164.

[8] P. Xu, H. Fu, C.-L. Tai, and T. Igarashi, “Gaca: Group-aware
command-based arrangement of graphic elements,” in Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2015, pp. 2787–2795.

[9] P. Baudisch, E. Cutrell, K. Hinckley, and A. Eversole, “Snap-and-
go: helping users align objects without the modality of traditional
snapping,” in CHI, 2005, pp. 301–310.

[10] E. A. Bier, “Snap-dragging in three dimensions,” in ACM SIG-
GRAPH Computer Graphics, vol. 24, no. 2. ACM, 1990, pp. 193–
204.

[11] B. Nuernberger, E. Ofek, H. Benko, and A. D. Wilson, “Snaptoreal-
ity: Aligning augmented reality to the real world,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, 2016, pp. 1233–1244.

[12] M. Frisch, S. Kleinau, R. Langner, and R. Dachselt, “Grids &
guides: multi-touch layout and alignment tools,” in CHI ’11, 2011,
pp. 1615–1618.

[13] B. Reinert, T. Ritschel, and H.-P. Seidel, “Interactive by-example
design of artistic packing layouts,” ACM Trans. Graph., vol. 31,
no. 6, 2013.

[14] K. Ryall, J. Marks, and S. Shieber, “An interactive constraint-based
system for drawing graphs,” in UIST ’97, 1997, pp. 97–104.

[15] I. Tollis, P. Eades, G. Di Battista, and L. Tollis, Graph drawing:
algorithms for the visualization of graphs. Prentice Hall New York,
1998, vol. 1.

[16] B. Plimmer and J. Grundy, “Beautifying sketching-based design
tool content: issues and experiences,” in Proceedings of the Sixth
Australasian conference on User interface-Volume 40, 2005, pp. 31–38.

[17] C. Alvarado, “Sketch recognition user interfaces: Guidelines for
design and development,” in Proceedings of AAAI Fall Symposium
on Intelligent Pen-based Interfaces, vol. 1, no. 2, 2004.

[18] J. Arvo and K. Novins, “Fluid sketches: continuous recognition
and morphing of simple hand-drawn shapes,” in UIST ’00, 2000,
pp. 73–80.

[19] T. Hammond and R. Davis, “Automatically transforming symbolic
shape descriptions for use in sketch recognition,” in AAAI ’04, ser.
AAAI’04. AAAI Press, 2004, pp. 450–456. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1597148.1597222

[20] B. Paulson and T. Hammond, “PaleoSketch: accurate primitive
sketch recognition and beautification,” in IUI ’08, 2008, pp. 1–10.

[21] R. C. Zeleznik, A. Bragdon, C.-C. Liu, and A. Forsberg, “Li-
neogrammer: creating diagrams by drawing,” in UIST ’08, 2008,
pp. 161–170.

[22] C. L. Zitnick, “Handwriting beautification using token means,”
ACM Trans. Graph., vol. 32, no. 4, pp. 53:1–53:8, 2013. [Online].
Available: http://doi.acm.org/10.1145/2461912.2461985

[23] D. Bolz, “Some aspects of the user interface of a knowledge based
beautifier for drawings,” in IUI ’93, 1993, pp. 45–52. [Online].
Available: http://doi.acm.org/10.1145/169891.169897

[24] S. Cheema, S. Gulwani, and J. LaViola, “Quickdraw:
Improving drawing experience for geometric diagrams,”
in CHI ’12, 2012, pp. 1037–1064. [Online]. Available:
http://doi.acm.org/10.1145/2207676.2208550

[25] H. Jiang, L. Nan, D.-M. Yan, W. Dong, X. Zhang, and P. Wonka,
“Automatic constraint detection for 2d layout regularization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 8, pp. 1933–1944, 2015.

[26] O. Veselova and R. Davis, “Perceptually based learning of shape
descriptions for sketch recognition,” in AAAI ’04, 2004. [Online].
Available: http://doi.acm.org/10.1145/1185657.1185789

[27] T. Hammond and R. Davis, “Interactive learning of structural
shape descriptions from automatically generated near-miss
examples,” in IUI ’06, 2006, pp. 210–217. [Online]. Available:
http://doi.acm.org/10.1145/1111449.1111495

[28] T. Dwyer, K. Marriott, and M. Wybrow, “Dunnart: A constraint-
based network diagram authoring tool,” in Graph Drawing, 2009,
pp. 420–431.

[29] M. Gleicher and A. Witkin, “Drawing with constraints,” The Visual
Computer, vol. 11, no. 1, pp. 39–51, 1994.

[30] I. E. Sutherland, “Sketch pad a man-machine graphical commu-
nication system,” in Proceedings of the SHARE design automation
workshop, 1964, pp. 6–329.

[31] M. Wybrow, K. Marriott, L. Mciver, and P. J. Stuckey, “Comparing
usability of one-way and multi-way constraints for diagram edit-
ing,” ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 14, no. 4, p. 19, 2008.

[32] C. Zeidler, C. Lutteroth, W. Sturzlinger, and G. Weber, “The auck-
land layout editor: an improved gui layout specification process,”
in UIST ’13, 2013, pp. 343–352.

[33] G. J. Badros, A. Borning, and P. J. Stuckey, “The cassowary linear
arithmetic constraint solving algorithm,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 8, no. 4, pp. 267–306,
2001.

14

[34] H. Hosobe, “A modular geometric constraint solver for user
interface applications,” in UIST ’01, 2001, pp. 91–100.

[35] K. Marriott and S. S. Chok, “Qoca: A constraint solving toolkit for
interactive graphical applications,” Constraints, vol. 7, no. 3-4, pp.
229–254, 2002.

[36] C. Schulte, M. Lagerkvist, and G. Tack, “Gecode,” Software down-
load and online material at the website: http://www. gecode. org, 2006.

[37] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6, pp.
381–395, 1981.

[38] T. Davis, “Cholmod: a sparse supernodal cholesky factorization
package., version 2.1.2,” 2013, university of Florida, Available
online at http://www.cise.ufl.edu/research/sparse/cholmod/.

Pengfei Xu is an Assistant Professor of College
of Computer Science and Software Engineering
at Shenzhen University. He received his Bach-
elor degree in Math from Zhejiang University,
China, in 2009 and his Ph.D. degree in Computer
Science from Hong Kong University of Science
and Technology in 2015. His primary research
lies in Human Computer Interaction and Com-
puter Graphics.

Guohang Yan is a master student with the Vi-
sual Computing Research Center at College of
Computer Science and Software Engineering,
Shenzhen University. He received his Bachelor
degree from Pingdingshan University in 2016.
His research interest is in Computer Graphics.

Hongbo Fu received a BS degree in information
sciences from Peking University, China, in 2002
and a PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2007. He is an Associate Professor at
the School of Creative Media, City University of
Hong Kong. His primary research interests fall
in the fields of computer graphics and human
computer interaction. He has served as an Asso-
ciate Editor of The Visual Computer, Computers
& Graphics, and Computer Graphics Forum.

Takeo Igarashi is a Professor of Computer Sci-
ence Department at The University of Tokyo. He
received a Ph.D from the Department of Infor-
mation Engineering at The University of Tokyo
in 2000. He then worked as a post doctoral
research associate at Brown University (2000 -
2002). He joined the University of Tokyo as an
Assistant Professor in 2002, and became a Pro-
fessor in 2011. His research interest is in user
interfaces and interactive computer graphics.

Chiew-Lan Tai is a Professor of Computer Sci-
ence at the Hong Kong University of Science
and Technology. She received the BSc degree in
mathematics from the University of Malaya, MSc
in computer & information sciences from the
National University of Singapore, and DSc de-
gree in information science from the University of
Tokyo. Her research interests include geometry
processing, computer graphics, and interaction
techniques.

Hui Huang is a Distinguished Professor of Shen-
zhen University, where she directs the Visual
Computing Research Center. She received her
PhD in Applied Math from The University of
British Columbia in 2008 and another PhD in
Computational Math from Wuhan University in
2006. Her research interests span on Computer
Graphics, Vision and Scientific Computing. She
is currently an Associate Editor-in-Chief of The
Visual Computer, a Senior Member of IEEE and
ACM, and a Distinguished Member of CCF.

