
Hierarchical Layout Blending with Recursive Optimal Correspondence
PENGFEI XU, Shenzhen University, China
YIFAN LI, Shenzhen University, China
ZHIJIN YANG, Shenzhen University, China
WEIRAN SHI, Shenzhen University, China
HONGBO FU, City University of Hong Kong, China
HUI HUANG∗, Shenzhen University, China

 Title

 Lorem ipsum dolor
sit amet, consectetur a
dipisicing elit, sed do
eiusmod tempor incid
idunt ut labore et dolo
re magna aliqua.

 Ut enim ad minim
veniam, quis nostrud
exercitation ullamco l
aboris nisi ut aliquip e
x ea commodo conseq
uat. Duis aute irure do
lor in reprehenderit in
voluptate velit esse cil
lum dolore eu fugiat n
ulla pariatur. Excepte

 Lorem ipsum dolor sit amet, consectetur adipi
sicing elit, sed do eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Lorem ipsum dolor sit amet, consectetur adipi
sicing elit, sed do eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Lorem ipsum dolor
sit amet, consectetur a
dipisicing elit, sed do
eiusmod tempor incid
idunt ut labore et dolo
re magna aliqua.

 Ut enim ad minim
veniam, quis nostrud
exercitation ullamco l
aboris nisi ut aliquip e
x ea commodo conseq
uat. Duis aute irure do
lor in reprehenderit in
voluptate velit esse cil
lum dolore eu fugiat n
ulla pariatur. Excepte

 Lorem ipsum dolor
sit amet, consectetur a
dipisicing elit, sed do
eiusmod tempor incid
idunt ut labore et dolo
re magna aliqua.

 Ut enim ad minim
veniam, quis nostrud
exercitation ullamco l
aboris nisi ut aliquip e
x ea commodo conseq
uat. Duis aute irure do
lor in reprehenderit in
voluptate velit esse cil
lum dolore eu fugiat n
ulla pariatur. Excepte

 Lorem ipsum dolor
sit amet, consectetur a
dipisicing elit, sed do
eiusmod tempor incidi
dunt ut labore et dolor
e magna aliqua.

 Ut enim ad minim v
eniam, quis nostrud ex
ercitation ullamco lab
oris nisi ut aliquip ex e
a commodo consequat
. Duis aute irure dolor
in reprehenderit in vol
uptate velit esse cillu
m dolore eu fugiat nul
la pariatur. Excepteur

Headline

 Title

 Lorem ipsum dolor sit
amet, consectetur adipisic
ing elit, sed do eiusmod te
mpor incididunt ut labore
et dolore magna aliqua.

 Ut enim ad minim veni
am, quis nostrud exercitat
ion ullamco laboris nisi ut
aliquip ex ea commodo co
nsequat. Duis aute irure d
olor in reprehenderit in vo
luptate velit esse cillum d
olore eu fugiat nulla paria
tur. Excepteur sint occaec

 Lorem ipsum dolor sit amet, c
onsectetur adipisicing elit, sed do
eiusmod tempor incididunt ut lab
ore et dolore magna aliqua.

 Ut enim ad minim veniam, qui
s nostrud exercitation ullamco la
boris nisi ut aliquip ex ea commo
do consequat. Duis aute irure dol
or in reprehenderit in voluptate v
elit esse cillum dolore eu fugiat n
ulla pariatur. Excepteur sint occa
ecat cupidatat non proident, sunt
in culpa qui officia deserunt moll
it anim id est laborum.

Headline

 Title

 Lorem ipsum dolor sit amet, c
onsectetur adipisicing elit, sed d
o eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Ut enim ad minim veniam, qu
is nostrud exercitation ullamco l
aboris nisi ut aliquip ex ea com
modo consequat. Duis aute irure
dolor in reprehenderit in volupta
te velit esse cillum dolore eu fug
iat nulla pariatur. Excepteur sint
occaecat cupidatat non proident,
sunt in culpa qui officia deserun
t mollit anim id est laborum.

 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
sed do eiusmod tempor incididunt ut labore et dolore magn
a aliqua.

 Lorem ipsum dolor sit amet, c
onsectetur adipisicing elit, sed d
o eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Ut enim ad minim veniam, qu
is nostrud exercitation ullamco l
aboris nisi ut aliquip ex ea com
modo consequat. Duis aute irure
dolor in reprehenderit in volupta
te velit esse cillum dolore eu fug
iat nulla pariatur. Excepteur sint
occaecat cupidatat non proident,
sunt in culpa qui officia deserun
t mollit anim id est laborum.

 Lorem ipsum dolor sit ame
t, consectetur adipisicing elit,
sed do eiusmod tempor incidi
dunt ut labore et dolore magn
a aliqua.

 Ut enim ad minim veniam,
quis nostrud exercitation ulla
mco laboris nisi ut aliquip ex
ea commodo consequat. Duis
aute irure dolor in reprehend
erit in voluptate velit esse cill
um dolore eu fugiat nulla par
iatur. Excepteur sint occaecat
cupidatat non proident, sunt i
n culpa qui officia deserunt

Headline

 Title
 Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed
do eiusmod tempor incididunt
ut labore et dolore magna aliqu
a.

 Ut enim ad minim veniam, q
uis nostrud exercitation ullamc
o laboris nisi ut aliquip ex ea c
ommodo consequat. Duis aute i
rure dolor in reprehenderit in v
oluptate velit esse cillum dolor
e eu fugiat nulla pariatur. Exce

 Lorem ipsum dolor
sit amet, consectetur a
dipisicing elit, sed do
eiusmod tempor incid
idunt ut labore et dolo
re magna aliqua.

 Ut enim ad minim
veniam, quis nostrud
exercitation ullamco l
aboris nisi ut aliquip e
x ea commodo conseq
uat. Duis aute irure do

 Lorem ipsum
dolor sit amet, c
onsectetur adipis
icing elit, sed do
eiusmod tempor
incididunt ut lab
ore et dolore ma
gna aliqua.

 Ut enim ad mi
nim veniam, qui
s nostrud exercit
ation ullamco la
boris nisi ut aliq
uip ex ea comm

 Lorem ipsum dolor sit a
met, consectetur adipisicing
elit, sed do eiusmod tempor
incididunt ut labore et dolor
e magna aliqua.

 Ut enim ad minim venia
m, quis nostrud exercitation
ullamco laboris nisi ut aliqu
ip ex ea commodo consequ
at. Duis aute irure dolor in r
eprehenderit in voluptate ve
lit esse cillum dolore eu fug
iat nulla pariatur. Excepteur
sint occaecat cupidatat non

 Lorem ipsum d
olor sit amet, cons
ectetur adipisicing
elit, sed do eiusmo
d tempor incididu
nt ut labore et dol
ore magna aliqua.

 Ut enim ad min
im veniam, quis n
ostrud exercitation
ullamco laboris ni
si ut aliquip ex ea

Headline

 Title
 Lorem ipsum dolor sit amet, c
onsectetur adipisicing elit, sed d
o eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Ut enim ad minim veniam, qui
s nostrud exercitation ullamco la
boris nisi ut aliquip ex ea comm
odo consequat. Duis aute irure d
olor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occ

 Lorem ipsum dolor sit amet, consectetur adipisicing elit, se
d do eiusmod tempor incididunt ut labore et dolore magna aliq
ua.

 Lorem ipsum dolor sit amet, consectetur ad
ipisicing elit, sed do eiusmod tempor incididu
nt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud ex
ercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in

 Lorem ipsum dolor sit amet, consectetur adipis
icing elit, sed do eiusmod tempor incididunt ut la
bore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercit
ation ullamco laboris nisi ut aliquip ex ea commo
do consequat. Duis aute irure dolor in reprehende

 Lorem ipsum dolor sit amet, c
onsectetur adipisicing elit, sed d
o eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Ut enim ad minim veniam, qui
s nostrud exercitation ullamco la
boris nisi ut aliquip ex ea comm
odo consequat. Duis aute irure d
olor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat

 Lorem ipsum dolor sit amet, c
onsectetur adipisicing elit, sed d
o eiusmod tempor incididunt ut l
abore et dolore magna aliqua.

 Ut enim ad minim veniam, qui
s nostrud exercitation ullamco la
boris nisi ut aliquip ex ea comm
odo consequat. Duis aute irure d
olor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat

 Lorem ipsum dolor sit
amet, consectetur adipisi
cing elit, sed do eiusmod
tempor incididunt ut labo
re et dolore magna aliqua
.

 Ut enim ad minim veni
am, quis nostrud exercita
tion ullamco laboris nisi
ut aliquip ex ea commod

Headline

 Title

 Lorem ipsum d
olor sit amet, cons
ectetur adipisicing
elit, sed do eiusm
od tempor incidid
unt ut labore et do
lore magna aliqua
.

 Ut enim ad min
im veniam, quis n
ostrud exercitatio
n ullamco laboris
nisi ut aliquip ex

 Lorem ipsum d
olor sit amet, cons
ectetur adipisicing
elit, sed do eiusm
od tempor incidid
unt ut labore et do
lore magna aliqua
.

 Ut enim ad min
im veniam, quis n
ostrud exercitatio
n ullamco laboris
nisi ut aliquip ex

 Lorem ipsum dolor
sit amet, consectetur a
dipisicing elit, sed do
eiusmod tempor incidi
dunt ut labore et dolor
e magna aliqua.

 Ut enim ad minim v
eniam, quis nostrud ex
ercitation ullamco labo
ris nisi ut aliquip ex ea
commodo consequat.
Duis aute irure dolor i
n reprehenderit in volu

 Lorem ipsum dolor s
it amet, consectetur adi
pisicing elit, sed do eiu
smod tempor incididunt
ut labore et dolore mag
na aliqua.

 Ut enim ad minim ve
niam, quis nostrud exer
citation ullamco laboris
nisi ut aliquip ex ea co
mmodo consequat. Dui
s aute irure dolor in rep
rehenderit in voluptate
velit esse cillum dolore
eu fugiat nulla pariatur.
Excepteur sint occaecat
cupidatat non proident,

Headline

 Title

 Title

 Title

4

6

5

1
3

2

1 2
654
3

Fig. 1. Our hierarchical layout blending method can produce novel layouts (right) with given ones (left). Our method considers the semantic information of
the input layouts, and thus can generate realistic layouts with reasonable structures. The generated layouts can be used for visual content creation, e.g.,
magazine page creation. The structural similarity measure introduced by our method can be used to construct a layout space (middle bottom), which can be
integrated with machine/deep learning techniques for tasks like sketch-based layout retrieval. Image credits: ©Weiran Shi.

We present a novel method for blending hierarchical layouts with semantic
labels. The core of our method is a hierarchical structure correspondence
algorithm, which recursively finds optimal substructure correspondences,
achieving a globally optimal correspondence between a pair of hierarchi-
cal layouts. This correspondence is consistent with the structures of both
layouts, allowing us to define the union of the layouts’ structures. The re-
sulting compound structure helps extract intermediate layout structures,
from which blended layouts can be generated via an optimization approach.
∗Corresponding author.

Authors’ addresses: Pengfei Xu, xupengfei.cg@gmail.com, College of Computer Science
& Software Engineering, Shenzhen University, China; Yifan Li, liyifan7115@gmail.com,
College of Computer Science & Software Engineering, Shenzhen University, China;
Zhijin Yang, yangzhijin1998@gmail.com, College of Computer Science & Software En-
gineering, Shenzhen University, China; Weiran Shi, weiran.better@gmail.com, College
of Computer Science & Software Engineering, Shenzhen University, China; Hongbo
Fu, hongbofu@cityu.edu.hk, School of Creative Media, City University of Hong Kong,
China; Hui Huang, hhzhiyan@gmail.com, College of Computer Science & Software
Engineering, Shenzhen University, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/12-ART249 $15.00
https://doi.org/10.1145/3550454.3555446

The correspondence also defines a similarity measure between layouts in a
hierarchically structured view. Our method provides a new way for novel
layout creation. The introduced structural similarity measure regularizes the
layouts in a hyperspace. We demonstrate two applications in this paper, i.e.,
exploratory design of novel layouts and sketch-based layout retrieval, and
test them on a magazine layout dataset. The effectiveness and feasibility of
these two applications are confirmed by the user feedback and the extensive
results. The code is available at https://github.com/lyf7115/LayoutBlending.

CCS Concepts: • Computing methodologies→ Computer graphics.

Additional Key Words and Phrases: layout blending, layout creation, hierar-
chical structure correspondence, layout retrieval

ACM Reference Format:
Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang.
2022. Hierarchical Layout Blending with Recursive Optimal Correspondence.
ACM Trans. Graph. 41, 6, Article 249 (December 2022), 15 pages. https:
//doi.org/10.1145/3550454.3555446

1 INTRODUCTION
The design of novel layouts is a fundamental problem for visual
content creation and has received persistent interests from the re-
search community. Some studies focus on facilitating interactive
layout creation with intelligent tools [Baudisch et al. 2005; Bier and
Stone 1986; Raisamo and Räihä 1996; Xu et al. 2015]. Designing
complex layouts with these tools requires professional skills and

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

https://doi.org/10.1145/3550454.3555446
https://github.com/lyf7115/LayoutBlending
https://doi.org/10.1145/3550454.3555446
https://doi.org/10.1145/3550454.3555446

249:2 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

heavy labor input of users. Recently, advanced learning techniques
have benefited automatic creation of layouts. A large number of
generative models (e.g., [Gupta et al. 2021; Hu et al. 2020; Jyothi
et al. 2019; Kikuchi et al. 2021; Lee et al. 2020; Li et al. 2019b; Patil
et al. 2020; Tabata et al. 2019; Wu et al. 2019; Zheng et al. 2019])
have been recently proposed for the automatic creation of layouts.
However, the requirement of a large dataset of layouts for training
usually impedes their application in certain scenarios. Users may
want to create variations from a small number of layouts in certain
styles without resorting to heavy data collection and learning-based
model training. For example, a common layout design procedure
of posters or magazines would be first collecting a few samples of
interest and then drawing inspiration from them [Kang et al. 2021].
Blending or interpolation is one of the fundamental means to

create novel instances from a small number of instances. It gener-
ally requires first building a correspondence between every pair of
instances. The intermediate instances can then be obtained with
the guidance of the built correspondences. This technique has been
used in different areas, such as inbeteweening [Reeves 1981], 2.5D
cartoon models [Rivers et al. 2010], 2D sketch synthesis [Arora et al.
2017], 3D shape creation [Alhashim et al. 2014], view synthesis [Goe-
sele et al. 2010], to name a few. Since this technique has benefited
a wide range of instance creation problem, it seems promising to
extend it to the novel layout creation task.

Layouts usually contain elements with parameterized representa-
tions. Intuitively, parameterized instances are usually suitable for
blending, e.g, human face model [Vlasic et al. 2005] and human body
model [Loper et al. 2015]. However, this is not the case for layouts.
The main distinction of layouts from the above two parameterized
models is that layouts’ parameterized representations and structures
are mutable and do not provide direct clues for the correspondence,
which is crucial for the blending. For instance, layouts may contain
different numbers of elements with various semantic labels and
arrangements. In contrast, the face and body models have fixed
representations and structures, leading to a fixed correspondence
between different instances. Therefore, estimating an appropriate
correspondence between layouts is necessary before blending them.
Due to the structural nature of layouts, we need to estimate the

correspondence between layouts in the element level. In addition,
to achieve the gradual blending of layout structures, this correspon-
dence should be consistent with the structures of the input layouts,
i.e., the corresponded elements should possess similar structures in
different layouts. There exists algorithms [Kumar et al. 2011; Patil
et al. 2020, 2021] for estimating correspondence between layouts.
However, these algorithms fail to guarantee the consistency and
thus are incapable of structure blending (please refer to Section 4
for illustration). Other element-level correspondence estimation
algorithms [Alhashim et al. 2015; Zhu et al. 2017] were proposed
for the application of 3D shape blending [Alhashim et al. 2014].
These algorithms respect the structure consistency, but they can-
not be extended to layouts due to the following reasons. First, the
geometry information of a layout is highly limited. Since a lay-
out is usually composed of simple primitives, e.g., rectangles, its
geometric features only provide limited hints for correspondence.
Second and more importantly, layouts usually have complex and
diverse hierarchical structures. Estimating an optimal hierarchical

correspondence between a pair of layouts is challenging. Zhu et
al. [2017] have attempted to find a near-optimal binary hierarchi-
cal correspondence between a pair of 3D models. However, their
algorithm requires the input models to be in the same category,
implicitly requiring similar structures of these models. In addition,
their correspondence quality is evaluated via a data-driven criterion,
which is difficult to extend to layouts. These demands restrict the
extension of their algorithm to the layout blending problem.

In this paper, we present a novel method for blending hierarchical
layouts with semantic labels. Our current implementation focuses
on grid layouts, composed of rectangular semantic elements with
regular arrangements. However, we believe our method is appli-
cable to other layouts with properly defined arrangements, e.g.,
inforgraphic layouts or interior layouts. We do not consider layouts
with irregular arrangements since blending them is trivial: any cor-
respondence is applicable for producing blended layouts with such
layouts, since the geometry of each element can be interpolated
individually (see Figure 7).

Ourmethod takes as input a pair of layouts with hierarchical struc-
tures represented as trees (see Figure 2). The hierarchical structures
are obtained with geometric cues using a similar method described
in [Jiang et al. 2021]. It first estimates an optimal correspondence be-
tween the input layouts by recursively finding optimal substructure
correspondences. For any given pair of layouts, this strategy guaran-
tees to find an optimal correspondence, which is consistent with the
structures of both layouts. Along with the optimal correspondence,
a correspondence cost is also returned, which reflects the similarity
between the input layouts in a hierarchically structured view. Af-
ter obtaining the optimal consistent correspondence, our method
constructs a compound tree for embedding the structures of the
input layouts. Given a blending factor, the intermediate structure of
a blended layout can be determined from this compound tree. The
blended layout is then generated based on its intermediate structure
by an optimization approach.

The capacity of our method for blending layouts provides a new
way for novel layout creation. The introduced structural similar-
ity measure regularizes the layouts in a hyperspace and thus can
be potentially used for constructing a layout space. Our method
thus benefits various applications and we demonstrate two applica-
tions in this paper, tested on a dataset of magazine layouts [Zheng
et al. 2019]. The first one is exploratory design of novel layouts by
browsing blended layouts with user selected layouts. We design
an interface for real-time displaying of blended layouts from in-
put layouts with a navigation operation. We also design two local
control tools to achieve asynchronous blending of layouts. The ef-
fectiveness of this application is confirmed by the user feedback.
The second application is sketch-based layout retrieval. To achieve
this, we construct a latent space of layouts using the structural sim-
ilarity measure introduced by our method and embed line drawings
of layouts in this latent space via a deep neural network. Given a
hand-drawn sketch of a layout, the trained network is able to return
its coordinate in the latent space, which can then be used for the
layout retrieval. The tested results confirm the feasibility of this
solution for sketch-based layout retrieval.

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:3

2 RELATED WORK
Layout creation. Layout creation is a fundamental problem for

visual content design. Early research studies have mainly focused on
facilitating interactive layout creation. Some of them have already
been integrated in the mainstream graphic design frameworks as
standard components, e.g., arrangement commands [Raisamo and
Räihä 1996], snapping tools [Baudisch et al. 2005; Bier and Stone
1986]. Some more advanced techniques [Badros et al. 2001; Borning
et al. 1997; Jiang et al. 2019; Xu et al. 2019] are able to regularize
layouts by enforcing constraints between elements. With these
techniques, users may avoid precise element placement, but still
need to perform manual operations to specify desired layouts. In
contrast, our method does not need manual operations for layout
creation. Recently, due to the development ofmachine/deep learning,
a lot of works (e.g., [Gupta et al. 2021; Hu et al. 2020; Jyothi et al.
2019; Kikuchi et al. 2021; Lee et al. 2020; Li et al. 2019b; Patil et al.
2020; Tabata et al. 2019; Wu et al. 2019; Zheng et al. 2019]) solve
the layout creation/generation problem in a data-driven manner.
These works are able to produce layouts automatically, with user
inputs to specify constraint features of desired layouts if necessary.
While these works need the support of a large dataset of layouts for
training, our method needs only a small set of exemplars to create
novel layouts.

Content creation through blending. Blending or interpolation pro-
vides an effective way to create novel instances from a small number
of given ones. It has been adopted in a lot of areas. In the following
we describe one representative work for each area. Reeves [1981]
presented an early work about the inbetweening for computer ani-
mation and emphasized the importance of correspondence estab-
lishment. Rivers et al. [2010] proposed a 2.5D cartoon model for
synthesizing in-between cartoon objects and characters in novel
views. This was achieved by interpolating given cartoon images.
Arora et al. [2017] presented a workflow that allowed designers
to explore the design space induced by given sketches. The novel
sketches in this design space were created using interpolation. Al-
hashim et al. [2014] introduced an algorithm for creating novel
3D models via structural blending. In their work, a 3D model was
represented as a graph without hierarchy. Goesele et al. [2010]
presented an image-based view interpolation algorithm with the
assistance of ambient point clouds. For part-based or component-
based instances (e.g., many man-made models), assembly-based or
combination-based synthesis methods [Jain et al. 2012; Kalogerakis
et al. 2012] also achieve blending effects of multiple instances. All the
aforementioned methods require correspondence between instances
before using the blending techniques. Our method also needs to
estimate a correspondence between layouts before layout blending.
The challenge is that layouts usually possess hierarchical struc-
tures [Stuerzlinger et al. 2006], which introduce extra difficulties to
the estimation of the correspondence. There were some attempts
on the layout blending problem. Bao et al. [2013] presented a frame-
work for locally blending layouts with the same structures. Jiang et
al. [2021] presented a framework for blending UI layouts with differ-
ent structures. However, their framework requires a ground-truth

correspondence as input. In contrast, our method is able to auto-
matically estimate a hierarchical structure correspondence between
layouts for blending.

Element-level correspondence. There exist several algorithms for
estimating correspondence between layouts. Kumar et al. [2011]
presented Bricolage for web design retargeting. This is achieved by
estimating the correspondence between hierarchical layouts with
a probabilistic approach. Patil et al. [2020] presented a recursive
neural network for document layout generation. Their layout simi-
larity measure requires finding a correspondence between layouts.
LayoutGMN [Patil et al. 2021] is a neural network for predicting
structural similarity between layouts. The learned attention weights
in this network can be used to match the elements in layouts. How-
ever, none of these methods guarantees to produce correspondences
that are consistent with the structures of layouts, and thus they
cannot be applied to layout blending.
An appropriate correspondence is the prerequisite of interpo-

lation or blending. The application of example-driven 3D model
deformation or morphing requires estimating dense correspondence
between a pair of 3D models [Huang et al. 2008]. Recently, more
efforts have been put on the part-level correspondence, enabling
higher-level manipulation of shapes. Alhashim et al. [2015] adopted
a deformation energy to estimate part-level correspondence between
3D shapes with different structures. Zhu et al. [2017] presented a
method for estimating part-level correspondence between 3D shapes
using a data-driven plausibility criterion. Both methods assume that
the input shapes are in the same category, implicitly requiring sim-
ilar structures of these models. In contrast, our method does not
have such requirements on the structures of the input layouts.
Our method adopts a recursive strategy to find the correspon-

dence between two layouts. This strategy has also been used in
existing algorithms [Schwarz et al. 2017; Zhang and Shasha 1989]
for estimating correspondences and defining distances between tree
structures. Compared with our method, these algorithms have dif-
ferent problem settings. For example, they require the input tree
structures to be ordered while our method does not. In addition,
they cannot enforce the correspondence rules (Section 3.2) that we
conclude for the layout blending. Therefore, these algorithms are
not applicable to the layout blending problem.

Layout similarity. For a long period, the similarity measure of
layouts relies heavily on segmentation metrics such as intersection-
over-union (IoU) [Hu et al. 2020; Manandhar et al. 2020; Patil et al.
2021] and human judgement [Hu et al. 2020; Li et al. 2019a]. The
structural information of layouts is often ignored. Recently, some
works [Manandhar et al. 2020; Patil et al. 2021] tried to define similar-
ity measures between layouts using graph neural networks [Scarselli
et al. 2008]. They adopted a triplet loss for training, with positive and
negative samples determined by the IoU measure. Although these
works define reasonable similarity measures on layouts, the hierar-
chical structures of the layouts are not considered in the training.
In contrast, our layout similarity relies on estimating a hierarchical
structure correspondence, and thus is a hierarchical structure-aware
layout similarity measure.

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

249:4 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

1

2 3 4

5 6 7 8 9 10 11

12 13

14 15

1

2 3

9 10 11 12

13 14

15 16

4 5 6 7 8

Fig. 2. The illustration of how the hierarchical structure correspondence is estimated. Left and right: two input layouts with hierarchical structures represented
as layout trees. Top middle: the correspondence between the elements in the two layouts (i.e., the leaf vertices in the two layout trees). The colors of the
elements represent different semantic labels. Bottom middle: the constructed compound tree.

3 METHOD
To achieve the blending of layouts with hierarchical structures, the
most fundamental problem is to estimate the correspondence be-
tween two layouts. We first introduce the representation of layouts
in our method (Section 3.1) and then conclude several rules for the
hierarchical structure correspondence (Section 3.2). Guided by these
rules, we design an algorithm to find a globally optimal correspon-
dence by recursively estimating the optimal correspondences of
substructures (Section 3.3). With the estimated correspondence, we
can construct a compound structure and extract an intermediate
layout structure (Section 3.4). This structure helps generate the final
layout using an optimization approach (Section 3.4).

3.1 Layout representation
The input of our layout blending method is a pair of 2D structural
layouts, which are composed of parameterized rectangular elements
and have hierarchical structures. In practice, the extraction of a
hierarchical structure of a layout usually depends on predefined
rules, e.g., semantic or geometric cues, which may vary in different
scenarios. Our method solves the layout blending problem in a geo-
metric way, thus requiring the hierarchical structures to be extracted
from geometric cues. In our current implementation, we define the
hierarchy of a layout similar to [Jiang et al. 2021], i.e., elements are
grouped if they form a horizontal or vertical arrangement, which
means these elements are placed consecutively in a horizontal or
vertical order. The grouped elements are then considered as a new
entity, which will be further grouped with other entities accord-
ing to the same geometric cues. This procedure iterates until all
the elements are processed. In our implementation, the hierarchy
is obtained by recursively splitting the layouts with horizontal or
vertical lines that do not traverse elements. Please refer to Figure 2
for the hierarchy construction. We adopt this grouping strategy

mainly due to its simplicity and might adopt other clustering meth-
ods[Koch and Oulasvirta 2016], as long as the criteria are based on
geometric information. To capture the hierarchical structure of a
layout, we adopt a layout tree [Jiang et al. 2021] T = {V, E} as its
representation, instead of a fully connected graph [Patil et al. 2021],
which treats all elements equally. In this layout tree (see Figure 2),
each leaf vertex represents an element in an input layout and each
branch vertex represents an arrangement of its children. The edges
indicate the hierarchical relations between vertices.

3.2 Correspondence rules
Given two input layouts with the computed hierarchical structures,
i.e., T = {V, E} and T ′ = {V′, E′}, we need to find a reasonable
correspondence between them. Note that the correspondence should
not only consider the leaf vertices of the two corresponding layout
trees, i.e., the elements of the two layouts, but also take into account
their branch vertices, i.e., the arrangements of elements. We observe
a desired correspondence should fulfill the following requirements.
First, the correspondence should consider the geometry of elements,
e.g., a pair of elements with similar shapes and locations in two lay-
outs tend to correspond to each other. Second and more importantly,
the correspondence should respect the hierarchical structures of
the layouts. The structures should be consistent with each other
under the correspondence. Otherwise, it is not possible to perform
a smooth structure blending and the blended layouts would have
abrupt change of the topologies (see Figure 6). The first require-
ment can be easily achieved by adopting an appropriate deformation
cost [Kleiman et al. 2015], while the second requirement is nontriv-
ial to enforce. Before finding the optimal correspondence, we first
identify some rules (see Figure 3) based on the above requirements.

Rule 1. Two leaf vertices in two layout trees with similar geom-
etry tend to correspond to each other. Two branch vertices with

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:5

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Fig. 3. The illustration of the rules for hierarchical structure correspondence.
The colors indicate the semantic labels of the elements (leaf vertices). The
dashed frames highlight arrangements of elements, which are represented
by branch vertices in layout trees. Please refer to Section 3.2 for a more
detailed description about the rules.

similar substructures and geometry tend to correspond to each other.
Two leaf vertices with different semantic labels are not allowed to
correspond to each other.

Rule 2. A vertex 𝑣 , which may be a leaf vertex or a branch vertex,
is allowed to correspond to a void ∅. This is essential since two
layouts usually contain different numbers of elements and it is not
always possible to form a one-to-one mapping. In addition, even
if two layouts contain an equal number of elements, they may be
distinct in hierarchical structure and/or geometry of elements. In
this case, a one-to-one mapping is usually not preferable.

Rule 3. If a vertex 𝑣 ∈ T corresponds to a vertex 𝑣 ′ ∈ T ′, then the
vertices in the subtreeT𝑠𝑢𝑏 (𝑣) rooted at vertex 𝑣 can only correspond
to the vertices in the subtree T ′

𝑠𝑢𝑏
(𝑣 ′) or voids, and vice versa. This

rule is important for keeping the hierarchical structures consistent
during the blending of two layouts.

Rule 4. Vertices with different levels in two layout trees are al-
lowed to correspond. This rule is based on the fact that two similar
local arrangement patterns may have different hierarchical levels in
two layouts.

3.3 Optimal hierarchical structure correspondence
The above rules describe the basic characteristics of a desired corre-
spondence. It is still unclear how to obtain such correspondences.
The first part of Rule 1, i.e., the correspondence between two leaf

vertices, can be achieved by a deformation cost [Kleiman et al. 2015].
To successfully enforce all the rules, we adopt a recursive strategy
to define the following correspondence costs.

Leaf-to-leaf cost. Guided by Rule 1, if two elements 𝑣 and 𝑣 ′ in
two layouts have similar geometry, i.e., positions and shapes, the
correspondence cost should be small. If they have different semantic
labels, the cost should be infinity to prevent them from correspond-
ing. We then define this cost with the following formulation:

𝐶𝑙−𝑙 (𝑣, 𝑣 ′) =
p𝑣 − p𝑣′

2 +

s𝑣 − s𝑣′

2 +𝐶𝑙𝑎𝑏𝑒𝑙 (𝑣, 𝑣

′), (1)

with

𝐶𝑙𝑎𝑏𝑒𝑙 (𝑣, 𝑣 ′) =
{
0, if 𝑣 and 𝑣 ′ have same labels
+∞, otherwise

, (2)

where p𝑣 = (𝑥𝑣, 𝑦𝑣)𝑇 is the center of an element 𝑣 , and s𝑣 =

(𝑤𝑣, ℎ𝑣)𝑇 is its size. We adopt the commonly used 𝐿2 norm for
the cost computation. Other norms (e.g., 𝐿1 norm) may also apply.
𝐶𝑙𝑎𝑏𝑒𝑙 is a label-difference cost, which penalizes the correspondence
between elements with different labels. In our implementation, we
replace +∞ with a large number (e.g., 109). This cost is a basic one
without considering any structure information.

Leaf-to-void cost. According to Rule 2, a leaf vertex is allowed to
correspond to a void. Note that this leaf vertex can be in both input
layout trees (e.g., 𝑣9 in the left tree and 𝑣 ′7 in the right tree in Figure 2).
Similar to the leaf-to-leaf cost, we define this cost as the effort for
deforming an element 𝑣 to a void. For a void element, it is reasonable
to consider its size as zero. However, there is no hint to define its
position.We add an extra penalty cost𝐶∅ to compensate the position
deformation cost. Without this compensation, an element might
more tend to correspond to a void. Then this leaf-to-void cost is
defined as:

𝐶𝑙−∅ (𝑣) =
s𝑣2 +𝐶∅ , (3)

where 𝐶∅ =
s𝑣/22 in our implementation. This cost is equivalent

to a position deformation cost by moving an element with a distance
same as its half size.𝐶∅ controls the priority of the correspondence
between an element and a void. If 𝐶∅ is small, an element is more
likely to correspond to a void (as opposed to an element), even
if it could have corresponded to another element. If 𝐶∅ is large,
an element is more likely to correspond to another element (as
opposed to a void), even if this pair of corresponded elements have
a large location difference. The leaf-to-void cost is another basic
cost without considering the structure information.

Branch-to-void cost. A branch vertex represents an arrangement
of its children, which may be elements or lower-level arrangements.
Deforming an arrangement to a void is equivalent to deforming all
the elements in this arrangement to voids (e.g., 𝑣 ′3 in the right tree
in Figure 2). Therefore, this cost is defined as:

𝐶𝑏−∅ (𝑣) =
∑︁
𝑣𝑖

𝐶𝑙−∅ (𝑣𝑖), (4)

where 𝑣𝑖 is a leaf descendant of 𝑣 , i.e., an element contained in this
arrangement.

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

249:6 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

Branch-to-leaf cost. This cost is based on the deformation between
an arrangement and an element (e.g., 𝑣4 in the left tree and 𝑣 ′6 in the
right tree in Figure 2). Note that this deformation may include emer-
gence and vanish of elements (e.g., 𝑣10 in the left tree in Figure 2). It
is not equivalent to the geometric difference between the bounding
boxes of the arrangement and the element. Guided by Rules 3 and
4, we adopt a recursive way to define their correspondence cost.

We consider the case in which 𝑣 is a branch vertex and 𝑣 ′ is a leaf
vertex (e.g., 𝑣4 in the left tree and 𝑣 ′6 in the right tree in Figure 2). The
computation for the symmetric case is similar. We first compute the
optimal correspondence between the children of 𝑣 and 𝑣 ′. Without
loss of generality, we assume that the correspondence cost between
any child of 𝑣 and 𝑣 ′ is available. This assumption is reasonable
since these costs can be obtained recursively with the previously
defined cost functions. Then the optimal correspondence can be
obtained in polynomial time using the Hungarian algorithm [Kuhn
1955] to be described later. If we denote the optimal correspondence
as a pair set P = {(𝑣𝑖 , 𝑣 ′𝑗)}, where 𝑣𝑖 is a child of 𝑣 or a void, 𝑣

′
𝑗
is 𝑣 ′

or a void, then the branch-to-leaf cost can be defined as:

𝐶𝑏−𝑙 (𝑣, 𝑣 ′) =
∑︁

(𝑣𝑖 ,𝑣′𝑗) ∈P
𝐶∗ (𝑣𝑖 , 𝑣 ′𝑗), (5)

where𝐶∗ is the appropriate cost function determined by the types of
𝑣𝑖 and 𝑣 ′𝑗 , i.e., if 𝑣𝑖 is a branch vertex, then 𝐶∗ (𝑣𝑖 , 𝑣 ′𝑗) = 𝐶𝑏−𝑙 (𝑣𝑖 , 𝑣

′
𝑗
);

if 𝑣𝑖 is a void, then𝐶∗ (𝑣𝑖 , 𝑣 ′𝑗) = 𝐶𝑙−∅ (𝑣
′
𝑗
), etc. Note that, the children

of 𝑣 and 𝑣 ′ may all correspond to voids, e.g., the children of 𝑣 and
𝑣 ′ may have different labels.

Branch-to-branch cost. This cost is based on the deformation be-
tween two arrangements 𝑣 and 𝑣 ′ (e.g., 𝑣1 in the left tree and 𝑣 ′2
in the right tree in Figure 2). This deformation involves both the
evolution of the structure and the change of the elements’ geometry.
Similar to the branch-to-leaf cost, we also adopt a recursive way
to define this cost. Since both 𝑣 and 𝑣 ′ have children, the optimal
correspondence may be obtained in one of the following three con-
figurations: a), the children of 𝑣 correspond to the children of 𝑣 ′;
b), the children of 𝑣 correspond to 𝑣 ′; and c), 𝑣 corresponds to the
children of 𝑣 ′. Denoting the optimal correspondences for these three
configurations as P𝑎 , P𝑏 , and P𝑐 , we define the branch-to-branch
cost as:

𝐶𝑏−𝑏 (𝑣, 𝑣 ′) = min{𝐶⋄ (𝑣, 𝑣 ′)}⋄∈{𝑎,𝑏,𝑐 } , (6)
with

𝐶⋄ (𝑣, 𝑣 ′) =
∑︁

(𝑣𝑖 ,𝑣′𝑗) ∈P⋄

𝐶∗ (𝑣𝑖 , 𝑣 ′𝑗),

⋄ ∈ {𝑎, 𝑏, 𝑐},
(7)

where 𝐶∗ is the appropriate cost function determined by the types
of 𝑣𝑖 and 𝑣 ′𝑗 , i.e., if 𝑣𝑖 and 𝑣

′
𝑗
are branch vertices, 𝐶∗ = 𝐶𝑏−𝑏 ; if 𝑣𝑖 is

a leaf vertex and 𝑣 ′
𝑗
is a branch vertex, 𝐶∗ = 𝐶𝑏−𝑙 , etc.

Hungarian algorithm. The definitions of the branch-to-branch
cost and the branch-to-leaf cost require finding the optimal corre-
spondence between two sets of vertices {𝑣𝑖 }𝑚𝑖=1 and {𝑣 ′

𝑗
}𝑛
𝑗=1. Here

we assume that the correspondence costs for pair (𝑣𝑖 , 𝑣 ′𝑗), (𝑣𝑖 , ∅),
and (∅, 𝑣 ′

𝑗
) are available since they can be obtained recursively with

the previously defined cost functions. We then use the Hungarian

algorithm [Kuhn 1955] to solve this correspondence problem. We
first construct the following cost matrixM:

M =

(
A B
C 0

)
, (8)

where A is an𝑚×𝑛 matrix with A𝑖 𝑗 = 𝐶∗ (𝑣𝑖 , 𝑣 ′𝑗), which encodes the
correspondence cost between 𝑣𝑖 and 𝑣 ′𝑗 ; B is an𝑚 ×𝑚 matrix with
B𝑖 𝑗 = 𝐶∗−∅ (𝑣𝑖), which encodes the correspondence cost between
𝑣𝑖 and a void; C is an 𝑛 × 𝑛 matrix with C𝑖 𝑗 = 𝐶∗−∅ (𝑣 ′𝑗), which
encodes the correspondence cost between 𝑣 ′

𝑗
and a void.𝐶∗ inherits

the previous definition; 𝐶∗−∅ is 𝐶𝑙−∅ or 𝐶𝑏−∅ , depending on the
type of the parameter. Solving this correspondence problem using
the Hungarian algorithm gives the optimal correspondence.

Global optimal correspondence. Given two input layouts T and
T ′, their optimal correspondence can be obtained by computing
the correspondence cost between their root vertices. The correspon-
dence of the vertices in T and T ′ is determined recursively. In this
procedure, the correspondence cost between any pair of vertices is
computed based on an optimal correspondence, and thus the final
correspondence between the input layouts is globally optimal. The
correspondence cost between the root vertices reflects the difference
of the input layouts, and thus is suitable as a similarity measure.

Effect of the deformation cost. We adopt a simple definition of the
deformation cost for the leaf-to-leaf cost. This is due to the simple
geometry of a rectangle. The position deformation cost

p𝑣 − p𝑣′

2

and the size deformation cost
s𝑣 − s𝑣′

2 have the same contribution

to the leaf-to-leaf cost. We may add weights to control their effects
on the correspondence. For example, if

s𝑣 − s𝑣′

2 has a larger

weight, then elements with similar sizes will tend to correspond,
even they have distant locations. In all of our experiments, we treat
these two costs equally.

Binary deformation cost. We only adopt unary deformation costs
in our method. We do not explicitly define a binary deformation
cost [Kleiman et al. 2015], which encodes pairwise relations between
elements, e.g., the alignment relations between elements. It is rea-
sonable to abandon this kind of deformation costs since the pairwise
relations, even group relations of elements in a layout, have already
been encoded in a hierarchical structure.

Computational complexity. To obtain the final correspondence,
our method needs to compute the correspondence costs of all pairs
of vertices in two input layout trees. For each pair of vertices, the
computation time depends on the vertices’ types. In the worst case,
it needs to solve a matching problem with the Hungarian algorithm,
whose computational complexity is 𝑂 (𝑁 3), where 𝑁 is the number
of instances being corresponded. If the vertex sets of two layout
trees are V and V′, and the maximum number of children vertices
of a vertex in the layout trees is 𝐾 , then the computational com-
plexity is𝑂 (|V| · |V′ | ·𝐾3). Note that this bound is quite loose: the
matching procedure with the Hungarian algorithm is not necessary
for most computations of correspondence costs between vertices.
In practice, typically, the number of elements in a layout is smaller
than hundreds and the maximum number of children vertices of a
vertex is smaller than dozens. Therefore our method is extremely

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:7

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

13 14

10 Ø 11 6

15 1614 15

1 1

1 2 Ø 3

2 4 3 5

5 9 6 10 7 128 11

12 13

4 6 Ø 7 Ø 8

9 Ø

Fig. 4. Top: an interpolation procedure between two input layouts. Middle:
the corresponding intermediate trees in each stage of the interpolation. Bot-
tom: two blended layouts with asynchronous interpolations. The removed
vertices are rendered in a transparent style. The local editing is highlighted
with red dashed frames. Row 4: the global 𝛼 is 0 and the local 𝛼 is 1. Row 5:
the global 𝛼 is 1 and the local 𝛼 is 0.

efficient for processing layouts. With our C++ implementation run-
ning on an ordinary PC, it takes less than 2 milliseconds to compute
a correspondence between two layouts presented in this paper.

3.4 Layout blending
After obtaining the correspondence between the input layouts, we
can create novel layouts via blending. This is achieved with three
steps. First, we construct a compound tree, which is the union of the
input layout trees. We then extract an intermediate layout tree with
a given blending factor. Finally, we can produce a blended layout
from the intermediate layout tree with an optimization approach.

Compound tree. The structures of the input layouts are consistent
with the correspondence obtained by our method. That is, if (𝑣𝑖 , 𝑣 ′𝑗)
and (𝑣𝑝 , 𝑣 ′𝑞) are two pairs of corresponded vertices, where 𝑣𝑖 , 𝑣𝑝 ∈
T and 𝑣 ′

𝑗
, 𝑣 ′𝑞 ∈ T ′, we can conclude that 𝑣𝑖 is a descendant (or

ancestor) of 𝑣𝑝 if and only if 𝑣 ′
𝑗
is a descendant (or ancestor) of 𝑣 ′𝑞 .

This is implied by Rule 3. Therefore, it is possible to construct a
compound tree by uniting the input layout trees without destroying
their structures (see Figure 2). A vertex of this compound tree is
a pair (𝑣𝑖 , 𝑣 ′𝑗), where 𝑣𝑖 ∈ T ∪ {∅} and 𝑣 ′

𝑗
∈ T ′ ∪ {∅}. Therefore,

the vertices of this compound tree can be classified into three types.

The first type of vertices indicate pairs of corresponded vertices in
T and T ′. For the other two types, either 𝑣𝑖 or 𝑣 ′𝑗 is a void ∅.

Intermediate layout tree extraction. An intermediate layout tree
is a subtree of the compound tree. It can be extracted by properly
removing the vertices of the compound tree, and this removal pro-
cedure is described as follows. Note that only the last two types
of vertices, i.e., either 𝑣𝑖 or 𝑣 ′𝑗 is a void ∅, are removable. This re-
moval can be performed with different strategies, with respect to a
blending factor 𝛼 ∈ [0, 1]. Intuitively, the blended structure is the
same as T or T ′ if 𝛼 = 0 or 1. This can be achieved by removing
the vertices that are in the form of (∅, 𝑣 ′

𝑗
) with 𝑣 ′

𝑗
∈ T ′ (if 𝛼 = 0),

or (𝑣𝑖 , ∅) with 𝑣𝑖 ∈ T (if 𝛼 = 1), respectively. To obtain a smooth
transition between T and T ′, we may gradually remove vertices
(𝑣𝑖 , ∅) and (∅, 𝑣 ′

𝑗
) according to the blending factor 𝛼 (see Figure 4).

A simple strategy is to remove the leaf vertices that are in the form
of (𝑣𝑖 , ∅) and (∅, 𝑣 ′

𝑗
) one by one from the lowest level to the highest

level. We denote the extracted intermediate layout tree with the
blending factor 𝛼 as T𝛼 and its vertices are {𝑣𝛼

𝑘
= (𝑣𝑖 , 𝑣 ′𝑗)}. Different

strategies for the interpolation may also apply, which will result
in alternative paths for the transition. For example, in Section 5.1,
we allow the blending factors to be different in different parts of
the compound tree (Figure 4, bottom), achieving an asynchronous
interpolation effect. If there is no vertex in the form of (∅, 𝑣 ′

𝑗
) or

(𝑣𝑖 , ∅) in the compound tree, it implies that two input layouts have
identical structures and all their elements are corresponded. In this
case, only the geometry of elements needs to be blended.

Layout generation using optimization. After extracting the inter-
mediate layout tree, the final layout can be easily obtained with
existing constraint-based layout optimization approaches [Badros
et al. 2001; Jiang et al. 2020; Xu et al. 2019]. We adopt the approach
proposed in [Xu et al. 2019] since it optimizes layouts that are in
similar forms to ours. Specifically, for preparation, we store the rela-
tions among the children vertices at each vertex 𝑣𝑖 ∈ T or 𝑣 ′

𝑗
∈ T ′.

In our implementation, we consider alignment, equal-spacing, and
equal-size relations only. More advanced constraints such as sym-
metry or containing might also be included for specific applications.
In the intermediate layout tree, a vertex (𝑣𝑖 , 𝑣 ′𝑗) may correspond to
elements in both T and T ′, introducing ambiguity for the relation
selection. We adopt a simple strategy to solve this problem. For the
relation between (𝑣𝑖 , 𝑣 ′𝑗) and (𝑣𝑝 , 𝑣 ′𝑞), the selection is based on the
blending factor 𝛼 , i.e., if 𝛼 < 0.5, the relation is the same as the
one between 𝑣𝑖 and 𝑣𝑝 ; otherwise, it is determined by the relation
between 𝑣 ′

𝑗
and 𝑣 ′𝑞 .

After determining the relations among the vertices in the inter-
mediate layout tree T𝛼 , we are ready to compute the final layout.
Similar to [Xu et al. 2019], we define an objective function as follows:

𝐸 = 𝐸p + 𝐸s, (9)

with

𝐸p =
∑︁
𝑣𝛼
𝑘

(
(1 − 𝛼)𝛿 (𝑣𝑖)

p𝑣𝛼
𝑘
− p𝑣𝑖

2 + 𝛼𝛿 (𝑣 ′𝑗)p𝑣𝛼𝑘 − p𝑣′
𝑗

2) ,
𝐸s =

∑︁
𝑣𝛼
𝑘

(
(1 − 𝛼)

s𝑣𝛼
𝑘
− 𝛿 (𝑣𝑖)s𝑣𝑖

2 + 𝛼s𝑣𝛼
𝑘
− 𝛿 (𝑣 ′𝑗)s𝑣′𝑗

2) , (10)

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

249:8 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

where 𝑣𝛼
𝑘
= (𝑣𝑖 , 𝑣 ′𝑗) is a vertex in the intermediate tree T𝛼 . p𝑣𝛼

𝑘
=

(𝑥𝑣𝛼
𝑘
, 𝑦𝑣𝛼

𝑘
)𝑇 and s𝑣𝛼

𝑘
= (𝑤𝑣𝛼

𝑘
, ℎ𝑣𝛼

𝑘
)𝑇 are the unknowns, representing

the position and size of the vertex 𝑣𝛼
𝑘
. 𝛿 (𝑣) is an indicator function

whose value is 0 if 𝑣 is a void ∅ and 1 otherwise. Minimizing the
objective function is subject to several constraints, which are derived
from the relations among the vertices, including alignment, equal-
spacing, and equal-size. Another set of constraints are the bounding
box constraints, i.e., the shape of a vertex should tightly envelop the
shapes of its children vertices. The formulations of the alignment
and equal-size constraints are similar to those in [Xu et al. 2019].For
example, if 𝑣𝛼

𝑘
and 𝑣𝛼

𝑙
are vertically aligned, we have:

𝑥𝑣𝛼
𝑘
+ 1
2
𝑤𝑣𝛼

𝑘
= 𝑥𝑣𝛼

𝑙
+ 1
2
𝑤𝑣𝛼

𝑙
,

𝑥𝑣𝛼
𝑘
− 1
2
𝑤𝑣𝛼

𝑘
= 𝑥𝑣𝛼

𝑙
− 1
2
𝑤𝑣𝛼

𝑙
.

(11)

The equal-spacing and bounding box constraints are dynamically
determined and enforced with a two-step strategy. In the first step,
we solve the optimization problem with alignment and equal-size
constraints only.We then determine the equal-spacing and bounding
box constraints according to the layouts generated in the first step.
For instance, if 𝑣𝛼

𝑘
, 𝑣𝛼
𝑙
, and 𝑣𝛼𝑚 are vertically aligned in a consecutive

order, their equal-spacing constraint can be formulated as:

(𝑦𝑣𝛼
𝑙
− 1
2
ℎ𝑣𝛼

𝑙
) − (𝑦𝑣𝛼

𝑘
+ 1
2
ℎ𝑣𝛼

𝑘
) = (𝑦𝑣𝛼𝑚 − 1

2
ℎ𝑣𝛼𝑚) − (𝑦𝑣𝛼

𝑙
+ 1
2
ℎ𝑣𝛼

𝑙
) . (12)

The bounding box constraints can be formulated similarly. Since
these constraints are all linear, this optimization problem is a stan-
dard linear-equality-constrained quadratic programming problem,
which can be solved efficiently. In our implementation, we solve it us-
ing themethod of Lagrangemultipliers with the Eigen library [Guen-
nebaud et al. 2010]. The layout generation achieves a real-time
performance (less than 20 milliseconds for each generation).

Blending multiple layouts. Our method can be easily extended
to blending multiple layouts. We take the case of three layouts for
illustration. Suppose the input layouts are T , T ′, and T ′′. We first
compute the correspondence between two layouts, e.g., T and T ′,
and obtain a compound tree T̃ . Then the correspondence between
T̃ and T ′′ can be obtained using the same method. We only need to
redefine the leaf-to-leaf cost and the leaf-to-void cost without mod-
ifying other costs, e.g., 𝐶𝑙−𝑙 ((𝑣𝑖 , 𝑣 ′𝑗), 𝑣

′′
𝑘
) = 𝐶∗ (𝑣𝑖 , 𝑣 ′′𝑘) +𝐶∗ (𝑣

′
𝑗
, 𝑣 ′′
𝑘
),

where 𝐶∗ is 𝐶𝑙−𝑙 or 𝐶𝑙−∅ , according to the types of the parameters.
Based on this correspondence, we may construct a new compound
tree whose vertices are triplets of vertices in T , T ′, and T ′′. We
can then generate a blended layout with similar intermediate tree
extraction and layout optimization approaches. Note that different
orders of the correspondence computations may lead to different
final compound trees, and thus may generate different layouts with
the same blending factors. A simple strategy is to first compute the
correspondence between layouts with a higher structural similarity
since it may produce more compact compound trees. This extension
of blending multiple layouts is used in one of our demonstrated
applications, i.e., exploratory design of layouts (Section 5.1).

Blending unaligned layouts. Our method aims to blend structured
layouts with regular arrangements. In practice, some layouts may

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

Fig. 5. Top: two input layouts (left and right) and a blended layout (middle).
The gray elements are the padding elements, which make the layouts well
aligned. The dashed lines indicate the correspondence between the layouts.
Bottom: the blended layouts with the gradually changed blending factors.

present clear vertical or horizontal arrangements, but are not per-
fectly aligned (see two input layouts in Figure 5). This introduces
challenges to the layout optimization due to the lack of appropriate
alignment constraints. By adding extra padding elements (Figure 5,
the gray elements), we can convert unaligned layouts into aligned
ones, which can then be fed to our method for layout blending.

4 EVALUATION
The core of hierarchical layout blending is the estimation of a corre-
spondence that is consistent with the structures of the input layouts.
To the best of our knowledge, there is no existing work trying to
solve the hierarchical layout blending problem in this work. There
exist several works [Kumar et al. 2011; Patil et al. 2020, 2021] that can
estimate a correspondence between layouts. However, as discussed
in Sections 1 and 2, they fail to guarantee the consistency of the
correspondence and thus are incapable of layout blending. Besides
geometric methods like ours, another possible direction for blending
layouts is resorting to learning-based generative models [Kikuchi
et al. 2021; Li et al. 2019b]. The layout blending could be achieved
by first blending the latent codes of input layouts, and then gener-
ating a blended layout with the generative models. In this section,
we conduct two comparisons with existing layout correspondence
methods and a learning-based generative model respectively, and
provide additional results to show the effectiveness of our method.

4.1 Validation of consistent correspondence
This comparison aims to illustrate the importance of an appropri-
ate correspondence to the task of layout blending. We compare our
methodwith LayoutGMN [Patil et al. 2021],DocSim [Patil et al. 2020],
and maximum pixel-overlap matching (Max-overlap for short) [Patil
et al. 2021]. LayoutGMN is a neural network for predicting struc-
tural similarity between layouts. The correspondence between two
layouts can be estimated from the attention weights of the net-
work. DocSim is a layout similarity measure which requires finding

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:9

Image Text buttonInput Text

D
oc

si
m

La
yo

ut
G

M
N

M
ax

-O
ve

rla
p

O
ur

s
D

oc
si

m
La

yo
ut

G
M

N
M

ax
O

ve
rla

p
O

ur
s

Input α = 0.2 α = 0.4 α = 0.6 α = 0.8

Fig. 6. The correspondences estimated by the compared methods and the
blended layouts generated based on them. Layouts in this comparison are
selected from the RICO dataset. The first two columns show the input
layouts and the correspondences estimated by different methods; the last
four columns show the blended layouts generated based on the estimated
correspondences using our layout optimization method.

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

Image Text buttonInput Text

Fig. 7. The blended layouts generated by discarding the structure and
interpolating the geometry of each individual element. The input layouts
are the same as the top example in Figure 6. The correspondence is estimated
by DocSim (Figure 6, row 1).

a correspondence between layouts. Max-overlap is a baseline corre-
spondence method described in [Patil et al. 2021]. All these three
methods produce element-level correspondence weight matrices.
DocSim computes the final correspondence with the Hungarian al-
gorithm. LayoutGMN estimates the final correspondence from the
correspondence weight matrix (i.e., the attention weights) using
a simple method: each element in one layout corresponds to the
element with the largest attention weight in another layout. This
methodworks well for the floorplan layouts provided in LayoutGMN.
However, for the more complex layouts in our comparison, the Hun-
garian algorithm produces more reasonable correspondence results.
Therefore, for a fair comparison, we adopt the Hungarian algorithm
to estimate the optimal correspondence for LayoutGMN and Max-
overlap. LayoutGMN is trained using the RICO dataset [Deka et al.
2017], which was initially adopted for the evaluation of LayoutGMN.

Figure 6 shows the correspondences estimated by the compared
methods and the blended layouts generated based on them. Among
all these correspondences, only the one estimated by our method
is consistent with the structures of the input layouts. The blended
layouts generated by our method demonstrate a smooth transition
in both geometry and structure. Since the other methods cannot
guarantee the consistency, it is impossible to perform the structure
blending and intermediate structure extraction. If we simply discard
the structure and blend the geometry of each individual element, the
blended layouts will be unstructured and aesthetically undesirable
(see Figure 7). To generate more reasonable blended layouts, we
borrow one of the input layouts’ structures for layout optimization.
With the aid of our layout optimization method, the blended lay-
outs are regular and appear smooth geometry transitions. However,
they cannot achieve smooth structure transitions and there exists
noticeable abrupt structure changes, as demonstrated in the accom-
panying video. The above comparison confirms the importance and
effectiveness of our hierarchical structural correspondence method.

4.2 Comparison with generative model
There exist a number of generative models that are able to generate
layouts. Some of them [Kikuchi et al. 2021; Li et al. 2019b; Patil et al.
2020] are able to embed layouts in a latent space and generate a
novel layout with a latent code. A straightforward way for blending
layouts with these methods is first blending the latent codes of input
layouts and then generating a blended layout with the blended code.
In this comparison, we compare our method with one of these

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

249:10 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

Image Text

α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

O
ur

s
La

yo
ut

G
A

N
++

La
yo

ut
G

A
N

++
O

ur
s

Fig. 8. The blended layouts generated by LayoutGAN++ and our method.
Our method achieves a smooth transition in both geometry and structure.
LayoutGAN++ only achieves a smooth geometry transition and the struc-
tures of its blended layouts are broken.

methods, i.e., LayoutGAN++ [Kikuchi et al. 2021], which is the state
of the art and open-sourced. In our comparison, LayoutGAN++ is
trained using the PubLayNet dataset [Zhong et al. 2019], which was
initially adopted for its evaluation.
Figure 8 shows the layout blending results generated by our

method and LayoutGAN++. Again, our method achieves a smooth
transition in both geometry and structure. The blended layouts
generated by LayoutGAN++ present a smooth geometry transition,
indicating the effectiveness of this generative model in layout cre-
ation. However, the structures of the blended layouts are broken.
In addition, the underlying correspondence between the input lay-
outs is not optimal, e.g., elements with distant locations are corre-
sponded. Therefore, the blended layouts seem a little disordered.
LayoutGAN++ provides a function for layout beautification, which
requires additional constraints as input. However, for the blended
layouts, there is no clear hint to provide such constraints, since their
structures are unknown. These results again confirm the importance
of structure blending, which is the advantage of our method.

4.3 Additional results
We have tested our method with different types of layouts. Our
method can generate plausible blended layouts (see Figure 11). Fig-
ure 9 shows additional results produced by our method. The blended
layouts present a smooth transition in geometry and structure. In
this example, we first blend two pairs of layouts (Figure 9, four
corners) to generate two sets of blended layouts (Figure 9, rows
1 and 5). We then couple these layouts in the same columns for

Fig. 9. Our method is able to produce layouts with smooth structure and
geometry transitions. Four corners (highlighted by solid frames): four input
layouts. Rows 1 and 5 (highlighted by dashed frames): the first-round blend-
ing between the input layouts at the corners of the same rows. Columns
1 to 5: the second-round blending between the blended layouts produced
in the first round or between the input layouts in the same columns. The
colors of the elements represent the semantic labels.

further blending, generating five new sets of blended layouts (Fig-
ure 9, columns 1 to 5). In each blending, the blended layouts are
generated with 𝛼 = 0.25, 0.5, 0.75. This procedure produces a group
of layouts in a grid arrangement. For the layouts in Figure 9, rows
2 to 4, although in each row, the layouts are not generated in the
same blending procedure, they still exhibit obvious geometry and
structure transitions.

Our method also enables a free exploration of a local layout space.
Given a set of layouts, we first compute their pairwise distances. By
performing Multi-Dimensional Scaling (MDS) [Wills et al. 2009], we
will get a set of 2D points, each of which corresponds to an input
layout. After a Delaunay triangulation [Barber et al. 1996] with
these 2D points, we may explore this local layout space within the
generated triangles. The layout at each position can be generated by
a multiple layouts blending described in Section 3.4 (see Figure 1).

The correspondence estimationwith ourmethod is affected by the
semantic information of the input layouts (see Rule 1). Given a pair
of layouts, if their semantic labels are modified, the correspondence
and the blended layouts generated by our method will also change.
Figure 10 shows such an example, in which our method generates
reasonable blended layouts with different inputs of semantic labels.

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:11

 Title Title Title

 Title Title Title

 Title Title Title

α = 0.25Input α = 0.5 α = 0.75

Fig. 10. Given a pair of layouts, our method can generate reasonable blended
layouts with different inputs of semantic labels. The colors of the elements
represent the semantic labels. The first two columns show the correspon-
dence between the same pair of layouts with different semantic labels. The
last three columns show the blended layouts generated by our method.

 WELCOME WELCOME WELCOME

 INFORMATION INFORMATION INFORMATION

 WELCOME WELCOME

 INFORMATION

Input Blended layouts

Fig. 11. Our method can generate plausible blended layouts with different
types of input layouts, e.g., webpage layout and data report layout.

In the extreme case shown in Row 3 of Figure 10, only one pair of
elements correspond to each other. Our method can still generate
appropriate blended layouts, whose structures are combinations of
the substructures of the input layouts. These results confirm the
robustness of our method.

5 APPLICATIONS
Our method has many potential applications. Its capacity of cre-
ating novel layouts can be used for exploratory design of layouts
(Section 5.1). The introduced layout similarity metric regularizes
the layouts in a hyperspace. This helps jointly embed layouts and
their corresponding line drawings in a latent space, which can be
used for sketch-based layout retrieval (Section 5.2).

5.1 Exploratory design of layouts
Figure 12 shows our interface for exploratory design of novel lay-
outs. The user may load layouts for blending. This interface was
implemented in C++ with Qt UI library. In this prototype, we allow
three layouts to be loaded since two layouts will produce blended
layouts with limited variations and excessive layouts may confuse
the user during the exploration. The bottom left window shows a
navigation triangle whose vertices represent three input layouts.
The black dot is the navigation point whose position determines
the blending factors. The top left window shows one of the loaded
layouts, which can be switched for display by selecting the cor-
responding vertices of the navigation triangle. The right window
shows a blended layout. When the position of the navigation point
changes, this blended layout will update in real time. Please refer to
the accompanying video for layout blending in action.

To increase the diversity of the blended layouts, we add two local
control tools. The first one is a local lock tool. During the navigation
of blended layouts, the user may select a local arrangement of the
current blended layout and issue a local lock command. The selected
arrangement will then become fixed in the subsequent layout nav-
igation. The second tool is a local navigation tool. Similar to the
local lock tool, it allows the user to select a local arrangement and
issue a local navigation command. Then a local navigation triangle
with a local navigation point will appear adjacent to the selected
arrangement. The user may modify the local blending factors by
changing the location of the local navigation point.
We conducted a user study to verify the effectiveness of this

prototype for exploratory design of novel layouts. The purpose was
to investigate whether this interface helped users in designing novel
layouts, and whether they got inspirations for layout design with
this interface. In addition, we wanted to evaluate the plausibility of
the blended layouts generated by our method.

Participants. We recruited 12 university students to participate
in this study: 8 males and 4 females, aged 22 to 24. All of them
had experiences in designing 2D layouts, e.g., creating slides or
designing posters, etc. None of them was an expert designer. They
got paid after the study as compensation.

Task. The task was free creation of novel layouts with selected
ones.We filtered 675 high-quality layouts from themagazine layouts
dataset [Zheng et al. 2019] as candidate layouts. We did not resize
these layouts since they had similar shapes. The semantic infor-
mation was considered to help the participants better evaluate the
plausibility of the blended layouts. The participants were asked to
freely select three layouts from the candidates and browse blended
layouts. They were allowed to use the local control tools to generate
more diverse blended layouts. During the browsing, they needed
to select 5 desirable blended layouts. Each participant was asked to
perform the above procedure 5 times with 5 triplets of layouts. In
total there were 5 (selections) × 5 (triplets) × 12 (participants) = 300
(layouts) produced (see Figure 12. More layouts can be found in the
supplemental materials).

Before the study, the participants were introduced to our interface
to get familiar with the functions, including the global navigation
and the local control tools. We explained to the participants about

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

249:12 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

 Title

 Title

File Edit Study

 Title Title Title Title Title

 Title

 Title Title

 Title
 Title

 Title

 Title

 Title

0 1 2 3 4 5

Q1

Q2

Q3

Q4

Q5

Q6

Ratings of Interface

Fig. 12. Left: our interface for exploratory design of novel layouts. Middle: the average ratings of our interface from the user study participants. Each error bar
represents the standard error of the mean. Right: two sets of layouts produced by the participants. The dashed frames highlight two groups of input layouts
for blending, followed by the blended layouts selected by the participants.

the purpose of this interface, i.e., browsing blended layouts for inspi-
ration, instead of creating a target layout in mind. We emphasized
this with the participants until they claimed that they understood.
After the study, the participants filled out an questionnaire on

their experiences of using this interface. The following questions
were included:Q1. Does this interface produce inspiring layouts? Q2. Is
the way for browsing the layouts convenient? Q3. Are the local control
tools useful for increasing the diversity of the produced layouts? Q4. Is
the transition of the produced layouts during browsing smooth and
continuous? Q5. Are the produced layouts reasonable blending of the
selected ones? Q6. Do the blended layouts resemble real magazine
layouts? The participants needed to answer these questions in a
5-point Likert scale, with 1 being strongly negative and 5 being
strongly positive.

Results. Figure 12 plots the statistics of the ratings of our interface
according to the questionnaire. Q1, Q2, and Q3 were about the
functionality of the interface. Most participants were positive on the
overall effectiveness (Q1, 4.3 on average, 83% above 3) and usability
(Q2, 4.5 on average, 100% above 3). They also appreciated the design
of the local control tools (Q3, 4.2, 100% above 3). Q4, Q5, and Q6
were about the subjective rating of our layout blending method.
Most participants were satisfied with the blended layouts produced
by our method, including the blending stability (Q4, 4.3 on average,
83% above 3) and blending plausibility (Q5, 4.5 on average, 100%
above 3; Q6, 4.8 on average, 100% above 3).
We also collected the feedback from the participants. Since they

were not experts, their comments would better represent ordinary
users, who would be more likely to be benefited from our technique.
In general, the participants were positive about our interface. They
commented that “it is interesting to explore novel layouts by inter-
polating given ones”; “the transition between the blended layouts is
smooth”; “the generated layouts are quite inspiring”; etc. For improv-
ing the interface, they gave the following suggestions. First, some
participants suggested including direct editing tools in the inter-
face. They commented that “I want to drag some elements to other
locations, or remove them”; “It would be great if I can edit the sizes of
the elements”. Second, several participants had alternative opinions
on the rationality of some blended layouts. They commented that
“it looks strange if a title element appears at the bottom of the layout
or has a small size”; “some figure elements have uncommon aspect
ratios”. Third, a participant suggested further improving the local

editing tools. He said that “it would be great if I can select multiple
branches at the same time”. Fourth, a few participants were not al-
ways satisfied with the blended layouts. They commented that “I
cannot always reach my target layout by browsing”; “there usually
exists a gap between the generated layouts and my desired layout”.
These comments reminded us to combine our interface with direct
layout editing tools [Xu et al. 2019] for more convenient use, and
incorporate semantic constraints [Bao et al. 2013] in the layout opti-
mization to generate more realistic layouts. Interestingly, although
we emphasized that the purpose of our interface with the partici-
pants before the study, i.e., our interface was designed for browsing
blended layouts for inspiration instead of creating a target layout in
mind, they still gave suggestions on creating specific layouts. This
feedback implied that our interface was indeed effective at inspiring
users in layout creation.

5.2 Sketch-based layout retrieval
Several works [Bunian et al. 2021; Huang et al. 2019] have already
explored the task of layout retrieval, which provides intuitive tools
for finding desired layouts in a large layout repository. The Swire
system proposed by Huang et al. [2019] adopts sketches as the
querying modality. It converts layouts into images for constructing
a layout space. This conversion discards the important structural
information of layouts, making the retrieval insensitive to structural
similarity. Our method introduces a structural similarity measure,
which helps construct a layout space with an emphasis on structures.
If we embed the sketch representations of the layouts into this space,
it will enable sketch-based layout retrieval. We demonstrate this
idea to verify the feasibility of layout space construction with our
structural similarity measure, and compare with Swire to show that
our constructed space is structure-aware.

Networks. We reimplement the network of Swire for comparison.
This network has two sub-networks, i.e., sketch VGG-A net and
screenshot VGG-A net, and takes sketch-screenshot pairs as input
for training. The loss for this network is a Triplet loss. To prepare the
paired data for this network, we render each layout with two styles,
i.e., sketch and textured image. The sketch is rendered by drawing
the bounding boxes of the elements. The colors of the bounding
boxes encode the semantic labels of the elements. The texture images
are similar to those in Figures 1 and 12. Different elements are

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:13

distinguishable with this rendering. The training procedure follows
its original setting with a training/testing ratio of 9:1.
To remove the impact of different network architectures and

better examine the effect of our structural similarity measure, we
borrow the network architecture of Swire to construct our layout
space. Specifically, we only use the sketch VGG-A net since we only
need to deal with the sketch input. The sketch set is the same as the
one fed to Swire, with the same training/testing split. During the
training, the positive and negative samples are determined based
on our similarity measure, i.e., for each anchor sketch 𝑠 , a positive
sketch 𝑠+ is selected from its top-50 nearest neighbors determined
by our similarity measure and a negative sketch 𝑠− is randomly
selected from its top-1000 farthest neighbors. The Triplet loss is
modified from Swire, formulated as:

𝐿 = 𝐷 (𝑠, 𝑠+) +max(0,𝑚 − 𝐷 (𝑠, 𝑠−)), (13)

with
𝐷 (𝑠, 𝑠∗) =

𝑓 (𝑠) − 𝑓 (𝑠∗)2 ,
∗ ∈ {+,−},

(14)

where 𝑓 (𝑠) is the embedding of sketch 𝑠 returned by the sketch
VGG-A net.𝑚 = 0.2 is the margin between the positive and negative
pairs and its value is same as that in Swire. The other settings of
the training procedure, e.g., the optimizer and the learning rate, are
also same as those in Swire.

Dataset. We adopt the magazine layouts dataset [Zheng et al.
2019] for the layout space construction.We first filter and process the
layouts in this dataset to obtain a set of layouts (1,037 in total) with
regular arrangements (i.e., well-defined structures). This dataset is
then augmented to 10,370 layouts with our layout blending method.

Comparison. The layout retrieval with both Swire and our pro-
totype is achieved by first passing a sketch to the sketch VGG-A
net to obtain its latent code and then performing retrieval using
a nearest neighbor search in the latent space. Since Swire and our
prototype adopt the same network architecture, the evaluation on
the neural network is not necessary. The main difference between
Swire and our prototype is the similarity measure between layouts.
Swire considers the layouts as textured images while our prototype
emphasizes the structure of the layouts, and thus our prototype
should be more structure-aware. However, there does not exist a
ground truth data for this evaluation. Since the structure similarity
is usually based on the human judgement [Patil et al. 2021], we
conduct a simple perceptual study for the evaluation.
We randomly selected a set of sketches (𝑀 = 10) of the layouts

from the testing set, fed them to Swire and our prototype, and col-
lected the top-𝐾 retrieved layouts (𝐾 = 5) for each network. Each
sketch and 10 retrieved layouts with this sketch formed a group and
there were 10 groups in total. We created an online questionnaire to
let people judge whether the input sketch and retrieved layouts had
similar structures. In this questionnaire, each time a query sketch
and a retrieved layout were displayed and people only needed to
answer similar or not according to their structures. The order of
the questions was randomized. 40 people (𝑁 = 40, 30 males and 10
females, aged 21 to 37) participated this study. We then computed
the precision score for Swire and our prototype with the following

equation respectively:

𝑃 =
1

𝑀𝑁𝐾

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝐾∑︁
𝑘=1

𝛿𝑖 (𝑠 𝑗 , 𝑟 𝑗𝑘), (15)

where 𝑠 𝑗 is a query sketch. 𝑟 𝑗𝑘 is a retrieved layout with sketch 𝑠 𝑗 .
𝛿𝑖 (𝑠 𝑗 , 𝑟 𝑗𝑘) is the indicator function of a participant 𝑖 . Its value is 0 or
1 based on the participant’s judgement on the structural similarity
between the sketch 𝑠 𝑗 and the retrieved layout 𝑟 𝑗𝑘 .

The precision scores for Swire and our prototype were 32.0% and
63.2%, respectively. This result confirmed the feasibility of our struc-
tural similarity measure for constructing a structure-aware layout
space. Figure 13 shows the retrieval results by feeding hand-drawn
sketches to Swire and our prototype respectively. Although these
results show the advantage of our prototype in structure-aware lay-
out retrieval compared with Swire, they are not always satisfactory.
This is mainly due to the concise nature of the sketch representa-
tion, especially when applying this representation to the retrieval of
layouts with hierarchical structures. Further improving the sketch-
based layout retrieval with more advanced learning techniques (e.g.,
graph neural network [Manandhar et al. 2020; Patil et al. 2021])
would be an interesting future direction.

6 CONCLUSION
In this paper, we have presented a novel method for blending layouts
with hierarchical structures represented as layout trees. The core
of our method is an optimal structure correspondence algorithm,
which recursively finds optimal substructure correspondences. With
this structurally consistent correspondence, we can unite the struc-
tures of the input layouts to construct a compound tree. Then a
blended layout is obtained by extracting its intermediate structure
from the compound tree and performing a layout optimization proce-
dure. Our method also defines a structure-aware similarity measure
between layouts. Our method has many potential applications. It
provides a new way to create novel layouts from a small set of lay-
outs. The structure-aware similarity measure can help construct a
layout space, which may be integrated with learning-based meth-
ods [Arroyo et al. 2021; Kikuchi et al. 2021; Li et al. 2019b; Patil et al.
2020] for layout creation. We have demonstrated two applications
in our paper, i.e., exploratory design of novel layouts and sketch-
based layout retrieval. The effectiveness of the first application has
been confirmed by the user study participants. The feasibility of the
second application has been verified by our prototype.

Limitations. Our method still has room for improvement. Our
structural correspondence may not be always preferable. Figure 14
shows an example (top) in which the correspondence may not be
agreed by all people. This is because two visually similar layouts may
have distinct hierarchical structures, which are not always notable
to some people. Our similarity measure heavily relies on the hier-
archical structures. If two same layouts have different hierarchical
structures (Figure 14, bottom), their similarity error would be large.
This is quite controversial since no evidence shows which aspect,
visual appearance or structure, is more significant in defining the
similarity between layouts. It is possible to combine these two kinds
of measures to define a more comprehensive one. Another limitation
of our method is that we only consider relations between sibling

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

249:14 • Pengfei Xu, Yifan Li, Zhijin Yang, Weiran Shi, Hongbo Fu, and Hui Huang

 Title

 Title

 Title Title Title Title

Sw
ire

O
ur

s

 Title Title

 Title Title
 Title

 Title Title

Sw
ire

O
ur

s

 Title

 Title

Sw
ire

O
ur

s

 Title
 Title

 Title Title Title Title Title

Sw
ire

O
ur

s

 Title

 Title Title

 Title

 Title

Sw
ire

O
ur

s

Fig. 13. By feeding a hand-drawn sketch (Column 1), Swire and our proto-
type can return layouts (Columns 2 to 6) as retrieval results. These results
show the advantage of our prototype in structure-aware layout retrieval
compared with Swire.

vertices in a layout tree. This may lead to misalignment between ele-
ments in different substructures (e.g., the layout in Row 4, Column 1
of Figure 9). We do not consider relations between elements in differ-
ent substructures since they may lead to conflict of constraints. Our
current implementation only considers alignment, equal-spacing,

Fig. 14. Two examples that our method produces controversial correspon-
dences. Top: A correspondence that may not be agreed by all the people.
Bottom: A correspondence between two similar layouts with distinct hierar-
chical structures. The colors of the elements represent the semantic labels.

and equal-size relations. More advanced relations would further
improve our method, e.g., symmetry relation would help generate
more regular blended layouts; containing relation would enable our
method to process layouts with overlapped elements.

Future work. Our method may lead to several future directions.
First, our method for estimating hierarchical structure correspon-
dence may be used to solve other correspondence problems, such
as partial matching in shape correspondence. It is also possible to
extend our recursive substructure correspondence algorithm for re-
trieving objects which are under hierarchical organizations. Another
potential future work is to incorporate our hierarchical structure
similarity measure with learning techniques [Arroyo et al. 2021;
Kikuchi et al. 2021; Li et al. 2019b; Patil et al. 2020] for automatic or
sketch-based layout creation. It would also be promising to further
extend our method to estimate the correspondence between layouts
that have flexible hierarchical structures. Our method does not con-
sider the detailed contextual information, e.g., the specific texts and
figures, for the layout generation. It would be promising to consider
such information in the future. At last, we only invited non-expert
users to test our framework of exploratory design of novel layouts.
It would be interesting to invite professional designers to try our
framework for further improvement in the view of both interface
design and layout creation procedure.

ACKNOWLEDGMENTS
We thank the reviewers for their constructive comments, the user
study participants for their time. This project was supported by
NSFC (62072316, 62161146005, U2001206), Shenzhen Science and
Technology Program (20200812104508001, RCJC20200714114435012,
JCYJ20210324120213036), the Centre for Applied Computing and In-
teractive Media (ACIM) of School of Creative Media, City University
of Hong Kong, and Guangdong Laboratory of Artificial Intelligence
and Digital Economy (SZ).

REFERENCES
Ibraheem Alhashim, Honghua Li, Kai Xu, Junjie Cao, Rui Ma, and Hao Zhang. 2014.

Topology-varying 3D shape creation via structural blending. ACM Trans. Graph. 33,
4 (2014), 1–10.

Ibraheem Alhashim, Kai Xu, Yixin Zhuang, Junjie Cao, Patricio Simari, and Hao Zhang.
2015. Deformation-driven topology-varying 3D shape correspondence. ACM Trans.

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

Hierarchical Layout Blending with Recursive Optimal Correspondence • 249:15

Graph. 34, 6 (2015), 1–13.
Rahul Arora, Ishan Darolia, Vinay P Namboodiri, Karan Singh, and Adrien Bousseau.

2017. Sketchsoup: Exploratory ideation using design sketches. Comput. Graph.
Forum 36, 8 (2017), 302–312.

Diego Martin Arroyo, Janis Postels, and Federico Tombari. 2021. Variational Trans-
former Networks for Layout Generation. In CVPR. 13642–13652.

Greg J Badros, Alan Borning, and Peter J Stuckey. 2001. The Cassowary linear arithmetic
constraint solving algorithm. ACM Trans. Comput.-Hum. Interact. 8, 4 (2001), 267–
306.

Fan Bao, Dong-Ming Yan, Niloy J Mitra, and Peter Wonka. 2013. Generating and
exploring good building layouts. ACM Trans. Graph. 32, 4 (2013), 1–10.

C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1996. The quickhull
algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4 (1996), 469–483.

Patrick Baudisch, Edward Cutrell, Ken Hinckley, and Adam Eversole. 2005. Snap-and-
go: helping users align objects without the modality of traditional snapping. In CHI.
301–310.

Eric A Bier and Maureen C Stone. 1986. Snap-dragging. SIGGRAPH Comput. Graph. 20,
4 (1986), 233–240.

Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao. 1997. Solving linear arithmetic
constraints for user interface applications. In UIST. 87–96.

Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif Seif
El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In CHI. 1–14.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li,
Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for building
data-driven design applications. In UIST. 845–854.

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny Klowsky,
Drew Steedly, and Richard Szeliski. 2010. Ambient point clouds for view interpola-
tion. ACM Trans. Graph. 29, 4 (2010), 1–6.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and

Abhinav Shrivastava. 2021. Layouttransformer: Layout generation and completion
with self-attention. In ICCV. 1004–1014.

Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui Huang.
2020. Graph2plan: Learning floorplan generation from layout graphs. ACM Trans.
Graph. 39, 4 (2020), 118–1.

Forrest Huang, John F Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In CHI. 1–10.

Qi-Xing Huang, Bart Adams, Martin Wicke, and Leonidas J Guibas. 2008. Non-rigid
registration under isometric deformations. Comput. Graph. Forum 27, 5 (2008),
1449–1457.

Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. 2012. Ex-
ploring shape variations by 3d-model decomposition and part-based recombination.
Comput. Graph. Forum 31, 2pt3 (2012), 631–640.

Yue Jiang, Ruofei Du, Christof Lutteroth, and Wolfgang Stuerzlinger. 2019. ORC layout:
Adaptive GUI layout with OR-constraints. In CHI. 1–12.

Yue Jiang, Wolfgang Stuerzlinger, and Christof Lutteroth. 2021. ReverseORC: Reverse
Engineering of Resizable User Interface Layouts with OR-Constraints. In CHI. 1–18.

Yue Jiang, Wolfgang Stuerzlinger, Matthias Zwicker, and Christof Lutteroth. 2020.
ORCSolver: An Efficient Solver for Adaptive GUI Layout with OR-Constraints. In
CHI. 1–14.

Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori. 2019.
Layoutvae: Stochastic scene layout generation from a label set. In ICCV. 9895–9904.

Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun.
2012. A probabilistic model for component-based shape synthesis. ACM Trans.
Graph. 31, 4 (2012), 1–11.

Youwen Kang, Zhida Sun, Sitong Wang, Zeyu Huang, Ziming Wu, and Xiaojuan Ma.
2021. MetaMap: Supporting Visual Metaphor Ideation through Multi-dimensional
Example-based Exploration. In CHI. 1–15.

Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. 2021. Constrained
graphic layout generation via latent optimization. In ACM International Conference
on Multimedia. 88–96.

Yanir Kleiman, Oliver van Kaick, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2015.
SHED: shape edit distance for fine-grained shape similarity. ACM Trans. Graph. 34,
6 (2015), 1–11.

Janin Koch and Antti Oulasvirta. 2016. Computational layout perception using gestalt
laws. In CHI Extended Abstracts. 1423–1429.

Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 2, 1-2 (1955), 83–97.

Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and Scott R Klemmer. 2011. Bricolage:
example-based retargeting for web design. In CHI. 2197–2206.

Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang,
and Weilong Yang. 2020. Neural design network: Graphic layout generation with
constraints. In ECCV. Springer, 491–506.

Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. 2019b. Layout-
GAN: Generating Graphic Layouts with Wireframe Discriminators. In International
Conference on Learning Representations.

Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,
Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. 2019a. Grains:
Generative recursive autoencoders for indoor scenes. ACM Trans. Graph. 38, 2
(2019), 1–16.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J
Black. 2015. SMPL: A skinned multi-person linear model. ACM Trans. Graph. 34, 6
(2015), 1–16.

Dipu Manandhar, Dan Ruta, and John Collomosse. 2020. Learning structural similarity
of user interface layouts using graph networks. In ECCV. Springer, 730–746.

Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar Averbuch-Elor. 2020. Read:
Recursive autoencoders for document layout generation. In CVPR. 544–545.

Akshay Gadi Patil, Manyi Li, Matthew Fisher, Manolis Savva, and Hao Zhang. 2021.
LayoutGMN: Neural Graph Matching for Structural Layout Similarity. In CVPR.
11048–11057.

Roope Raisamo and Kari-Jouko Räihä. 1996. A new direct manipulation technique for
aligning objects in drawing programs. In UIST. 157–164.

William T Reeves. 1981. Inbetweening for computer animation utilizing moving point
constraints. SIGGRAPH Comput. Graph. 15, 3 (1981), 263–269.

Alec Rivers, Takeo Igarashi, and Frédo Durand. 2010. 2.5 D cartoon models. ACM Trans.
Graph. 29, 4 (2010), 1–7.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2008), 61–80.

Stefan Schwarz, Mateusz Pawlik, and Nikolaus Augsten. 2017. A new perspective on the
tree edit distance. In International Conference on Similarity Search and Applications.
Springer, 156–170.

Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. 2006. User
interface façades: towards fully adaptable user interfaces. In UIST. 309–318.

Sou Tabata, Hiroki Yoshihara, Haruka Maeda, and Kei Yokoyama. 2019. Automatic
layout generation for graphical design magazines. In ACM SIGGRAPH 2019 Posters.
1–2.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popović. 2005. Face Transfer
with Multilinear Models. ACM Trans. Graph. 24, 3 (jul 2005), 426–433.

Josh Wills, Sameer Agarwal, David Kriegman, and Serge Belongie. 2009. Toward a
perceptual space for gloss. ACM Trans. Graph. 28, 4 (2009), 1–15.

Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu. 2019.
Data-driven interior plan generation for residential buildings. ACM Trans. Graph.
38, 6 (2019), 1–12.

Pengfei Xu, Hongbo Fu, Chiew-Lan Tai, and Takeo Igarashi. 2015. Gaca: Group-aware
command-based arrangement of graphic elements. In CHI. 2787–2795.

Pengfei Xu, Guohang Yan, Hongbo Fu, Takeo Igarashi, Chiew-Lan Tai, and Hui Huang.
2019. Global Beautification of 2D and 3D Layouts with Interactive Ambiguity
Resolution. IEEE TVCG (2019).

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing
distance between trees and related problems. SIAM J. Comput. 18, 6 (1989), 1245–
1262.

Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH Lau. 2019. Content-aware
generative modeling of graphic design layouts. ACM Trans. Graph. 38, 4 (2019),
1–15.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. 2019. Publaynet: largest dataset
ever for document layout analysis. In International Conference on Document Analysis
and Recognition. IEEE, 1015–1022.

Chenyang Zhu, Renjiao Yi, Wallace Lira, Ibraheem Alhashim, Kai Xu, and Hao Zhang.
2017. Deformation-driven shape correspondence via shape recognition. ACM Trans.
Graph. 36, 4 (2017), 1–12.

ACM Trans. Graph., Vol. 41, No. 6, Article 249. Publication date: December 2022.

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Layout representation
	3.2 Correspondence rules
	3.3 Optimal hierarchical structure correspondence
	3.4 Layout blending

	4 Evaluation
	4.1 Validation of consistent correspondence
	4.2 Comparison with generative model
	4.3 Additional results

	5 Applications
	5.1 Exploratory design of layouts
	5.2 Sketch-based layout retrieval

	6 Conclusion
	Acknowledgments
	References

