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|dentity-aware and Shape-aware Propagation of
Face Editing in Videos

Yue-Ren Jiang®, Shu-Yu Chenf, Hongbo Fu and Lin Gao*

Abstract—The development of deep generative models has inspired various facial image editing methods, but many of them are
difficult to be directly applied to video editing due to various challenges ranging from imposing 3D constraints, preserving identity
consistency, ensuring temporal coherence, etc. To address these challenges, we propose a new framework operating on the
StyleGAN2 latent space for identity-aware and shape-aware edit propagation on face videos. In order to reduce the difficulties of
maintaining the identity, keeping the original 3D motion, and avoiding shape distortions, we disentangle the StyleGAN2 latent vectors of
human face video frames to decouple the appearance, shape, expression, and motion from identity. An edit encoding module is used
to map a sequence of image frames to continuous latent codes with 3D parametric control and is trained in a self-supervised manner
with identity loss and triple shape losses. Our model supports propagation of edits in various forms: I. direct appearance editing on a
specific keyframe, Il. implicit editing of face shape via a given reference image, and lll. existing latent-based semantic edits.
Experiments show that our method works well for various forms of videos in the wild and outperforms an animation-based approach

and the recent deep generative techniques.

Index Terms—Editing propagation, Face editing, Video editing

1 INTRODUCTION

ITH the development of deep learning, various amazing

facial image editing techniques have been proposed in
the literature. However, due to the nature of being designed for
single image editing, many of them perform poorly on video
editing when being adapted by editing on individual frames
independently. In fact, editing the facial content in a video needs to
consider the consistency of editing effects not only across adjacent
frames but also under different angles and actions. This raises a
key question to be answered: how to properly propagate single-
frame or multi-frame editing to an entire face video?

Recently there have been mainly two types of approaches
to solving the above challenges. The first type is to use the
optical flow predicted from video frames to deform and drive
the edited content, e.g., using the first-order motion model [1].
However, these methods lack 3D supervision and are difficult
to drive rigid items (like glasses) to move in face images rich
in 3D rotation, and the motion details may be lost due to the
optical flow errors, as shown in Fig. 6. The second type is to
first decouple the images through image translation networks and
then transfer certain attributes while keeping the other attributes
unchanged, such as video stylization [2], video makeup transfer
[3], and video face swapping [4]. Compared with the first type,
the second type is easier to retain the details of individual frames.
However, at present, the second kind of method has a small scope
of application because of its limited decoupling ability.

We observe that properly propagating the editing effects from
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a single frame to the entire video often requires the decoupling of
the motion, shape, and appearance from the identity information
in the facial image frames throughout the entire video. This is to
ensure that only the target attributes are modified during editing,
with the other attributes preserved as much as possible. StyleRig
[5] presents a supervised decoupling method over 3D to provide a
face-rig-like control over the pretrained StyleGAN. However, due
to the lack of identity constraints, the identity varies a lot when
using StyleRig for shape editing, as shown in Fig. 2.

Based on the above observations, we propose a novel frame-
work for identity-aware and shape-aware face editing propagation
in videos, as shown in Fig. 1. Specifically, we design an edit
encoding module to encode an edited face image and all the
original face images in a face video into the StyleGAN2 [6]
latent space. The edit encoding module operates with 3D supervi-
sion automatically extracted from a reference image or manually
specified by users to determine the latent shape editing direction.
Identity loss and triple shape losses are adopted during training
to make the propagation results consistent across frames. During
test time, the latent direction of shape editing is determined by
the shape parameters of the original and edited frames through
the edit encoding module. The latent direction of appearance
editing is then calculated to propagate appearance modifications
besides shape editing. Finally, we generate the edited faces from
the modified latent codes, which are projected and merged back to
the original video frames to synthesize the edited video.

In summary, our work makes the following contributions:

e« We propose a novel framework to propagate face appear-
ance editing from one frame to the other frames in a video
in the wild.

e We introduce 3D supervision to encode images for propa-
gating shape editing effects while constraining the identity
of generated faces.

e We embed the appearance editing information to the
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Fig. 1: Given a video and a pair of original and edited frame images (Left column in each example), our method successfully propagates
editing effects to the entire video sequence after several minutes of generator tuning. Our method supports edits in both shape and
appearance. The edit frames in this figure are obtained through image editing in Photoshop.
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Fig. 2: Shape editing comparisons with StyleRig [5]. Our method
has better control over the shape and better maintains the identity.

parameters of the pretrained generative network through
fine-tuning to propagate appearance editing.

2 RELATED WORK
2.1 Semantic Neural Face Editing

Generative Adversarial Networks (GANs) have shown a strong
ability to generate realistic facial images from a Gaussian distri-
bution, but they generally lack flexible semantic control due to the
highly entangled nature of their latent space. Several techniques
[7], [8], [9], [10] have tried to construct explicitly decoupled
spaces and control the 3D properties of generated images. Thanks
to the semantically-rich latent space of StyleGAN [6], [11], [12],
various research studies have made steps towards understanding
and manipulating the latent space to achieve semantically mean-
ingful editing. Unsupervised methods have been adopted in [13],
[14], [15] to decouple hidden space parameters and find the di-
rections that have obvious changes in face editing. Recently, there
have been some works based on the diffusion model to realize
image generation [16] and editing [17], image super-resolution
[18], etc., which have improved the effect and generation quality
to a certain extent.

More works have examined semantic directions in latent
spaces through supervised methods. A commonly used approach
is to find directions that control specific semantic attributes of
interest. Early works [19], [20], [21] use fully supervised methods
and find potential editing directions in latent space for binary

attributes such as young-older and smiling-calm. Abdal et al. [22]
propose StyleFlow to train a mapping network conditioned on
multiple labels based on normalizing flow. Wu et al. [23] discover
disentangled editing controls in their proposed style space S of
channel-wise style parameters.

Several other techniques [5], [24], [25], [26], [27] go beyond
walking along linear directions and use 3D guidance to supervise
editing. For example, Tewari et al. [5] propose a RigNet to edit
the expression, pose, and illumination of faces using 3DMM
parameters, but RigNet is not able to edit the latent code of a
real image in the wild. Tewari et al. [24] further propose a method
to embed real portrait images in the latent space of StyleGAN for
editing. Mallikarjun et al. [25] present an approach for intuitive
editing of the camera viewpoint and scene illumination and show
results on videos processed on a per-frame basis. However, the
above methods only edit the expression, illumination, and pose
and do not positively show the editing effects on the shape of
faces.

2.2 GAN Inversion

To apply semantic neural face editing to real images, one should
first invert the real images to their corresponding latent codes
in the GAN latent space. Generally, these GAN inversion meth-
ods can be divided into three categories: (1) optimization-based
methods [11], [28], (2) encoder-based methods [29], [30], and (3)
hybrid approaches [31]. Abdal et al. [32] demonstrate that it is
not feasible to invert images to StyleGAN’s native latent space
W without significant artifacts. Instead, the extended W+ space,
where a style latent code consists of 18 style vectors, is much more
expressive and could better preserve image features. Richardson et
al. [29] are the first to train an encoder for W+ inversion, which
is able to solve a variety of image-to-image translation tasks. Tov
et al. [30] further suggest two principles for designing encoders
that can balance the distortion-editability and distortion-perception
trade-offs. To mitigate these trade-offs, Roich et al. [28] use an
iterative method to find the latent code of a single frame image and
propose pivotal tuning to fine-tune the generator of StyleGAN2.
However, it is very time-consuming and discontinuous if the latent
code of each frame in the video is found iteratively. The above
methods are all suitable for single-frame GAN inversion, but the
GAN inversion method on continuous video frames still lacks
research.
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Fig. 3: Illustration of our proposed framework. Given a sequence of video frames and an edited frame, we first crop and align the faces
in them. We use a pretrained network to obtain the 3D parameters of every video frame and the edited frame, then replace the shape
parameters of every video frame with those of the edited frame, and finally map the image and shape information to the StyleGAN2
latent space through an edit encoding module. After the edited shape parameters are embedded into the latent code, the rest edited latent
directions of color and detail editing are found and used to determine the appearance propagation besides shape editing. Finally, we
use the video frames and the edited frame to fine-tune the generator and project and merge the generated edited faces into the original

video frames.

2.3 Video Editing Propagation

Propagating edits from one or several keyframes to the others is
an alternative approach to consistent video editing. Traditional edit
propagation works [33], [34], [35], [36] improve the propagation
of color-related edits on pixels. With the development of deep
generative models, more propagation effects (e.g., video styliza-
tion [2], video colorization [37], [38], [39], video inbetweening
[40], sketch-based video editing [41], etc.) have been explored.
Video Propagation Networks [42] splat edits into a bilateral space
and refine them to subsequent frames. Kasten et al. [43] explicitly
reconstruct RGB atlases, which represent content over multiple
frames, thus allowing for intuitive editing of content beyond a
single keyframe. However, their approach takes hours to train each
video individually before editing. Yao et al. [44] propose a latent-
code transformer to achieve disentangled semantic video editing
using StyleGAN2. Tzaban et al. [45] also propose a framework for
semantic editing of faces in videos. However, these methods only
demonstrate video editing in certain disentangled latent directions
rather than propagating user-given edited keyframes. To support
real-time inference, Texler et al. [2] train an appearance translation
network from scratch using only a few stylized exemplars while
implicitly preserving temporal consistency. Their approach works
well when correspondences can be established but has challenges
when the keyframes contain geometry editing. Unlike the above
methods, our method focuses on the face domain and utilizes 3D
prior to support the propagation of shape editing.

3 METHODOLOGY

We propose a method that can propagate the editing effects of
a single frame to an entire video. We consider both appearance
editing and shape editing and propagate them, respectively. As
illustrated in Fig. 3, given the i-th frame F}, from an input video
and an edited frame or a reference shape image, we first crop
and align the face to get Ifn and I.g; using the face alignment
algorithm used by the FFHQ dataset [11]. The transformation of

alignment is denoted by T I}, = T;(F} ). We then use a neural
3D reconstruction network [46] to obtain the respective 3D param-
eters pjn and pegi; of the video frame and the edited frame, then
replace the shape parameters of pén with the corresponding part
of Pedit, and finally map the image and 3D parameters information
to the code in the latent space of StyleGAN2 through the edit
encoding module £ (Sec. 3.1). Next, we find the edited latent code
component of appearance editing to determine the appearance
editing propagation besides shape editing (Sec. 3.2). Afterward,
we generate, project, and merge the propagated face image I¢,,
into the original video frame F’ ,, to get the edited video. Finally,
we introduce the training strategy and loss functions in Sec. 3.3.

3.1 Edit Encoding Module

Through disentanglement, previous studies [47], [48], [49] have
explored and employed the parametric space of 3D human faces
for various applications. Although the latent space of StyleGAN2
is highly disentangled [21], [50], the latent direction of shape edit-
ing effects is not completely fixed or purely linear. To ensure the
correct propagation of shape editing, we introduce 3D supervision
to the encoder in the process of GAN inversion.

Given an image I, a pretrained face reconstruction model [46]
P is used to obtain a set of 3DMM [51] parameters p = P (I) =
(a € R 3 € R% 5 € R v € R¥3 R € R3¢t € RY),
which correspond to the coefficients of shape [52], facial expres-
sion [53], albedo, illumination, pose, and translation, respectively.
Our goal is to control the inversed latent code according to the
given 3D parameters so that we can transfer the shape attribute
from the edited frame to the other frames. Inspired by StyleRig
[5], we proposed an end-to-end network as illustrated in Fig. 3.
We first embed the 3D parameters of the input image through a
shape encoder composed of a four-layer MLP. Next, we use a
pyramid structure to build the appearance encoder network. The
appearance encoder adopts the ResNet-IR architecture [54] as its
backbone architecture to extract the feature map. The features of



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2021 4

“a.
nn*ﬁ“

Fig. 4: Tlustration of editing propagation on the manifold in the StyleGAN2 latent space. w‘
frame in the original input video. We first perform shape editing propagation in Eq. 1 to find w!

rﬁl rﬁ‘ in- Uedlt wy'
Appearance

e Editing
¢ | Propagation

D

ﬂ

is the inverted latent code of the i-th

in-gedic- 1hen we calculate the latent offset

Aw, of appearance editing using Eq. 2. The final edited frames are generated by Eq. 3, where we add Aw,. to each frame after shape
propagation to acquire the final latent codes. The editing procedure is illustrated with solid lines in the above figure.

each layer and the embedded 3D parameters are then mapped to
the W space of StyleGAN?2 through 18 mapping blocks.

Since the fine-layer parameters in StyleGAN2 mainly control
the fine-grained details, as demonstrated in [11], we only inject
the latent code encoded from the 3D parameters into the first 11
mapping blocks to control the mapping.

3.2 Editing Propagation on Videos

The progress of our edit propagation in videos is shown in Fig.
4. To propagate shape editing and appearance editing respectively,
we first calculate the the intermediate latent code wj, ,eq; With
only the shape editing for the i-th frame from the 3D parameters
pﬁn and pegy; of the i-th frame and the edited image:

( in Repl (pedltapzn)) ) (1)

where Repl (p,,py) is the replacement function that replaces the
shape parameters of 3DMM parameters of p, with p,. Now as-
suming that the editing is done on the k-th image in the sequence,
we can calculate the nearly constant modified component Aw, of
appearance as:

%
Wip- gedit

— wk

ch = Wedit in-gedit?

2

where Wegit = E (Ledit, Pedit) 18 the latent code of the edited image
I.qir encoded by the edit encoding module F, with both shape and
textural appearance editing. Next, the propagated results of the i-th
frame will be generated as:

ut = G (W e + D). ©)

At last we project and fuse the generated image [, into the
original video frame F,,; according to the following formula:

Folut - (1 _MZ) *len+MZ *T (Iéut) C))
M; = T; ' (Blur(Dilate(M;,, U M:,,))), Q)

where Mg is a combined mask, and 7; refers to the i-th transfor-
mation obtained from the stage of cropping and alignment. We use
a face parsing model [55] to get the local mask M, and M,
from I, and I,,;, respectively.

3.3 Training Strategy and Loss Functions

We implement self-supervised training, with the loss function
consisting of the reconstruction loss Lecon and the editing loss
ﬁedit’

ﬁoverall = ['recon + ['edil- (6)

The mapping network first reconstructs the input image I;,,, and
we use the LPIPS loss L;,ips [56] and the identity loss L;p to
constrain the generated result [,,;:

Iout = Gfrozen (Etrain (Iznapzn)) 5 (7)
Lip=(1—(C(Lin), C(Lout)) » 8)
£recon = ‘Clpips (Izn7 Iout) + £ID (I’L’I’Lﬂ Iout) ) (9)

where C' stands for the pretrained ArcFace [54] to extract identity
features. Then the identity mismatch is measured by the cosine
similarity (denoted as (,)) between the identity features of the
input and output.

In our framework, we need to input the edited appearance
image and the shape reference image, but it is difficult to obtain the
paired training data before and after editing. To simulate possible
editing effects during training, we randomly select two images:
taking shape editing as an example, one is used as the reference
ps to provide the shape parameters, and the other is used as an
input parameter p;, to retain the 3D facial information except for
the shape. The network generates the edited image [,,+2 from this
edited parameter, as shown in the following Equation:

Tout2 = Girozen (Etrain (Iivu Repl (ps,pm))) . (10)

To constrain the identity features and the shape features in the
generated edited image [,,;2, we design the editing loss Legi,
which includes the identity loss Lip.eqir and a triple loss Ly,
denoted as,

Legit = Lip-edit + Lusi- (1D

For the generated edited image 1,2, there is no corresponding
ground-truth, so the identity loss Lip_egi¢ is introduced to control
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the identity between I, s0 and I;,,:
Lip-edit = (1 = (C(Lin), C(Lout2)) -

Although the shape editing of the face will affect the identity,
we expect that the appearance details and other attributes besides
shape that affect the identity will be retained as much as possible.
So we use Lip.git to restrict the range of latent codes mapped by
the edit encoding module during the training to make the edited
output as similar as possible to the input face while matching the
edited geometric shape.

(12)

Further, in order to constrain the generated image shape and
control the 3D parameters as accurately as possible, we design a
triple loss Ly, defined as follows,

L = Laireet + Leyater + Leyele, (13)
Laireet = Lp(Pout2s Repl (ps, pin)), (14)
Leyeter = Ly(Pin, Repl (Pin, Pour2)), (15)
Leycter = Lp(ps, Repl (pout2, ps)), (16)

where £, is a set of loss functions that measure the mismatch
between two sets of parameters p; and po:

Lp(p1,p2) = Lipips (R (1), R (p2))
+ )\landma.rk ||L (pl) —-L (pQ)HQ )

R (-) refers to a differentiable renderer and L (-) refers to the
function that returns the 68 landmarks on the mesh reconstructed
by the given 3D parameters. Different from StyleRig [5], which
only uses two cycle-consistent losses to constrain 3D parameters,
we directly use the desired parameters Repl (ps, pin ) to constrain
the 3D parameters p,,;2 detected from the generated image I,12,
and calculate the Lgjrect. Lairect 1 more direct and stronger than
the two cycle losses, as shown in our ablation study (Sec. 4.3).

Another important point of video generation is to ensure
temporal smoothness. Unlike other video generation works [2],
[57], which directly constrain their generation network based on
optical flow, we generate the image sequence by StyleGAN2. In
most cases, an input video is temporally consistent. In order to
maintain the temporal consistency of an output video, we only
need to preserve the consistency of the original video during
editing propagation. As we have constrained the geometry and
identity during training, the mapping from the image to the latent
code is very robust. Then we make the latent codes change
continuously when the input video frames are aligned smoothly.
We find that the videos generated by StyleGAN?2 in this way have
no temporal incoherence issue in most cases.

In order to make the generated effect conform to the given
video, the keyframe, and the corresponding edited frame, we
fix the parameters of the edit encoding module FEj,en, and the
appearance codes of the original frames and the edited frame, and
then iteratively modify the parameters of the generation network
G'train- We use the following loss to tune the generator:

['t - Llpips (IaGtrain (w)) , W= Efrozen (Ia p) .

a7

(18)

4 EXPERIMENTS

In this section, we compare our proposed technique to state-of-the-
art methods, both quantitatively and qualitatively. We also present
the results of an ablation study.

Input

Shape Ref.

Fig. 5: Results of shape editing. Given each face shape reference,
our method can edit the face shape of an input image while
maintaining the appearance and expression and minimizing the
change of identity.

4.1 Setup

Dataset and data preparation. We train and evaluate our model
on the FFHQ dataset [11] and the CelebA-HQ dataset [58], which
together consist a total of 100K face images. The whole dataset
is divided into a training set and a testing set at a ratio of 9:1.
To ensure a fair comparison with the other methods, all the
training and testing face images used for comparisons are resized
to 1024 x 1024 resolution. We also collect 50 interview videos at
1920 x 1080 resolution from YouTube [59] for training and eval-
uation, some of which are used to demonstrate the performance
of our proposed method. We crop and align these video frames
by employing the face alignment algorithm for constructing the
FFHQ dataset [11].

Implementation details. The framework of our method is im-
plemented by PyTorch [61], and can be further implemented
on other deep learning framework including Jittor [62]. We use
the AdaBelief [63] optimizer with a learning rate of 0.0001 for
training and tuning. For the training of the edit encoding module,
we use Apndmark = 0.1. We trained the edit encoding module on
a single NVIDIA GeForce RTX 2080ti for 200 epochs. For the
tuning set, we take the edited frame and one frame for every 30
frames of the input video. We optimize 300 iterations for every
selected image. On average, a tuning set of 10 keyframes takes 6
minutes to tune on a single NVIDIA GeForce RTX 2080ti.
Existing methods for comparison. We compare our method with
Interactive Video Stylization (IVS) [2], a makeup transfer method
CPM [64], and two face swapping methods, i.e., Simswap [4], and
OneShotFS [65]. We compare to an alternative solution, which
directly drives an aligned edited frame through a motion-transfer
method FOMM [1]. In addition, three semantic editing methods
including PTI [28], LatentTrans [44], and STIT [45] are compared.
Evaluation metrics. As there is no ground truth for the editing
task, we evaluate the compared methods under two different
conditions. First, for each video, we randomly choose an unedited
frame as an edited keyframe to reconstruct the video frames for
evaluation with the original video frames, using the following
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Fig. 6: Editing propagation comparisons. The edited image in the left example is obtained by StyleClip [60], and the edited image in

the right example is achieved using Photoshop.

TABLE 1: Quantitative evaluation with other alternative methods.
We report the evaluation results using the metrics described in
Sec. 4.1.

Methods |GT-FID] GT-TC| ID preservationf 3D accuracy.
FOMM 4235  0.336 0.894 0.532

IS 41.09 0.315 0.915 0.455

CPM 44.64 0438 0.852 0.472
Simswap 45.69 0.344 0.905 0.466
OneShotFS| 50.18  0.528 0.847 0.582

Ours 39.52  0.281 0.956 0.397

metrics:
1) GT-FID: The Fréchet Inception Distance (FID) [66] is

used to measure the difference in quality between the original
frames and the generated ones. 2) GT-TC: To measure temporal
consistency, we employ an optical flow estimation method [67].
We take the predicted adjacent optical flow of the original video
frames as the ground truth and measure the mean squared error
(MSE) of the predicted optical flow between the original frames
and the generated frames. Second, we also evaluate all the methods
on the videos edited with Photoshop and the semantic edited
videos, using the following metrics: 1) ID preservation: we employ
an identity detection network [54] to measure the identity similar-
ity between the generated frames and the edited keyframe. The
identity similarity is normalized by the score of the corresponding
pairs in the original video. 2) 3D accuracy: we also calculate MSE
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Fig. 7: Results of semantic propagation. We show that our frame-
work is also applicable to the propagation of existing latent-space
semantic editing [13], [21], [68].
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between the detected 3DMM expression and pose parameters of
the generated frames and the original frames to measure motion
preservation.

4.2 Comparisons

Visual comparisons. Fig. 6 shows qualitative comparisons of the
results by the compared methods. It can be observed that our
method not only retains the action and expression details of the
original frames, but the propagation results also conform to the
3D law. In our results, the transparency of added glasses close
to the edge of the face changes as the head turns. This is the
effect of the interaction between StyleGAN’s powerful generation
ability and our 3D-constrained mapping. The method of driving
the edited frames through FOMM is limited by the resolution
and cannot restore the expression details in the original frames,
such as winking. The makeup method CPM fails to propagate
other appearance editing effects except color editing. The video
stylization method IVS can also propagate color editing but fails
in the propagation of hairstyle editing and does not maintain the
structure of the hair.

It should also be noted that our method is totally different
from face swapping, as our method focuses on the propagation
of a variety of edits, e.g., the semantic-edit propagation shown
in Fig. 7 and edited-frame propagation in the Fig. 11. The
face swapping method SimSwap [4] and OneShotFS [65] cannot
perform the color editing on the original face because SimSwap
and OneShotFS are supposed to leave the original color tone and
identity untouched while our method is designed to propagate
editing while keeping identity coherent among the output frames.

We also compare our method with the semantic video edit-
ing frameworks mentioned in the section of related work. In
Fig. 8, we can see that PTI [28] and LatentTrans. [44] lead to
temporally inconsistent results. PTI uses the optimization-based
inversion method to invert image frames into the W space of
StyleGAN2 while our method applies the edit encoding module

n
H
-
=2
o
=]
—

Fig. 8: We show more comparisons with the semantic editing
framework PTI [28], LatentTrans. [44] and STIT [45]. All methods
adopt the same InterfaceGAN [21] editing direction in ’age’.

TABLE 2: Quantitative comparisons with the semantic editing
frameworks. Only the semantic edited videos are used for eval-
uation since the other methods cannot propagate the specific
keyframes edited with Photoshop.

Methods  |GT-FID] GT-TC{ ID preservationt 3D accuracyl
PTI 41.15 0.536 0.937 0.355
Latenttrans.| 45.09  0.425 0.892 0.412
STIT 42.64 0.305 0.952 0.332
Ours 39.52  0.281 0.971 0.256

for the sequential inversion. Although PTI and our method both
fine-tune the generator, our method shows that it is possible to
propagate the edits well only using the LPIPS loss without the
locality regularization proposed by PTI. Both STIT [45] and our
method achieve good results in the same InterFaceGAN [21]
editing direction, but it should be noted that STIT edits video
on the disentangled latent direction while our method can not
only propagate semantic edits but also edit video on user-given
keyframe.

To investigate the 3DMM notion, we designed an alternative
pipeline based on the pipeline of STIT. The original STIT uses
the disentangled latent edits direction to perform video editing,
and we alter this step to encode the edited image using ede and
using AW = Wegyy — wfn as the editing direction. To augment
this pipeline with the 3DMM notion, we use the 3D prior loss
Ly; in Sec. 3.3 to control the face shape during the fine-tuning,
represented as STIT-3DMM.

As shown in Fig. 9, the inconsistent facial changes in STIT-
3DMM when the head turns are large, indicating that only using
losses to force the convergence of editing is not enough. While
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Fig. 9: Addition comparison with the STIT pipeline augmented
with the 3DMM supervision.

TABLE 3: Quantitative comparisons on shape editing. Only the
videos involving shape editing are used for evaluation to investi-
gate the 3DMM notion.

Methods ID preservationt Shape| Expl
STIT-3DMM 0.82 0.142  0.013
Ours 0.90 0.129 0.014

our results are more accurate even with large head poses because
we input the 3D prior information to help the encoding of shape
editing rather than merely using losses to fine-tune the shape
editing.

Quantitative comparisons. In Tab. 2, we report the quantitative
comparison with the state-of-the-art techniques. It can be found
that our method performs the best in identity preservation and
point-wise accuracy. Actually, all the methods except OneShotFS
[65] can maintain temporal consistency to some extent, but only
our method best preserves motion and identity among frames at
the same time. To better validate the shape-control ability of our
method, we also report the quantitative comparison with STIT-
3DMM on shape editing (Tab. 3). We calculate the MSE of shape
parameters between each frame of the generated video and the
edited frame, and the MSE of expression parameters between the
generated frame and the original frames. We also report the results
in the ID preservation metric. It can be seen that our method can
better preserve the geometric features and identity features.

4.3 Ablation Study

We perform an ablation study both quantitatively and qualita-
tively to verify the impact of the proposed loss components
in our model. In Baseline 1, we remove the L and use
Legic = (Leyelet +Leyeie2) + Lip-edit- In Baseline 2, we remove
the Leycreig2 and use Legiy = Laireet + Lip-cait- In Baseline 3, we
remove the ‘CID»edit and use £edit = (Edirecl+£cyclel+£cy0162)- In
the quantitative evaluation shown in Tab. 4, we randomly set
the 3D parameters of a certain attribute (as Prandom-in ) to edit
and measure the errors between the input 3D parameters and the
3D parameters detected from the generated results. The value is

TABLE 4: Quantitative ablation study on the FFHQ dataset. The
values in the table measure the errors between the input 3D
parameters and the 3D parameters detected from the generated
results. The lower, the better. Our full framework produces the
best results on average.

Setting Shape Exp Illumination Pose  Avg.
StyleRig 0.386 0.586 0.925 0.571  0.579
Baseline 1 | 0.237 0.552 0.887 0.547 0.485
Baseline 2 | 0.226  0.581 0918 0.551 0.535
Baseline 3 | 0.152 0.528 0.821 0.497 0.455
Full 0.124  0.447 0.745 0.421 0.397

TABLE 5: User study. We report the average ranking scores of the
four compared methods (1: the best and 4: the worst). Our method
scores the best in all aspects.

Method | Identity control Expectation fitness Quality
CPM 3.23 2.82 3.34
IVS 2.19 2.38 2.38
FOMM 2.67 3.57 2.85
Ours 1.91 1.23 1.43

calculated as L, (Dout, Prandom-in)- 1t can be observed that our full
triple geometric losses have the most accurate control over 3D
parameters. Without the Lip g, the results are still geometrically
consistent, but the appearance details have changed. Qualitative
results shown in Fig. 10 also prove that our full method is the
best. Fig. 5 shows more examples of our shape editing.

4.4 User Study

As there is no ground truth in video propagation, we conduct a
perceptual study and invite human viewers to evaluate the quality
of the results by our method and three other methods. Each
participant was asked to sort the results from 1 (the best) to 4 (the
worst) in three aspects of expectation fitness, ability to control
identity, and generation quality. In total, 21 participants helped
with the study. Tab. 5 summarizes the statistics of this study. Our
approach performs the best in all aspects.

5 CONCLUSION AND DISCUSSIONS

We have proposed a novel deep generative framework for video
propagation of face editing. We use the edit encoding module
with 3D guidance to supervise the propagation of changes in
face shape. In this way, we can find the remaining appearance
components independent of geometric motion in the hidden space,
and propagate the appearance components of an edited frame to
other frames. The generalization and robustness of our method
have been confirmed by extensive experiments and results. More
results are provided in the supplementary materials.

Potential ethical concerns. The core of our work is the prop-
agation of user-provided face editing. Only when users input
maliciously edited images, potential negative societal impacts
might be brought. A series of works [70], [71], [72] have studied
the detection of video face manipulation and we expect that
these works could be applied to reduce the impacts of malicious
misuses.

Range of supported edits. Since the pretrained StyleGAN2
model is used to generate face images, the types of supported
edits are also constrained by the generation ability of StyleGAN2.
Based on our extensive experiments with various editing effects,
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Fig. 10: Ablation study. We visualize the edited results under different settings. Our full framework achieves the best results.

we find that most editing effects within the StyleGAN2 latent
distribution [73], [74], [75] can be propagated well, but out-of-
distribution examples containing editing of delicate patterns are
often not propagated correctly, as shown in the right side of
Fig. 13.

Edits on multiple frames. Our method can handle the cases of
multiple edits on multiple keyframes when there are no overlaps
between the edited regions and the edits are not contradictory, as
shown in Fig. 12. For edits with overlaps, additional methods need
to be explored to enhance this task, for example, by using masks
to avoid editing ambiguity on overlaps of multiple edits.
Extensions beyond faces. The key to extending our method to
subjects other than faces is to ensure that the generation network
can encode and decouple the given image data. Human faces are
highly structured data, but other data such as the full human body
has higher 3D complexity, and it may be more difficult to decouple
these data directly through 2D generation networks.

Limitations and future work. Although our method can correctly
propagate the single frame editing effect to an entire video,
there are still some limitations. First, some limitations stem from
StyleGAN2: our method can only handle faces with yaw in the
range [—48.1°,45.3°] and pitch in [—28.23°,23.66°], which is
statistically analyzed from the FFHQ dataset. The generated hair
might be discontinuous due to the “texture sticking” problem
of StyleGAN2. Second, we can only naturally propagate the
content that StyleGAN2 can generate, that is, the area of the face.
Hair, clothing, and background have different structure and image
complexity, compared to human faces, and our method handles
these areas less successfully. For example, we cannot handle the
long hair in the original video that exceeds the synthesis range

of StyleGAN2, as shown in Fig. 13. To address the limitation of
cropping and alignment, one direct way is to expand the cropping
window. However, with the expansion of the window, more non-
face image information (such as background and clothes) becomes
the input to increase the meaningless calculations, so editing out-
side the face (such as the whole hair) may need further research.
Third, we do not further optimize for occlusion and motion blur.
One possible solution is to find robust latent codes by interpolation
and completion. Fourthly, our method cannot handle accessories
and extreme facial expressions, because the dataset of FFHQ itself
lacks typical examples with extreme facial expressions and various
accessories. It is possible to add more expression corresponding
data to enhance robustness on extreme expressions, accessories,
etc.

Despite the above limitations, our framework paves the way
for further studies on the video propagation of face editing through
the disentanglement of latent space. In the future, we are interested
in extending our framework to the latent space of StyleGAN3
[12] and introduce more processing algorithms on latent codes to
handle various situations, such as occlusions, motion blur.
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Fig. 11: Additional qualitative results of our method. The edited frames in the 2nd row are achieved using Photoshop. The edited frame
on the left side of the 3rd row is obtained by DeepFaceEditing [69], and the one on the right is obtained by StyleClip [60]. Our method
can effectively propagate various editing effects without being restricted by the editing methods.

First Keyframe

Other original frames Last Keyframe
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Fig. 12: Propagation results of edits on two keyframes. In the first keyframe, we perform a hair edit of bangs. In the last keyframe, we
add makeup. We add all Aw,. of the edited keyframes to the latent codes of the original frames to obtain the propagated results.
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